A NEW FORMULA FOR $P(R_i \leq b_i, 1 \leq i \leq m \mid m, n, F = G^k)^1$

By G. P. STECK²

Sandia Laboratories

Let $X_1 \leq X_2 \leq \cdots \leq X_m$ and $Y_1 \leq Y_2 \leq \cdots \leq Y_n$ be independent samples of i.i.d. random variables from continuous distributions F and G, respectively, and suppose $F(x) = [G(x)]^k$ or $F(x) = 1 - [1 - G(x)]^k$, k > 0. Let R_i and S_j denote the ranks of X_i and Y_j , respectively, in the ordered combined sample. We express $P(R_i \leq b_i, \text{ all } i)$ as the determinant of a simple $m \times m$ matrix. We also show that for increasing sequences $\{a_i\}$ and $\{b_i\}$, $P(a_i \leq R_i \leq b_i, \text{ all } i \mid F, G) = P(\alpha_j \leq S_j \leq \beta_j, \text{ all } j \mid F, G)$, where $\{\alpha_j\} = \{b_i\}^c$ and $\{\beta_j\} = \{a_i\}^c$ and complementation is with respect to the set $\{i \mid 1 \leq i \leq m+n\}$, for any pair of continuous distributions F and G.

1. Introduction. Let $X_1 \leq X_2 \leq \cdots \leq X_m$ and $Y_1 \leq Y_2 \leq \cdots \leq Y_n$ be independent samples of i.i.d. random variables from continuous distributions F and G, respectively, and suppose $F(x) = [G(x)]^k$, k > 0. Let R_i and S_j denote the ranks of X_i and Y_j , respectively, in the ordered combined sample. We will prove for k > 0

THEOREM 1.

$$(1) P(R_i \le b_i, 1 \le i \le m \mid m, n, F = G^k)$$

$$= \frac{n!}{(n+km)!} \det \left\{ \left(\frac{j}{j-i+1} \right) \frac{\Gamma(\theta_i + kj)}{\Gamma(\theta_i + ki - k)} \right\}_{m \times m},$$

where $\{b_i\}$ is an increasing sequence of integers and $\theta_i = b_i - i + 1$.

This is a generalization of a result appearing in Steck ((1969) (3.1.1)). These two results differ in notation and structure but the one given here seems considerably simpler. Since it depends only on k and not on F and G separately we will assume G to be the uniform distribution on [0, 1].

The principal use of the results in this paper will probably be in carrying out one-sided Smirnov-type tests of hypotheses involving the distributions F, F^{θ} , $1 - (1 - F)^{\theta}$. The following remarks show that these are useful classes of distributions.

Harte and Pfanzagl (1969) have a biological problem that requires testing $H: G = 1 - (1 - F)^k$ against $A: G > 1 - (1 - F)^k$ (their inequality (2) should be reversed) for k a known integer. The essence of their problem is the following: let the X's be the times required for individual students to solve a

Key words and phrases. Distribution of ranks, Lehmann alternatives.

www.jstor.org

Received January 31, 1973; revised May 10, 1973.

¹ This work was partially supported by the United States Atomic Energy Commission.

² Most of this work was done while the author was on sabbatical leave as a Visiting Professor at Oregon State University.

AMS 1970 subject classifications. Primary 62E15; Secondary 62G99.

156 G. P. STECK

certain statistics problem and let the Y's be the times required for independent groups of k students each to solve the problem. The question is—is there collaboration among members of a group? If not, $G = 1 - (1 - F)^k$; if so, $G > 1 - (1 - F)^k$ (assuming collaboration aids solution). Harte and Pfanzagl use the Wilcoxon test but a Smirnov type test is reasonable, too. In this example our results are needed to determine the critical region.

Shorack (1967) furnishes another example. Suppose something fails when the last of k bonds fails, where k is not known exactly but is representative of the manufacturer—obviously large k's are desirable. If the bonds fail in an i.i.d. fashion according to a distribution F, the time-to-failure distribution is F^k . Suppose manufacturer A, with $k=\alpha$ and $G_A=F^\alpha$, has been the accepted supplier but that now there is a second manufacturer B, with $k=\beta$ and $G_B=F^\beta=(F^\alpha)^{\beta/\alpha}$. To test the hypothesis that both manufacturers are equally good against the alternative that B is better is to test $H:G=\tilde{F}$ against $A:G=\tilde{F}^{\theta}$, $\theta>1$. In this example our results are needed to determine the power of Smirnov-type tests.

Finally, we note that Allen (1963) proved a characterization theorem for these classes of distribution: if F and G are absolutely continuous with common support and associated hazard functions r(t) and s(t), then the statements (i) $r(t) = \theta s(t)$, (ii) $1 - G = (1 - F)^{\theta}$, (iii) P(X < Y | X < t) independent of t are equivalent. A similar result follows for $G = F^{\theta}$ if t is replaced by -t.

2. Proof of Theorem 1. Let E_t denote expectation with respect to the joint distribution of the t distinct random variables among the collection $Y_{\theta_1}, Y_{\theta_2}, \ldots, Y_{\theta_m}$ (not counting Y_0 or Y_{n+1} which we take as identically 0 and 1, respectively). Then we have

LEMMA 1.

$$P(R_i \leq b_i, \ all \ i \mid m, n, F = G^k) = E_t[\det{\{(j_{-i+1})\}} Y_{\theta_i}^{k(j-i+1)}\}_{m \times m}].$$

PROOF. Since $R_i \leq b_i$ if and only if $X_i < Y_{b_i-i+1}$, we have $P(R_i \leq b_i$, all $i) = P(X_i < Y_{\theta_i}$, all i). Let the t distinct random variables among $\{Y_{\theta_i}\}$ be U_1, U_2, \cdots, U_t . Then

$$P(X_i < Y_{\theta_i}, \text{ all } i) = \underbrace{\int \cdots \int }_{0 \leq u_1 \leq \cdots \leq u_t \leq 1} P(X_i < y_{\theta_i}, \text{ all } i) \, dF_{u_1, u_2, \cdots, u_t}(u_1, u_2, \, \cdots, \, u_t) \, .$$

Since $F(X) = X^k$ is U(0, 1) the probability inside the integral equals $P(V_i < y_{\theta_i}^k$, all i) for uniform order statistics $V_1 \le V_2 \le \cdots \le V_m$ from a sample of m i.i.d. U(0, 1) random variables. This probability is given by Steck (1971) as $P(V_i \le v_i, \text{ all } i) = \det \{ (j_{-i+1}^i) v_i^{j_i-i+1} \}_{m \times m}$ so that

$$P(X_i < Y_{\theta_i}, \text{ all } i) = \sum_{0 \le u_1 \le \dots \le u_t \le 1} \det \{ \binom{j}{j-i+1} y_{\theta_i}^{k(j-i+1)} \} \, dF_{U_1, \dots, U_t}(u_1, \, \dots, \, u_t) \; . \quad \, \Box$$

We now evaluate the expectation in Lemma 1. Assume, for the moment, that all the numbers $\theta_1, \theta_2, \dots, \theta_m$ are distinct. Let the random variables

 W_1, W_2, \dots, W_m be defined by

$$Y_{\theta_1} = W_1 W_2 \cdots W_m$$

$$Y_{\theta_2} = W_2 \cdots W_m$$

$$\vdots$$

$$Y_{\theta_m} = W_m$$

It is known that the W_i 's are independently distributed beta variables and W_i is Beta $(\theta_i, \theta_{i+1} - \theta_i)$ with $\theta_{m+1} \equiv n+1$ —that is, $f_{W_i}(w) \propto w^{\theta_i-1}(1-w)^{\theta_{i+1}-\theta_i-1}$. If one adopts the convention that for r>0 a Beta (r,0) variable is identically one, then the same formulation works even though the numbers $\theta_1, \theta_2, \cdots, \theta_m$ are not all distinct. For example, if $\theta_h = \theta_{h+1}$ so that we want $Y_{\theta_h} \equiv Y_{\theta_{h+1}}$, then W_h is Beta $(\theta_n,0)$ and $P(W_h=1)=1$. This leads to $Y_{\theta_h} \equiv Y_{\theta_{h+1}}$, as desired, since $Y_{\theta_h} = W_h W_{h+1} \cdots W_m = W_{h+1} \cdots W_m = Y_{\theta_{h+1}}$.

When expressed in terms of the $\{W_i\}$, Lemma 1 gives

(2)
$$P(R_i \le b_i, \text{ all } i \mid m, n, F = G^k)$$

= $E_t[\det \{(j_{-i+1})(W_i W_{i+1} \cdots W_m)^{k(j-i+1)}\}_{m \times m}].$

Expanding the determinant on the RHS of (2) by its last column and inducting on the dimensionality using the fact $a_{ij}=0$ for i>j+1 implies $\det{\{a_{ij}x^{j-i+1}\}_{m\times m}=x^m\det{\{a_{ij}\}_{m\times m}}}$ (the problem is more notational than conceptual) shows that the RHS of (2) is a determinant whose entry in row i and column j is

Since $EZ^t = \Gamma(r+s)\Gamma(r+t)/[\Gamma(r)\Gamma(r+s+t)]$ for Z a Beta (r,s) random variable, and since W_q is Beta (r_q, s_q) with $r_q = \theta_q$, $s_q = \theta_{q+1} - \theta_q$, $r_q + s_q = r_{q+1}$ we have, after much cancelling of factors,

$$\begin{split} P(R_i & \leq b_i, \text{ all } i \,|\, m,n,F = G^k) \\ & = \det \Big\{ \! \binom{j}{j-i+1} \frac{\Gamma(\theta_i + kj)\Gamma(n+k(i-1)+1)}{\Gamma(\theta_i + k(i-1))\Gamma(n+kj+1)} \! \Big\}_{m \times m} \,. \end{split}$$

A trivial induction shows the factors involving n can be brought to the outside of the determinant as the single multiplier n!/(n+km)!. Similarly the factors j!/(i-1)! can be brought outside the determinant as the factor m!. This completes the proof of (1). \square

Note that if k = 1 then

$$\binom{m+n}{m} P(R_i \le b_i | F = G) = \det \{ \binom{b_i - i + j}{j - i + 1} \}_{m \times m}.$$

This is a different expression from the one given by Steck ((1969) Theorem 4.1) which is

$$\binom{m+n}{m} P(R_i \leq b_i \, | \, F = G) = \det{\{\binom{b_i - i + 1}{j - i + 1}\}_{m \times m}};$$

158 G. P. STECK

however, it is not difficult to show by repeated adding of adjacent columns that they are equivalent expressions.

If k > 1 then X is stochastically greater than Y and the X's will occur generally later than the Y's in the ordered combined sample. One reasonable test of the hypothesis H: F = G against the alternative $A: F = G^k$, k > 1, is to reject if the X's are "too late" in the ordered combined sample in the sense that $R_i \ge b_i$, all i. This means that if k > 1 we also interested in probabilities of the form $P(R_i \ge b_i)$, all $i \mid m, n, F = G^k)$. Interchanging the roles of X and Y we see that this probability is the same as $P(S_j \ge b_j)$, all $j \mid n, m, F = G^{1/k})$. To express it in terms of what we already know, we need the following theorem.

3. Relating the events $a_i \leq R_i \leq b_i$, all i and $\alpha_j \leq S_j \leq \beta_j$, all j. It is obvious that $R_i = b_i$, all i, is equivalent to $S_j = \beta_j$, all j, where $\beta_1 < \beta_2 < \cdots < \beta_n$ are the integers left over when b_1, b_2, \cdots, b_m are deleted from the set of integers $1, 2, \cdots, m+n$. What follows shows that something very similar holds for the events $a_i \leq R_i \leq b_i$, all i, and $\alpha_j \leq S_j \leq \beta_j$, all j.

THEOREM 2. Let $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ be an increasing sequence such that $j \leq \alpha_j \leq m+j$. Then $\{sample \ orderings \mid R_i \leq b_i, \ all \ i\} = \{sample \ orderings \mid S_j \geq \alpha_j, \ all \ j\}$ where $\{b_i\} = \{1, 2, m+n\} - \{\alpha_j\} \equiv \{\alpha_j\}^c$ with $b_i < b_{i+1}$ and $i \leq b_i \leq n+i$.

Sketch of proof. Since $S_j \geq \alpha_j \Leftrightarrow R_{\alpha_j-j} \leq \alpha_j-1$, the set of orderings such that $S_j \geq \alpha_j, 1 \leq j \leq n$ is equal to the set of orderings such that $R_{\alpha_j-j} \leq \alpha_j-1$, $1 \leq j \leq n$. Since $j \leq \alpha_j \leq m+j$, we have $0 \leq \alpha_j-j \leq m$. Let a_i be the number of times a number $\leq i$ appears in the set $\{\alpha_j-j|j=1,2,\cdots,n\}$, for $i=0,1,\cdots,m$. Clearly $a_m=n$ and $0 \leq a_i \leq a_{i+1} \leq n$. Then for $i=0,1,2,\cdots,m$ we have the following relations and implications (put $a_{-1}=0$)

Regardless of the values of the a_i , it is, clear that $\{a_{i-1}+i \mid i=1,2,\cdots,m\}=\{\alpha_j\}^c$ where complementation is respect to the set $\{i \mid 1 \leq i \leq m+n\}$. Putting $b_i=a_{i-1}+i$ completes the sketching of the proof since $\{a_{i-1}+i\}$ is an increasing sequence and since $i \leq a_{i-1}+i \leq n+i$. \square

COROLLARY. If $\{\alpha_j\}$ and $\{\beta_j\}$ are increasing sequences with $j \leq \alpha_j \leq \beta_j \leq m+j$, then $\{sample\ orderings \mid \alpha_j \leq S_j \leq \beta_j\} = \{sample\ orderings \mid a_i \leq R_i \leq b_i\}$ where $\{a_i\} = \{\beta_j\}^c$, $\{b_i\} = \{\alpha_j\}^c$ are increasing sequences with $i \leq a_i \leq b_i \leq n+i$.

COROLLARY. $P(R_i \ge b_i, 1 \le i \le m \mid m, n, F = G^k) = P(R_i \le a_i, 1 \le i \le n \mid n, m, F = G^{1/k})$ where $\{a_i\} = \{b_i\}^c$.

A proof very similar to that of Theorem 1 will prove

THEOREM 3.

$$\begin{split} P(R_i &\geq b_i, \, 1 \leq i \leq m \, | \, m, \, n, \, F = 1 - (1 - G)^k) \\ &= \frac{n!}{(n + km)!} \det \left\{ \begin{pmatrix} j \\ j - i + 1 \end{pmatrix} \frac{\Gamma(\varphi_j + k(m - i + 1))}{\Gamma(\varphi_j + k(m - j))} \right\}_{m \times m}, \end{split}$$

where $\{b_i\}$ is an increasing sequence of integers and $\varphi_j = n - b_j + j + 1$.

COROLLARY.

$$P(R_i \leq b_i, 1 \leq i \leq m \mid m, n, F = 1 - (1 - G)^k)$$

$$= P(R_i \geq a_i, 1 \leq i \leq n \mid n, m, F = 1 - (1 - G)^{1/k}),$$

where $\{a_i\} = \{b_i\}^c$.

4. Examples. Take m = 2, n = 3, k = 3. Then from Lehmann (1953) we have the following table of probabilities.

TABLE 1. $1680 \cdot P(R_1 = r_1, R_2 = r_2 | F, G)$

(r_1, r_2)	(1,2)	(1,3)	(1,4)	(1,5)	(2,3)	(2,4)	(2,5)	(3,4)	(3,5)	(4,5)
$F=G^3$	20	30	42	56	90	126	168	252	336	560
$F=1-(1-G)^3$	560	336	168	56	252	126	42	90	30	20

Note that

$$P(R_1 = r_1, R_2 = r_2 | F = G^3) = P(R_1 = 6 - r_2, R_2 = 6 - r_1 | F = 1 - (1 - G)^3)$$
. Example 1.

$$P(R_1 \le 2, R_2 \le 4 \mid 2, 3, F = G^3) = \frac{3!}{9!} \begin{vmatrix} \frac{\Gamma(5)}{\Gamma(2)} & \frac{\Gamma(8)}{\Gamma(2)} \\ 1 & \frac{2\Gamma(9)}{\Gamma(6)} \end{vmatrix} = \frac{11}{60} = \frac{308}{1680}.$$

This answer is also obtained from the table as 20 + 30 + 42 + 90 + 126.

EXAMPLE 2.

$$\begin{split} P(R_1 & \geq 2, \, R_2 \geq 4 \, | \, 2, \, 3, \, F = G^3) \\ & = P(R_1 \leq 1, \, R_2 \leq 3, \, R_3 \leq 5 \, | \, 3, \, 2, \, F = G^{\frac{1}{3}}) \\ & = \frac{1}{3!} \begin{vmatrix} \frac{\Gamma(\frac{4}{3})}{\Gamma(1)} & \frac{\Gamma(\frac{5}{3})}{\Gamma(1)} & \frac{\Gamma(\frac{6}{3})}{\Gamma(1)} \\ 1 & \frac{2\Gamma(\frac{8}{3})}{\Gamma(\frac{7}{3})} & \frac{3\Gamma(\frac{9}{3})}{\Gamma(\frac{7}{3})} \\ 0 & 1 & \frac{3\Gamma(\frac{12}{3})}{\Gamma(\frac{11}{3})} \end{vmatrix} = \frac{1}{3} \begin{vmatrix} \frac{\Gamma(\frac{1}{3})}{3} & \frac{2\Gamma(\frac{2}{3})}{3} & 1 \\ 1 & \frac{5\Gamma(\frac{2}{3})}{\Gamma(\frac{1}{3})} & \frac{27}{2\Gamma(\frac{1}{3})} \\ 0 & 1 & \frac{243}{40\Gamma(\frac{2}{3})} \end{vmatrix} \\ & = \frac{103}{120} = \frac{1442}{1680} \, . \end{split}$$

160 G. P. STECK

This answer is also obtained from the table as 126 + 168 + 252 + 336 + 560. It is left to the reader to use Theorem 3 and its corollary to verify

Example 3.
$$1680 \cdot P(R_1 \ge 3, R_2 \ge 4 \mid 2, 3, F = 1 - (1 - G)^3) = 140.$$

Example 4.
$$1680 \cdot P(R_1 \le 1, R_2 \le 4 \mid 2, 3, F = 1 - (1 - G)^3) = 1064.$$

5. Applications to the distributions of one-sided Smirnov and Rényi statistics. The one-sided Smirnov statistics are $D_{mn}^+ = \sup_x \left[F_m(x) - G_n(x) \right]$ and $D_{mn}^- = \sup_x \left[G_n(x) - F_m(x) \right]$. Steck (1969) shows $P(mnD_{mn}^+ \le r) = P(R_i \ge a_i, 1 \le i \le m)$ and $P(mnD_{mn}^- \le s) = P(R_i \le b_i, 1 \le i \le m)$ where $a_i = \langle \{i(m+n) - r\}/m \rangle$ and $b_i = \left[\{i(m+n) - n + s\}/m \right]$ with $[x] = \text{largest integer} \le x$ and $\langle x \rangle = \text{smallest integer} \ge x$. Thus Theorem 1 together with the corollary to Theorem 3 give the distribution of D_{mn}^- for $F = G^k$ and $1 - (1 - G)^k$, k > 0, respectively. The corollary to Theorem 1 together with Theorem 3 do the same for D_{mn}^+ .

The one-sided Rényi statistic is $R_t^+ = \sup \{N[F_m(x) - G_n(x)]/[mF_m(x) + nG_n(x)]\}$ where the supremum is taken over those x for which $mF_m(x) + nG_n(x) \ge t$, $0 < t \le m + n \equiv N$. This is a modification of D_{mn}^+ which gives more weight to differences occurring for small X's and Y's. Since R_t^+ cannot increase unless $x = X_k$ for some k, it follows that

$$R_{t}^{+} = \max \left[(m+n) \left\{ \frac{k}{m} - \frac{R_{k} - k}{n} \right\} / R_{k} \right]$$

where the maximum is over those k for which $R_k \ge t$. Consequently, it can be shown that $P(R_t^+ \le a(m+n)/mn) = P(R_k \ge c_k, 1 \le k \le m)$ where $c_k = k$ for $k < k_0$ and $c_k = k(m+n)/(m+a)$ for $k \ge k_0$ with $k_0 = \langle t(m+a)/(m+n) \rangle$. Hence the remarks concerning the distribution of D_{mn}^+ apply to R_t^+ as well.

REFERENCES

- [1] Allen, W. R. (1963). A note on conditional probabilities when hazards are proportional. Operations Res. 11 658-659.
- [2] Harte, C. and Pfanzagl, J. (1969). A nonparametric comparison between two samples referring to individuals and clusters. *Biom. Zeit.* 11 217-227.
- [3] LEHMANN, E. L. (1953). The power of rank tests. Ann. Math. Statist. 24 23-43.
- [4] SHORACK, R. A. (1967). Tables of the distribution of the Mann-Whitney-Wilcoxon *U*-statistic under Lehmann alternatives. *Technometrics* 9 666-677.
- [5] STECK, G. P. (1969). The Smirnov two sample tests as rank tests. Ann. Math. Statist. 40 1449-1466.
- [6] STECK, G. P. (1971). Rectangle probabilities for uniform order statistics and the probability that the empirical distribution function lies between two distribution functions Ann. Math. Statist 42 1-11.

Numerical Mathematics Division 5122 Sandia Laboratories Sandia Corporation Albuquerque, New Mexico 87115