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THE NONEXISTENCE OF THE YAGLOM LIMIT FOR
AN AGE DEPENDENT SUBCRITICAL
BRANCHING PROCESS!

By THoMAs G. KURTZ AND STEPHEN WAINGER
University of Wisconsin, Madison
An age dependent subcritical branching process is constructed for

which the conditioned limits

lim¢—e P{Z(t) = k| Z(t) > 0} k=1,
do not exist.

1. Introduction and notation. We consider subcritical branching processes
with population size at time ¢ denoted by Z(¢). (See [1] or [5] for standard
background material.) For a Galton-Watson process, a classical theorem of
Yaglom ([4] page 18) asserts

(1) lim,_., P(Z(t) = k/Z(t) > 0) = b(k) exists.

Moreover if f(s) = i, p.s*, where p, is the probability of having k offspring,
is not a linear function of s, the limit in (1) is nondegenerate i.e. 5(k) > 0 for
some k =+ 1.

Recently a number of authors [2], [4] and [6] have considered the nature of
the Yaglom limit in the age dependent case i.e. assuming that the particles have
random lifetimes with distribution function denoted by G(r). In particular, it
has been shown that for some lifetime distributions, G, in nontrivial cases i.e.
/(s) nonlinear, the Yaglom limit may be degenerate. The point of this paper is
to construct an example showing that the Yaglom limit need not exist at all.

We shall set

F(s, f)y = 315, P(Z(t) = k)s*,
X(s, ) =1— F(s, 1),
and Y(f) = E(Z(1)).
It is known that F(s, r) satisfies the integral equation

) Fs, 1) = s(1 — G(1) + S f{F(s, 1 — w)} dG(w),

and hence

G Xen =0 =901 =6@) + §i{l — fI1 — x(s, 1 — w)]} dG(w) ,
and

4) Y(1) = (1 — G(1)) + m §§ Y(t — u) dG(u)

where m = 35, kp, < 1 (since the processes we consider are subcritical).

Received January 23, 1973.

1 Supported in part by the National Science Foundation.
AMS 1970 subject classifications. Primary 60J80.

Key words and phrases. Branching process, Yaglom limit.

857

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[SP4%

The Annals of Probability. RIKOIN
Wwww.jstor.org



858 THOMAS G. KURTZ AND STEPHEN WAINGER

2. Construction of the example. We shall take
—(1— ﬁ) Mg
foy=(1=2)+2s
with m < 1.
In this section we shall construct a G(f) and a sequence of times 7,; k =
1,2, ... such that (§), (6) and (7) hold:

®) P(Z(1) > 11 2(1) > 0) =z 6
for some positive d, so that the Yaglom limit, if it exists cannot possibly be
degenerate.
For every 4 > 0,
1 -G, —A—1)
6 k 1 k ,
() I—G(tk—l) - as — 00
and
(7 YO s bounded.
1 — G

In Section 3 we shall show that (6) and (7) imply the Yaglom limit is degenerate
if it exists; this, of course will conclude the proof.

In our construction G(#) will be constant on intervals 7, < r < 1,,,, so that
condition (6) will be satisfied if 7, , — , — co.

We shall also have 1 — G(t,) = p* for any fixed p, 0 < p < 1. (7) will then
imply (5) by the following argument: P(Z(t,) > 1) = P (first particle dies at time
t, and has two offspring). So

(8) PZ() > 1) = (1 = p)o* 7.

Now an easy comparison argument with the integral equations (3) and (4)
shows that
P(Z(t) > 0) = X(0, ) < Y(1).
Thus by (8) and (7)
P(Z(t) > 1] Z(t,) > 0)
o P(Z(t) > 1)

B Y(1,)

> (L= p)o* X (m/2) (1 — G(t,)
- 1-6() Y(1,)
> 77(1 - p)m

= _ZP

where 7' = sup Y(#)/(1 — G(f), proving (5).

Hence it remains to choose the times 7, so that (7) holds (with
(g1 — 1) — 00).

We take 7, arbitrary. Giveny, - - -, 1, we construct 7, , inductively as follows:



SUBCRITICAL BRANCHING PROCESSES 859

Let U,(?) be the solution of the integral equation
Ut) =1 —G(t, N t) + m §rt Up(t — u) dG(u)

{G(u) is assumed to be defined for u < #,}. An argument used in [3] shows
U,(?) | ; hence U,(7) tends to a limit, 7., as t — co.
One easily sees that r, satisfies

r, = (1 — G(t,)) + mr,G(z,)

1 -G@) . p*
l—m  1—m’

SO

<

Choose ¢,,, so that

pk
Uk(tI:+1) < 1 —m )

and t,,, — 1, > k(t, — t,_,). Note that
Y(H) = Uy for t < 1,
and Y(#) is monotone decreasing by an argument of [3]. So

Y(ty41) < Y(tes1) — U(tisn) < 1
1 — G(tk+1) 1 G(tk+1) 1 — G(tk+1) - p(l - m)

and if 7, £t < iy,

YO V) 1
T=G() = 1= Gl — o(1 —m)

This shows then that (7) holds.

3. It remains to prove the assertion of the previous section, namely that (6)
and (7) imply that the Yaglom limit is degenerate if it exists. We prove a slightly
stronger version for applications elsewhere.

LEMMA. Assume there is a sequence t, — oo such that for every A > 0,

©) 1-6Gn -4 4 as ko oo
1= G(ty)
and .
Y(t) N
(10) T <M< oo.

Then if the Yaglom limit exists it is degenerate.
Proor. If the Yaglom limit exists,

X, 1) _
X0,

lim

a(s)

{—oo

exists.
To show the limit is degenerate, it suffices to show a(s) = 1 — 5. See [4].



860 THOMAS G. KURTZ AND STEPHEN WAINGER

Fix 5. Let ¢ > 0. Choose A so large that
X(s, 1)

11 X0, 1) —a(s)| < ¢
for t > A,

1 —f(1 = X(s,0) .
(12) ’ mX(s, 1) 1‘ <
for t > A, and

1 —f(1 —X(0,1) .
(13) l mX(0, f) 1‘ <

for t > A. (12) and (13) can be arranged since X(s, 1) — 0 as r — co. See [5].
Now as n — oo

X(s, 1) = (1 = )1 = G(1)) + §=* {1 — fT1 — X(s, 1, — w)]} dG(u)
+o(l — G(1,)
by (9). So

X5, 1) = (1= (1 = G0 o+ §p- (L= =2 fo = )

X(s, t, — u) _ _
X o YO u)} dG(u) + o(1 — G(1,))

< (1= 9)(1 = G(z,)) + m(1 + &)(a(s) + ¢) §iv~ X(0, 1, — u) dG(x)
+o(l = G(1,))
=1 — 51 — G(t,) + m(1 + e)(a(s) + ¢) §i= X(0, 1, — u) dG(u)
+ o(l — G(1,))
= (1 =9 — 6(1,)) + ma(s) §i X(0, 1, — u) dG(u)
+ ec(s)Y(t,) ,
where ¢(s) is bounded uniformly in ¢. Similarly
X0, 1,) = (1 — G(t,)) + m §n X(0, 1, — 1) dG(x) — ec(5)Y(1,) .
Thus

;Z(S) ’t; < {(1 — )1 — G(t,)) + ma(s) {in X(O, t, — u) dG(x)

+ cc(Y(E)HL = G(t,) + m §ir X(O, 1, — u) dG(w)
— ce() Y1)}
Now take n so large that |X(s, 7,)/X(0, t,) — a(s)| < ¢. Then we have
a(H){1 — G(z,) + m §o» X(0, 1, — u) dG(u)}
= (1 — 51 — G(,)) + a(s)m §in X(0, 1, — u) dG(u) + ec(s)Y(2,) -

Hence
ec(s)Y(1,)

a(s)§(1—s)+1_G(t).
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Since Y(z,)/(1 — G(t,)) is bounded, we conclude a(s) < 1 — 5. A similar argu-
ment shows a(s) = 1 — 5. Thus a(s) = 1 — s, and the proof is complete.
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