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INEQUALITIES FOR BRANCHING PROCESSES!

By BRUCE W. TURNBULL?
Cornell University

A branching process is considered for which the conditional distribu-
tions of the litter sizes, given the past, are allowed to vary from period
to period and are required only to belong to some set .#. The process is
non-Markovian in general. For various interesting ., bounds are derived
on (i) the probability of extinction, (ii) the mean time to extinction, (iii)
the probability that a generation size exceeds a given number, (iv) the
expected maximum generation size, and (v) the mean total population size.
In (i), (ii) and (v), the optimal strategies which achieve the bounds are
identified.

The techniques used are similar to those used in the theory of gambling
as developed by Dubins and Savage (How to Gamble if You Must, McGraw-
Hill (1965)).

1. Introduction. We consider the following population growth model in which
the successive generation sizes are given by:

Z, =z
Z,=X(n,) + -+ +X(n, Z,_), n=12,...);

where z is a nonnegative integer representing the initial generation size and
X(n, j) is the random number of offspring of the jth individual of the (n — 1)th
generation. It is understood that if Z,_, = 0 then Z, = 0 and we say that the
process has become extinct. We further assume that within each generation,
conditional on the past, the individuals reproduce independently of each other
and, for each n, the random litter sizes {X(n, {); i = 1, 2, ..., Z,_,} are indepen-
dent and with distributions (not necessarily identical) in some set .# of proba-
bility distributions. By ‘“conditional on the past,” we mean “conditional on the
random variables {Z,, X(i,j):j=1,2, .-, Z},i=1,2,--.,n — 1.7

In the classic model of Galton and Watson [8], the litter size distributions in
all generations are i.i.d. This corresponds to our model for the case when .27
contains exactly one element. The recent theory of “branching processes in
random environments” (see Smith [13], Smith and Wilkinson [14], and Athreya
and Karlin [1]) treats the case when the litter sizes of individuals in the nth
generation are conditionally i.i.d. with distribution function §,, where {§,; i = 0}
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is a stationary random process and £, is independent of the past history of the
process (n = 0,1,2, -..). This becomes the Galton-Watson process for the
special case when, for all n, &, = & with probability one. For.these models,
exact results have been obtained about limiting distributions and conditions for
almost sure convergence. In our model we also permit the litter size distribu-
tions to be themselves random but, in addition, they are allowed to depend on
the past history of the process. We specify only that they belong to some class

Freedman and Purves [7] treat this model for the special case when _Z
consists of all distributions concentrated on {0, 2, 3, 4, - ..} and with mean less
than 2. They then find sharp lower bounds on the probability of extinction.
Goodman [9] extends these results and finds both upper and lower bounds on
the probability of extinction when . consists of distributions concentrated on
some arbitrary subset of the nonnegative integers and with mean restricted to
be within a certain interval.

In Section 2 we will develop a general theory which will be applied in later
sections to obtain Chebyshev-like bounds on not only the probability of extinc-
tion but also the mean time to extinction, the expected total population size,
the probability that a generation size exceeds a certain number and the expected
maximum generation size—all for various .. It will be seen that the results
of Freedman and Purves [7] and of Goodman [9] are part of a unified theory.

Goodman points out that the study of such processes are useful for describing
populations when the demographic data are subject to error. Also the optimal
strategies whereby the bounds are achieved are of interest in the study of natural
selection. (For further discussion of this application see Turnbull [18] Chapter
6.)

2. The basic theory. The problem posed in Section 1 is similar to the one
studied in the theory of optimal gambling, first considered by Blackwell [2], [3]
and later extensively developed by Dubins and Savage [6]. This theory considers
a gambler who, having a fortune z, at stage n, may play any gamble y selected
from a specified set _#(z,) of gambles. Each gamble is a probability measure
on the set C of all possible fortunes and z,,,, the gambler’s fortune at the next
stage, is determined following the probabilities in y. The gambler’s objective is
to select a betting strategy, or sequence of gambles, that will maximize his
probability of attaining a goal before being ruined. Analogously in our branch-
ing process model, z, represents the size of the nth generation, C is the set of
possible population sizes (the nonnegative integers), the set of gambles cor-
responds to the set of possible litter size distributions, and, typically, the objec-
tive is to minimize the probability of extinction. This suggests that techniques
similar to those used in gambling theory can be applied to our problem. In fact,
as will be shown later, these techniques can also be applied to a wide variety of
interesting problems.

Dubins and Savage [6] treat at length many problems associated with optimal



INEQUALITIES FOR BRANCHING PROCESSES 459

gambling systems. They proceed under the very general assumption of finitely
additive gambles defined on all subsets of C. (They give details in Section 2.3.)
We shall stay with the traditional assumption of countably additive measures
defined on the Borel sets, although the bounds derived in Section 3, 4, and §
may be shown to hold when _# is extended to include finitely additive gambles.
The measurable gambling setup has been treated in Blackwell [4], Strauch [15]
and by Sudderth [16], [17].

For random variables X, Y we use the notation P(X) for the probability
distribution of X, and P(X|Y) for the conditional distribution of X given Y. Also
let C be a Borel subset of some Polish space. In the applications considered in
this paper, this space will be the space of reals.

DEerINITION. Let X;, X;, - - - be random variables defined on some probability
space (2, B, P) and taking values in C. Let _# be a nonempty set of probability
distributions on C. Then we call X, X,, .- - an _#“sequence if the distributions
P(X)) and P(X,| X, X,, - -+, X,,_,) foralln = 2,3, ... are always in _Z

For instance, if _# contains only one element then X}, X,, - - - are independent
and identically distributed. However, if _# contains more than one element,
in general the sequence is not even Markov.

DEFINITION. Let Z,, Z,, Z,, - - - be random variables defined on a probability
space (R, B, P) and taking values in C. For each zin C, let _#(z) be a non-
empty set of probability distributions on C. Then we call Z, Z,, Z,, - - - an
#-sequence starting at z if

(a) Z, =z, and

by P(Z,,|2y, 2y, -+, Z,)e #(Z,) for everyn =0,1,2, ...

For example, if {X,} (n = 1, 2, -..) is an _#“sequence of real-valued random
variables, #Z(z) = {P(z + X): P(X)e #},and Z, =z + X, + --- + X,, then
{Z,} is an _#‘sequence starting at z.

DEFINITION. A stopping time relative to {Z,} is a random variable, T, taking
values {0, 1,2, ..., oo}, for which, for every n, the event {T' = n} is in the o-
algebra generated by Z,, Z,, - - -, Z,.

(If, in any particular context, we fail to define a stopping time on part of the
sample space, then we take its value to be infinite on that part.)

If T = oo, and 4, = O for all i, define 5;7_, a, to be lim,_,, YV, a;, which may
possibly take the value 4+ oco. Also let I, denote the indicator random variable
of the event B.

Let r be a real-valued Baire function on C, called the one-stage reward, and
define T(N) = min [T, N]for N=0,1,2, ....

THEOREM 2.1. (Compare [6] Theorem 2.15.2.) Let N be some positive integer
andlet r, {f,} (k =0, 1,2, ..., N) be real-valued nonnegative Baire functions on C
such that:

2.1 fen(2) 2 1(2) + Efu(Z)
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whenever P(Z) € _#(z), for all z € C, and for every k =0, 1,2, ..., N — 1.
Then, for Z,, Z,, - - -, an _7#-sequence starting at z, we have:

(2.2) v(@) 2 E[ZID 7 1(Z) + fyran(Zran)] >
for all z e C, and for all stopping times T.
Proor. We first show that {f,_.(Z,) + X¢ir(Z)} (k=1,2,.-.-,N) is a
nonnegative supermartingale. Note that:
Elfy-2i(Zips) + D50 (Z) | 2, Z4, - - -, Z,]
= ',f=_01 r(Zi) + r(Zk) + E[fN—k—l(Zk+l) | Zov Zv Tt Zk]
= DS nZ) + fu-lZ)
where the inequality follows by condition (2.1). This verifies the super-
martingale property. Then, with a sign change, we may apply a submartingale

theorem due to Doob [5] (see also Neveu [12] Section 4.5) and the result (2.2)
follows. []

CoROLLARY 1. Note that equality in (2.1) implies equality in (2.2).

THEOREM 2.2. Let N be some positive integer and let r, {f,} (k = 0, 1,2, ..., N)
be real-valued nonnegative Baire functions on C such that:

(2.3) fin(2) = 1(2) + Ef(2)

whenever P(Z) € _#(z), for all z ¢ C, and for every k = 0,1,2, ..., N — 1.
Then, whenever Zy, Z,, - - - form an _#/-sequence starting at z and satisfying:

(2.4) E[fy-u(Z) + ZiZ 1(Z)] < o0

forallk =1,2,..., N,

we have:

(2.5) fo(2) £ E[ZES 7 1 ZY) + fyran(Zrawn)] s

for all z e C, and for all stopping times T.

Proor. By conditions (2.3) and (2.4) we have that {f,_.(Z,) + X n(Z,)}
(k=1,2,...,N) is a submartingale. Then (2.5) follows from a martingale
theorem which can be found in Neveu, [12] Section 4.5. []

CoROLLARY 2. Note that equality in (2.3) implies equality in (2.5).

TueorEM 2.3. (Compare [4] Theorem 2 and [6] Theorem 2.12.1.) Let r, f be
real-valued nonnegative Baire functions on C satisfying:

(2.6) f(2) z r(2) + Ef(Z),
whenever P(Z) e _#(z) and for all z¢ C.

Then for Z,, Z,, - - -, an _7/-sequence starting at z, we have:
(2.7) f(2) Z E[ XI5 1(Zy) + f(Zy) - Irco] s

for all z € C and for all stopping times T.
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(Note: For the sake of completeness we may define f(Z,) = 0 if T = oo; i.e.
there is no terminal reward if the process never stops.)

Proor. Using Theorem 2.1 with f, = f for all k, we have, for each N = 0,
L,2,...:
[(2) =z E[ZE8D7 1(Zy) + f(Z )]

= E[ZOéIKT(N) r(Zk) +f(ZT(IV)) . IT<N]

= E[ Zosk<ran N(Z) + f(Zyr) - Iren]

7 E[Zosi<r (Z) + fZy) - Ircoo) as N— oo,
by monotone convergence, since r, f are nonnegative. Hence the result (2.7) is
proved. []

THEOREM 2.4. Let r, f be nonnegative Baire functions on C such that
(2.8) f2) = r@2) + Ef(Z)

whenever P(Z) € _#(z) and for all z € C. Then, whenever Z,, Z,, - - - form an _#-
sequence starting at z, and T is any stopping time satisfying

(2.9a) E[f(Z) + X2 n(Z)] < for k=1,2,...
(2.9b) liminf, . E[(Zy) - I;=y] =0,

we have:

(2.10) f(0) < E[ XI5 n(Z) + fiZy) - Irca) s

forall ze C.

Proor. Using (2.8), (2.9a), we may apply Theorem 2.2 with f, = f for all k
and obtain:

f(2) < E[ZE7 HZ) + f(Zrw)]
= E[Zf;’g"l r(Zk) +f(ZT(N)) : 1T<N] + E[f(ZT(N)) : IT;N] .
This is true for all N. Letting N — oo, we have:

f(z) § E[Zl;ol r(Zk) +f(ZT) : IT<°°] + lim ian—m E[f(ZT(N)) : IT;N] .

The result (2.10) now follows by condition (2.9b). []

We now apply the theorems of this section to the branching process of Section
1. In terms of _#Zsequences, we assume that Z,, Z,, ... is an 7-sequence
starting at z for

@2.11)  A(z) = {P(X, + --- + X,): {X,} areindep., P(X,)e.7}.

We will need to assume the well-known result that if ¢ is the generating
function of a nonnegative integer-valued random variable X, then, provided
Pr[X > 1] > 0, the equation x = ¢(x) has exactly two roots in [0, co0), namely
x=1and x = a where « > 1, @ = 1, @ < 1 accordingas E(X) < 1, E(X) = 1,
or E(X) > 1. In the case Pr[X > 1] = 0, then if Pr[X = 1] < 1 the only root
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of the equation x = ¢(x) is x = 1, while if Pr [X = 1] = 1 then ¢(x) = x for all
x = 0. This result follows from the convexity of ¢ and is proved for instance
in Karlin [11] Chapter 11.3.

Throughout this paper, the set C, referred to in Section 2, w1ll be taken to be
the set of all nonnegative integers. Also it will be understood that " is some
subset of probability distributions concentrated on C. We will adopt the
convention 0 = 1, and define the time to extinction, T,, by:

T,=min[n: Z, = 0] if Z,=0 forsome n,
= oo otherwise.

3. The probability of extinction and the expected time to extinction. In this sec-
tion, we consider certain families . of distributions and find bounds on the
probability of extinction of the branching process described in Section 1. In
Sub-section 3.1, upper bounds are derived for an _# which may at first glance
appear somewhat artificial. However two interesting special cases are considered
in Sub-section 3.2 and Sub-section 3.3; in the former the litter sizes are bounded,
in the latter the variances of the litter size distributions are constrained. Lower
bounds are derived in Sub-section 3.4 and a special case also studied by
Freedman and Purves [7] and by Goodman [9] is presented in Sub-section 3.5.
(Goodman also treated the example of Sub-section 3.2.) Finally, results about
the mean time to extinction are proven. All the bounds obtained are sharp and
are achieved by Galton-Watson processes.

3.1. Upper bounds.

THEOREM 3.1. (Extinction in a finite time N). For any positive integer N, let
7o = 0,705 72 -+, 7y be a sequence of nonnegative real numbers. Take

={(P(X): E[y/* 1 S rjn, for 0Sj< N—1}

and set
ANz) ={P(X, + --- + X,):{X,} are indep., P(X;)e #}.
Assume _# is nonempty. Then for Z,, Z,, - .-, an _#/-sequence starting at z, we
have:
(3.1) Pr(Z, = 0] < (1) -

Proor. We apply Theorem 2.1 with C = the set of nonnegative integers,
Hz)=0,T=N, fi(z) = (r,)* for ze Cand 0 < k < N. Then r and f, are non-
negative and for P(Z) e _#(z):

H2) + EflZ) = Elp, -+
-1 E[r. %] (since {X;} are conditionally indep.)
= (7141)* (by definition of _#)
= fina(2)
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which verifies the hypotheses of Theorem 2.1. The result (3.1) now follows by
noting that:

E[ 2587 1(Zy) + fy-ran(Zran)] = E[fo(Zy)]
= E[7,"V]
=Pr[Z, =0],
since 7, = 0 and we have adopted the convention 0° = 1. ]
COROLLARY 1 (The expected time to extinction). Suppose 7, =0, 7,, 75 -+ isa
sequence of real numbers in [0, 1]. Take
A= (P(X): E[y,*] < 73015 forall j}.
Then
(3.2) E[T]z Z [l — ()],
where T, is the time to extinction.
Note. Since 0 < 7, < 1 for all i and z = 0, all terms in the infinite sum in

(3.2) are nonnegative. If y; does not tend to a limit or tends to some limit other
than one then the sum is infinity. If y; — 1 then the sum may be finite.

Proor. The result (3.2) is obtained by noting that
E[Te] = :o=0 Pr [Te > i]
= N, Pr[Z, > 0]
=32, (1 —Pr[Z, =0)
Z D[l = ()] 0

COROLLARY 2 (Achievement of bounds). If there exists a Galton-Watson process
with litter sizes X such that E[y;*] = 7,1, for all j, then this achieves the bounds
(3.1), (3.2).

This follows by Harris [10] Chapter 1, Theorem 6.1, or by applying Corollary
1 of Section 2 with _# containing only P(X).

Note on existence. For general {7;}, .# may be empty and no Galton-Watson
process defined as above will exist. However, in each of two special cases
studied in Sub-section 3.2 and Sub-section 3.3, a certain interesting family of
distributions is defined and the {y;} are chosen in such a way that this family
will be a subset of _# and that the Galton-Watson process of Corollary 2 will
exist.

THEOREM 3.2 (Eventual extinction). Take a > 0, let .#'= {P(X): E[a*] £ a}
and set #(z) = {P(X, + -+ + X,):{X;} are indep. P(X)e _#'}. Then, for
Zy,Z,:--,an _7#-sequence starting at z, we have:

(3.3) Pr[Z, =0 for some N]< a*.

Proor. We apply Theorem 2.3 with C = the set of nonnegative integers,
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r(z) =0, f(z) = a* for ze C and
T =min[n: Z, = 0] if Z,=0 forsome n
= oo otherwise. ‘
Then r and f are nonnegative, and for P(Z) € _#(z):
H2) + Ef(Z) = Ela¥rt+%]
II:-: E[a™]
s«
= f(2),

which verifies the conditions of Theorem 2.3. Thus f(z) = E[f(Z;) - I <]
Let

v(z) = 1 if z=0
=0 otherwise ,
then since f(z) = v(z) for all z e C, we have:
f(@) 2 E[f(Zy) - Ir<a)

= E[’U(ZT) : IT<°°]

= ST<°° 'U(ZT) ap

=Pr [T < o]

=Pr[Z, =0 forsome N].
This proves (3.3). [

COROLLARY 1 (Achievement of bounds). If there exists a Galton-Watson process
with litter sizes X such that E[a*] = a, then this process achieves the bound (3.3).

This follows by Harris [10] Chapter 1, Theorem 6.1.

3.2. Example 1 (Bounded litter sizes). Let k be some positive integer and m a
real number such that 0 < m < k. We will derive an upper bound on the
probability of extinction and a lower bound on the expected time to extinction
for the branching process described in Section 1 for which the litter sizes X,
conditional on the past, are constrained to be at most k and with mean at least
m. It will turn out that this is a special case of the _#‘sequences studied in
Sub-section 3.1 if « and {r,} are chosen appropriately.

LeEMMA 1. Let .#={P(X): EX=m,0< X< k}. Then for 0 < <1 and
P(X) € _#; we have.

E[*]1< 1 — mlk + B*-m[k .
Proor. Define f(x) = 1 — (1 — B*) - x/k and g(x) = f.

If 3 =0, then f(x) = 1 — x/k and g(x) = 1 for x = 0, g(x) = 0 for x > 0.
Hence g(x) < f(x) for 0 < x < k.
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If 0 < B <1 then since f is linear, g is convex and f(0) = g(0) =1,
f(k) = g(k) = B*, we again have that g(x) < f(x) for 0 < x < k.
Hence for P(X) e _#, we have Eg(X) < Ef(X) or:

EfF < E[1 — (1 = p5- Xkl <1 — (1 — B - mlk,
which completes the proof of Lemma 1. ]

Tueorem 3.3. Let .#={P(X):EX=m, 0< X<k} and set #(z) =
(P(X, + -+ + X,): {X,} are indep., P(X,)e _#). Then for Z,, Z,, --- an #-
sequence starting at z, we have:

(A) Pr[Z, =0] < (75) (N=0,1,2, - ..), where y, is defined recursively by:
70=0
rin= (L= mfk)+ 7 (mjk)  j=0,1, .-, N—1;
(B) Pr[Z, = 0 for some N] < a*, where a is the smaller root in [0, 1] of:
a = (1 — mlk) + a* - (m[k) ;

(C) E[T,] = X[l — (7:)°], where {r;, i = O} are defined as in (A);
(D) The bounds in (A), (B), (C) are sharp and are attained when {Z;} form a
Galton-Watson process {Z;'} with litter size distribution given by:

X' = 0 with probability 1 — (m[k)
= k with probability m[k .

PrOOF. (A). Applying Lemma 1 with 8 = y;, we obtain E[y;*] < r;,, for
P(X)e # and j=0,1,2,.... The result (A) now follows by Theorem 3.1.

(B). Applying Lemma 1 with 8 = a, we obtain E[a*] < a for P(X)e #Z
The result (B) now follows by Theorem 3.2. Note that if m < 1, then a = 1
and if m > 1 then 0 < a < 1.

(C). This follows directly from (A) and Corollary 1 of Theorem 3.1.

(D). Note that for X ~ X', E[y;*] = r;4, and E[a*] = a«. Hence the proof of
(D) follows from Corollary 2 of Theorem 3.1 and Corollary 1 of Theorem 3.2. ]

REeMARKS. This example and the results (A), (B), (D) of Theorem 3.3 were
first presented by Goodman [9].

The example is a case of “Bold play is optimal.” That is, in order to maximize
the probability of extinction or to minimize the mean time to extinction, subject
to the restrictions of EX > m and 0 < X < k, the optimal strategy is for a
population to have “‘extreme” litter sizes, namely O or k. It is suboptimal to
have intermediate litter sizes (“timid play”).

3.3. Example 2 (Mean and variance of the litter sizes constrained). Let m, o be
positive real numbers. We will derive an upper bound on the probability of
extinction and a lower bound on the expected time to extinction for the
branching process described in Section 1, for which the litter size distribution,
conditional on the past history, has mean m and variance at most ¢*. It will
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turn out that, like Example 1, this is a special case of the _#Zsequences studied
in Sub-section 3.1 if « and {r,} are chosen appropriately.

The results of this section take on one of two forms depending on whether or
not the quantity (m* + ¢%)/m is an integer. The two cases are:

(i) (m* 4 ¢*)/m = h, or

(if) 2 < (m* + ¢®)/m < h + 1, where h is a positive integer.

[The case 0 < (m* + o) /m < 1 is impossible, since for P(X) e _#; we have:

c=zVar[X]|=EX* —m*ZEX —m*=m — m?,

which implies that (m* + ¢%)/m = 1.]

LeMMA 2. Let .#'= {P(X): E[X] = m, Var [X] < ¢*}. Then forall0 < 8 < 1
and P(X) e _#, we have E[$*] < ¢(B), where either

(i) ¢(B) =1 — mlh + B* - m|h, if h = (m® + ¢*)/m is a positive integer or

(1) ¢B) =1 —[m(1 + 2k) — (¢* + m*]/h(h + 1) + p* - [m(1 + k) — (" +
m*)][h + B+ [m* + 6 — hm][(h + 1), if h< (m* 4+ o®)/m < h+ 1 with h a
positive integer.

PRrOOF. (i) Suppose first that # = (m* + ¢%)/m is an integer. For 0 < 8 < 1.
define
f(x) = B* 4+ (x — h)- p*log B + (x — hY[1 — (1 — k- log B)p*]/* .
It is easy to show f(x) is tangent to 3* at x = h and $3* < f(x) for all x > 0 with
equality at x = 0 and x = h. This still holds in the limit as 8 — 0. Since X is
concentrated on the nonnegative integers, it follows that E[*] < Ef(X) < ¢(B),
where to obtain the latter inequality we have used the fact that E[X] = m and
Var [X] < o2
(if) Suppose now that & < (m* 4 ¢%)/m < h + 1 with h a positive integer. For
0 < B < 1, define f(x) = 1 — ax + bx?, where
a=[(1—= a1+ 2k — 41 — B)J/h(h + 1), and
b=1[1—p"— k(1 — Pl/hth + 1).
It is easy to check that 8* < f(x) for all 0 < x < hand x = & + 1 with equality
at x =0, h, h 4 1. This result still holds in the limit 3 — 0 for then f(x) =
(x — h)(x — k + 1)/h(h — 1). Since X is concentrated on the nonnegative integers

we have that E[f*] < Ef(X) < ¢(8), Where to derive the second inequality we
have used E[X] = m and Var [X] < ¢>. This completes the proof of Lemma 2. []

THEOREM 3.4. Let .#Z={P(X): EX=m, Var X < 0%} and set #(z) =
{P(Xy + -+ + X,):{X;} are indep., P(X,)e _#}. For0 < B < 1, define $(B) as

in Lemma 2. Then for Z,, Z,, - - ., an _#-sequence starting at z, we have:
(A) Pr[Z, = 0] < (ry)*, where r, is defined recursively by:
To = 0,

Tj+1=¢(rj) for ]=0a1a2aaN_l;
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(B) Pr[Z, = 0 for some N] < a*, where a is the smaller root in [0, 1] of

a = ¢(a).

(©) E[T,] = Xoll — (7)), where {r;, i = O} are defined as in (A).

(D) The bounds in (A), (B), (C) are sharp and are all attained when {Z;} form a
Galton—-Watson process {Z;'} with litter size distribution given by: in case (i)

X' = 0 with probability 1 — m|h,
= h with probability m|h ;
or in case (ii)
X' =0 with probability 1 — [m(1 + 2h) — (¢* + m*)]/h(h + 1),
= h with probability [m(1 + h) — (¢* + m?)]/h,
= h + 1 with probability [o* + m* — hm]/(h + 1) .

ProoF. The proof parallels that of Theorem 3.3.

Applying Lemma 2 with 8 = r;, we obtain E[y;*] < r,,, for P(X) e # and
j=20,1,2, .... The result (A) now follows by Theorem 3.1.

Applying Lemma 2 with 8 = a, we get E[a*] < a for P(X) e .# The result
(B) now follows by Theorem 3.2. Note that if m < 1 then a = 1, whereas if
m>1lthen0 < a< 1.

The result (C) follows directly from (A) and Corollary 1 of Theorem 3.1.

Since for X ~ X', E[y,*] = r;;, and Ea* = a, the result (D) follows from
Corollary 2 of Theorem 3.1 and Corollary 1 of Theorem 3.2. []

REMARK. As in Example 1, we see that “Bold play is optimal.”
3.4. Lower bounds.

THEOREM 3.5. (Extinction in a finite time N). For any positive integer N, let
9 =20,9,9, -, gy be a sequence of real numbers (0 < g, < 1;i=1,2,...,N),
A ={P(X): E[9;5]= 9;41,j=1,2, .-, N =1},

and set
ANz) ={P(X; + --- + X,): X; areindep., P(X))e #}

forz=0,1,2,....

Then for Z,, Z,, - - -, an _7#/-sequence starting at z, we have:.
(3.4) Pr(Z, = 0] = (g,)* -

Proor. We apply Theorem 2.2 with C = the set of nonnegative integers,
r(z)=0,T=N, f(z) = (g,)" for z=0,1,2, ... and k = 1,2, ..., N. Then

r and f, are nonnegative and for P(Z) € .#(z):
r(2) + Efy(Z) = Elg, %]
= IIi- El9,™]
= (Gk+1)"

= fk+l(z) .
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Also the integrability condition, E[f,_«(Z,) + Z*IHZ)] < o, k =0, 1,
2, .-+, N, is satisfied since r = 0 and f is bounded by Oand 1. Thus the condi-
tions of Theorem 2.2 are satisfied, and the result (3.4) follows by noting that
(as in Theorem 3.1): '

E[2R 7 HZ) + fy—ran/(Zry)] = Pr[Z, = 0]. 0

COROLLARY 1 (The expected time to Extinction). Suppose g, = 0, g,, g,, - - - is a
sequence of real numbers in [0, 1]. Take

A= {P(X): E[g9;*] = 9;4, forall j}.
Then
(3-3) E[T.] = 2 [1 = (9],

where T, is the time to extinction.

ProofF. The proof follows as in the proof of Corollary 1 of Theorem 3.1 but
with the inequalities reversed. []

COROLLARY 2 (Achievement of bounds). If there exists a Galton-Watson process
with sizes X such that E[¢;*] = g;,,, for all j, then this achieves the bounds (3.4),
(3.5).

This follows by Harris [10] Chapter 1, Theorem 6.1, or by applying Corollary
2 of Section 2 with _# containing only P(X).

COROLLARY 3 (Eventual extinction). Suppose g, — a as N — oo, where 0 <
a < 1. Then, since Pr[Z, = 0 for some N] = Pr [Z, = 0] and the left-hand side
is independent of N, we have:

(3.6) Pr[Z, =0 for some N]Z= a*.

Furthermore, if there, exists a Galton-Watson process with litter sizes X such
that E[a*] = a, then this process achieves the bound (3.6).

This follows by Harris [10] Chapter 1, Theorem 6.1.

In the next section, we shall given an example in which an interesting family
of offspring distributions is defined, and the g, are chosen in such a way that
this is a subset of _# as defined in Theorem 3.5. Also the Galton-Watson
processes, as described in Corollaries 2 and 3, will be shown to exist.

3.5. Example 3. In this example, we shall use similar notation to that of
Goodman [9]. Let HC C be a set of nonnegative integers and m be some positive
real number. We shall derive a lower bound for the probability of extinction
and an upper bound on the mean time to extinction of the branching process
described in Section 1 for which, conditional on the past, the allowable litter
sizes are in H, with mean at most m. It will turn out that this is a special case of
the _#Zsequences studied in Sub-section 3.4 if the {g,} are chosen appropriately.

LEMMA 3. Suppose m is not in H, and m* is the smallest integer in H greater
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than m, m' the largest integer in H smaller than m and d = m* — m’ > 0. (We

assume m’, m* exist.)

Let .#= {P(X): X concentrated on H, EX < m}. Then for all 0 < 8 <1 and
P(X) e _#, we have:

E[p*] 2 [(m* — m)B™ + (m — m")B™"]/d .

ProoF. Let g(x) = §° and f(x) = [(m* — x)f™ + (x — m’')f™]/d. We will
show that g(x) = f(x) for all xe Hand for 0 < 8 < 1.

Suppose first that 3 = 0, then g(x) = 1 for x = 0, and g(x) = 0 otherwise.
If m+0, f(xy=0 and so g(x) = f(x) for all real x. If m' =0, f(x) =
(m* — x)/m* and because there are no members of H between m’ = 0 and m*
we have g(x) = f(x) for all x in H.

Now suppose 0 < 8 < 1. Then since f is linear, g is convex, f(m') = g(m’),
and f(m*) = g(m*), we have f(x) < g(x) for all real x < m’ and x = m*.

Thus, by construction g(x) = f(x) for all xe H and 0 < 8 < 1, and hence,
for P(X) e _#; we have Eg(X) = Ef(X), or:

E[p"] 2 E[(m* — X)p™ + (X — m")8™]/d
= [m* - g™ —m' - — (8™ — p™) - EX]/d
2 [m* - —m' . g — (B — ™) - m]jd
= [(m* — m)p™ + (m — m")E™]/d,
which completes the proof of Lemma 3. []

THEOREM 3.6. Let .#Z'= {P(X): X concentrated on H, EX < m} and set _#(z) =
{P(X, + --- + X,):{X,} are indep., P(X;)e #}. Then for Z,,Z,, Z,, ---, an
_#-sequence starting at z, we have:

(A) Pr[Z, =0]=(9y) N=0,1,2, ...); where

(i) if me H, gy, = 0 for all N, or

(ii) if meH, g, is defined recursively by g, =0, g;,, = [(m* — m)g,” +
(m—-—mhg™d(j=0,1,2, ..., N— 1), where m*, m’, d are defined as in
Lemma 3;

(B) Pr[Z, = 0 for some N| = a*, where

(i) ifmeH, a =0, or

(i) if mgH, a is the smaller root in [0,1] of: a = [(m* — m)a™ +
(m — m')a™)/d;

(C) E[T.] = X20[1 — (9:)7], where {g;, i = O} are defined as in (A).

(D) The bounds (A), (B), (C) are sharp and are all attained when {Z;} form a
Galton-Watson process {Z,'} with litter size distribution given by:

(i) if me H, X’ = m with probability one; or

(i) if m¢ H, X' = m' with probability (m* — m)|d; X' = m* with probability
(m — m")/d.
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Proor. We consider first the case m ¢ H. Since m > 0, this means thatm > 1.
Then for the _#Zsequence {Z,'} as defined in D(i) we have Z, = z. m" with
probability one and hence Pr[Z, = 0] = 0 and T, = co with probability one.
The results A(i), B(i), C(i), D(i) follow. '

Now consider m ¢ H. Applying Lemma 3 with 8 = g;, we obtain E[g,*] = ¢,,
for P(X)e #, and j =0, 1,2, .... The result A(ii) now follows by Theorem
3.5. By Harris [10] Chapter 1, Theorem 6.1, we have g, — a as N — co and
hence B(ii) follows by Corollary 3 of Theorem 3.5.

The result C(ii) follows directly from A(ii) and Corollary 1 of Theorem 3.5.

Since for X ~ X', E[g,*] = g,,, and E[a®] = a, the result D(ii) follows by
Corollaries 2 and 3 of Theorem 3.5. This completes the proof of Theorem 3.6. []

ReEMARk 1. If m" >0, then a =g, =9, =¢,= --- = 0. In fact, with
probability one, Z,’ = z - (m")".

REMARK 2. The result agrees with that of Freedman and Purves [7], who
considered the special case with H =0,2,3,4,5,... and 0 < m < 2. Then
the optimal strategy is for the litter sizes to have the distribution:

X' = 0 with probability 1 — m/2, and
X’ =2 with probability m/2.

REMARK 3. This example was discussed also in Goodman [9] in the more
general case where m and H (he uses H) are allowed to depend on the time
period n.

REMARK 4. The example is a case of “Timid play is optimal.” That is in order
to minimize the probability of extinction or to maximize the expected time to
extinction, subject to the restrictions Pr [X e H] = 1 and EX < m, the optimal
strategy is for the population to have litters with the “smallest variability” in
size.

4. The probability that a generation size will exceed a given number and the
expected maximum generation size. We will need to define the following stopping
time.

DeriNiTION. For each nonnegative integer /, let

T,=min[n:Z, = 1], if Z,=1! forsome n,
= oo otherwise ;

THEOREM 4.1. Takel > 0, a > 1, #= {P(X), E[a*] < a} and set _#(z) =
{P(X, + --- + X,): {X;} are indep., P(X;) e #}.

Then for Z,, Z,, - - -, an _#/“sequence starting at z, we have:
4.1) Pr[Z, = for some N]< (a® — 1)/(a* — 1), 0=zg);
=1, zz=).

Proor. Trivially if Z, = z > I, then Pr[Z, > I for some N] = 1. Suppose z
is some nonnegative integer less than or equal to /. We apply Theorem 2.3 with
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C = the set of nonnegative integers, T = T}, r(z) = 0 and f(z) = (a* — 1)/(a’ — 1)
fo<zsLfz)=1ifz= 1

Then r and f are nonnegative, and since f(z) < (a® — 1)/(a® — 1) for all
z = 0, we have for P(Z) e _#(z):

r(2) + Ef(Z) = E[(a” — 1)/(a’ — 1)]
= E[a®1t % — []/[a’ — 1)
= [[Li-: E(a™) — 1])(a* — 1)
= (@ — Di(e' = 1).
Clearly r(z) + Ef(Z) < 1. Hence r(z) 4+ Ef(Z) < f(2).
Thus the conditions for Theorem 2.3 are satisfied. Define v(z) =1 if z = |,

v(z) = 0 otherwise. Hence by Theorem 2.3, and since f(z) = v(z) for all z = 0
we have:

(ar = D' = 1) = E[f(Z;) - Ir<e]
= E[v(ZT) . IT<°°]
=Pr[T < oo]
=Pr[Z, = | for some N]J,
which completes the proof. []

CoROLLARY 1. For any _77-sequence starting at z, we have:
(4.2) E[sup, Z,] < 2 + (a* — 1) - Titun (@ — 1)
Proor. Let M = sup, Z,. Then
EM|Zy=z]=z+ 2. .Pr[M=ilZ, =z
=7+ NPT < 0| Z, =]
Sz+ D@ = Die* = 1),
which proves the result (4.2). []

ExAMPLE 4. Let k be some positive integer and 0 < m < 1. We shall derive
an upper bound on the probability that a generation ever equals or exceeds / in
number for the branching process described in Section 1 for which the litter
sizes X are constrained to be at most & and with mean, conditional on the past,
to be at most m.

LeMMA 4. Let #={P(X):0< X<k, EXZm}. Then for « > 1 and
P(X) € #; we have:

Ela*1 <1 — mlk + a* - mk .

Proor. Define g(x) = a® and f(x) = 1 — x/k + a* . x/k. Then f(x) = g(x)
for 0 < x < k, and so Eg(X) < Ef(X) for P(X) e _#. Substituting for f and g
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we obtain:
Ela®*]1 <1 + (EX) - (o — D]k
1 +m.(a* — 1)k

1 —mlk + a* - mjk ,

A 1IA

which proves the lemma. []

THEOREM 4.2. Take 0 < m< 1, #Z={P(X): EX<m,0<Z X<k} and set
ANz) = {P(X, + .-+ + X,):{X}} are indep., P(X;)e #}. Then for Z,, Z,, - - -,
an _7/-sequence starting at z, we have:

(4.3) Pr[Z, = I for some N] < (a* — 1)/(a? — 1), (foro<z< ),

(4'4) E[Supn Zn] é z + Z?=z+1 (az - 1)/(0,‘ - 1) ’
where a(> 1) is the larger root of the equation: « = 1 — mfk + a* - m/k.

Proor. Since a =1 — m/k + a* - m/k and 0 < m < 1, we have & > 1 and,
by the Lemma, E[a*] < a for P(X) € .#. Theorem 4.2 now follows by Theorem
4.1 and Corollary 1. [J

REMARK 1. Attainment of bounds. The Galton-Watson process {Z,'}, with

litter size distribution:
X = 0 with probability 1 — m/k
= k with probability m/k,

is an _#“sequence with E[a*] = «. However the bounds (4.3), (4.4) are not
attained in general by this process. This is due to the end effect, i.e. the un-
desirability of overshooting /. We conjecture that in fact slightly more timid
strategies should be used by succeeding generations in order to maximize the
probability that one generation size hits / exactly.

REMARK 2. If m = 1, then taking the limit, « — 1 we obtain:

Pr[Z, = I for some [] < z/l,
and
E[sup, Z,] £ .

ReMARK 3. If we consider the same _#“sequences as in Example 4 but with
m > 1, then clearly a sharp upper bound on p[Z, > I for some /] is one, and
E[sup, Z,] is unbounded. These bounds are attained by the Galton-Watson
process {Z} with litter sizes X such that Pr[X = 0] = 0 and EX = m. This is
clearly possible if m > 1, and the population will grow unboundedly and can
never die out.

5. The mean total population size. In this section, we consider families, .7, of
distributions for which the means are restricted, and find bounds on the expected
total population size, E[)}Y, Z;], for N both finite and infinite. It will turn out
that these bounds are sharp and all are achieved by the same Galton-Watson
process.
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THEOREM 5.1. (Upper bounds). Take m > 0, let 7= {P(X): EX < m} and
set Az)={P(X,+ --- + X,): {X,} areindep. P(X,) e _#}. ThenforZ,,Z,, - - -,
an _7-sequence starting at z, we have:

1 — mv+t .
(5.1) HEizlsz——"— i mzl
—m
<z.(N+1 if m=1 forN=0,1,2,...,
and
(5:2) S Z) S 2 if m<1
< if m=1.
Furthermore, these bounds are achieved when Zy, Z,, - - - form a Galton- Watson

process with Malthusian rate (mean litter size) equal to m.

Proor. The proof follows by Theorem 2.1 with r(z) = z, T = N, and f,(z) =
z- (1 —=m)1 —m)yifm+land fz) =k +1)-zif m=1. []

Lower bounds can be derived similarly when .#'= {P(X): EX = m}. The
results are the same as in (5.1), (5.2) but with the inequalities reversed.

6. An associated multiplicative process. Let .2 be some set of probability
distributions concentrated on C, the set of all nonnegative integers. Then, for
each z in C, define a sequence of random variables Z,, Z,, - - . as follows:

ZO:z,
Ly =2y Xyt

where P(X,,,|Zy, Z,, ---, Z)e #,n=0,1,2, ...,

More precisely, Z,, Z,, Z,, - - - is an _#“sequence starting at z with _#Z(z) =
{P(zX): P(X) e .#}. This process can be regarded as a branching process with
deterministic offspring in a random environment (see also the discussion in Sec-
tion 1). It is an interesting exercise to derive, for this process, the results anal-
ogous to those of Sections 3, 4, 5.

7. Note. Goodman [9] allows the set _# to vary from period to period. We
can denote by _#; the set of allowable offspring distributions in the jth period.
The theorems of Section 2 can be adapted to handle this problem by taking C
to be set of all 2-tuples, {(z, j)}, where‘j indicates the current period.

The theory of Section 2 has far-ranging potential applications to many
problems in applied probability. Some of these are developed in Turnbull [18].
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