The Annals of Probability
1974, Vol. 2, No. 1, 155-160

A NEW FORMULA FOR PR, <b,1 <i<m|m,n, F=G*!
By G. P. SteCck?

Sandia Laboratories

Let X;<Xp<-.-<Xp and Y; <Y;< ... £7Y, be independent
samples of i.i.d. random variables from continuous distributions F and G,
respectively, and suppose F(x) = [G(x)]* or F(x) = 1 — [1 — G(x)]¥, & > 0.
Let R; and S; denote the ranks of X; and Yj, respectively, in the ordered
combined sample. We express P(R; < b, all i) as the determinant of a
simple m x m matrix. We also show that for increasing sequences {a;} and
{bi}, P(ai < R; < b;, all i|F,G)= Pla; < S; < B;, all j|F,G), where

{aj} = {bi} and {B;} = {ai}c and complementation is with respect to the set
{i]1 £i £ m + n}, for any pair of continuous distributions F and G.

1. Introduction. Let X, < X, < ... <X, and ¥V, <Y, < ... <Y, be in-
dependent samples of i.i.d. random variables from continuous distributions F
and G, respectively, and suppose F(x) = [G(x)]¥, k > 0. Let R, and S, denote
the ranks of X, and Y, respectively, in the ordered combined sample. We will
prove for k > 0

THEOREM 1.

(1) PR, <b,1 <i<m|mn, F=G"

=T S ) _FML} :
(n + km)! J—i+ 1/ T, + ki — k)) mxm
where {b,} is an increasing sequence of integers and 6, = b, — i + 1.

This is a generalization of a result appearing in Steck ((1969) (3.1.1)). These
two results differ in notation and structure but the one given here seems con-
siderably simpler. Since it depends only on k and not on F and G separately
we will assume G to be the uniform distribution on [0, 1].

The principal use of the results in this paper will probably be in carrying out
one-sided Smirnov-type tests of hypotheses involving the distributions F, F?,
1 — (1 — F)’. The following remarks show that these are useful classes of
distributions.

Harte and Pfanzagl (1969) have a biological problem that requires testing
H:G =1 — (1 — F)* against 4: G > 1 — (1 — F)* (their inequality (2) should
be reversed) for k a known integer. The essence of their problem is the
following: let the X’s be the times required for individual students to solve a
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156 G. P. STECK

certain statistics problem and let the Y’s be the times required for independent
groups of k students each to solve the problem. The question is—is there col-
laboration among members of a group? If not, G =1 — (1 — F)¥; if so,
G > 1 — (1 — F)* (assuming collaboration aids solution). Harte and Pfanzagl
use the Wilcoxon test but a Smirnov type test is reasonable, too. In this example
our results are needed to determine the critical region.

Shorack (1967) furnishes another example. Suppose something fails when the
last of k bonds fails, where k is not known exactly but is representative of the
manufacturer—obviously large k’s are desirable. If the bonds fail in an i.i.d.
fashion according to a distribution F, the time-to-failure distribution is F*,
Suppose manufacturer 4, with k = @ and G, = F#, has been the accepted
supplier but that now there is a second manufacturer B, with k = 8 and
G, = Ff = (F*)”*. To test the hypothesis that both manufacturers are equally
good against the alternative that B is better is to test H: G = F against A:
G=F, 6 >1. In this example our results are needed to determine the power
of Smirnov-type tests.

Finally, we note that Allen (1963) proved a characterization theorem for
these classes of distribution: if F and G are absolutely continuous with common
support and associated hazard functions r(r) and s(f), then the statements (i)
r(t) = 0s(7), (i) 1 — G = (1 — F)’, (ili) P(X < Y| X < f) independent of ¢ are
equivalent. A similar result follows for G = F? if ¢ is replaced by —t.

2. Proof of Theorem 1. Let E, denote expectation with respect to the joint dis-
tribution of the ¢ distinct random variables among the collection Yo Yo + vy
Y,, (not counting Y, or Y, ,, which we take as identically 0 and 1, respectively).
Then we have

LEMMA 1.
P(R; < b, all i|m, n, F = G*) = E,[det {(J._{H))Y’g;f-”“}mm] .

Proor. Since R, < b, if and only if X, < Yy, _i+1» We have P(R; < b,, all i) =
P(X; < Y,,alli). Let the r distinct random variables among {Y,}be U, U, -,
U,. Then
PX; <Y,, all y= §...§ PX, < Yo all ydFy o (U Uy -y 1)

0y <---Suysl

Since F(X) = X* is U(0, 1) the probability inside the integral equals P(V, <
y’,;i, all i) for uniform order statistics ¥, < V, < ... < V, froma sample of m
i.i.d. U(0, 1) random variables. This probability is given by Steck (1971) as
PV, £ v,, all i) = det {(;_1,,)v,"""*},.x SO that

P(Xi < Yai’ all i) = S cUe S det {(j—jz:+1)y§;j_i+l)} dFUI,u-.Ut(uv ceeu) . [

Osuys---suy<l

We now evaluate the expectation in Lemma 1. Assume, for the moment, that
all the numbers 6,,0,, --.,0, are distinct, Let the random variables



PROBABILITIES OF RANKS 157

Wi, Wy, « -+, W, be defined by

Y01=W1W2--- w.
Yoo= W W,
Y,,m: W, .

It is known that the W,’s are independently distributed beta variables and W,
is Beta (0,, 0,,, — 0,) with @,,,, = n + 1—that is, fiy (W) oc Wl (1 — w)les1=0i2,
If one adopts the convention that for r > 0 a Beta (r, 0) variable is identically
one, then the same formulation works even though‘the numbers 6, 02, e, 0
are not all distinct. For example, if 6, = 6,,, so that we want Yo, =Yy, 0
then W, is Beta (0,,0) and P(W, = 1) = 1. This leads to Y,, = ¥, as
desired, since Y,, = W, W, - W, =W,,,-.- W, =Y,

When expressed in terms of the {W,}, Lemma 1 gives

2) P(R, < b, all i|m,n, F = G¥)
= Et[det {(i—%+1)(Wi Wi+1 e Wm)k(j_i+l)}mxm] .

m

h+1?

h+1”

Expanding the determinant on the RHS of (2) by its last column and inducting
on the dimensionality using the fact a,;=0 for i> ;4 1 implies
det {a;;x/=**1, = x™det {a,,},,,, (the problem is more notational than con-
ceptual) shows that the RHS of (2) is a determinant whose entry in row i and
column j is

(,-_’;+1) Hrzn=z Equj/Equ(i_l) j; i—1
0 otherwise .

Since EZ' = I'(r 4+ s)I'(r 4 #)/[T(H['(r + s + 1)] for Z a Beta (r, s) random
variable, and since W, is Beta (r,, s,) withr, = 0,5, = 0,,, — 0,,r, + 5, = 1.,
we have, after much cancelling of factors,

P(R, < b, all i|m,n, F = G*)
—af( T IO+ ENeski—D D)
J—i+ 17T, + k(i —1)I'(n + kj + 1)) mxm

A trivial induction shows the factors involving n can be brought to the outside

of the determinant as the single multiplier n!/(n + km)!. Similarly the factors

J!/(i — 1)! can be brought outside the determinant as the factor m!. This com-
pletes the proof of (1). []

Note that if kK = 1 then
("MMPR; £ b, | F = G) = det {4 =) um -

=i+l
This is a different expression from the one given by Steck ((1969) Theorem 4.1)
which is

("PR; < b, | F = G) = det {(71 )} nxm s
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however, it is not difficult to show by repeated adding of adjacent columns that
they are equivalent expressions.

If k> 1 then X is stochastically greater than Y and the X’s will occur
generally later than the Y’s in the ordered combined sample. One reasonable
test of the hypothesis H: F = G against the alternative 4: F = G*, k > 1, is to
reject if the X’s are “too late” in the ordered combined sample in the sense that
R; = b,, all i. This means that if k > 1 we also interested in probabilities of
the form P(R, = b,, all i|m, n, F = G*). Interchanging the roles of X and Y
we see that this probability is the same as P(S; = b,, all j|n, m, F = G'¥). To
express it in terms of what we already know, we need the following theorem.

3. Relating the events a, < R, < b, all iand «; < S; < §,, all j. It is obvi-
ous that R, = b,, all i, is equivalent to S; = 8;,all j, where 8, < 8, < --- < 8,
are the integers left over when b,, b,, - - -, b,, are deleted from the set of integers
1,2, ..., m+ n. What follows shows that something very similar holds for the
events g, < R, < b,,alli,and a; < §,;, < §,, all .

THEOREM 2. Let oy < a, < --- < a, be an increasing sequence such that
jSa;<m+ j Then {sample orderings|R, < b,, all i} = {sample order-
ings|S; = a;, all j} where {b,} = {1,2, m + n} — {a;} = {a,}* with b, < b,,, and
i<b, < n+ i

SKETCH OF PROOF. Since §; = a; = R,,_; < a; — 1, the set of orderings such
that §; > a,, 1 < j < nis equal to the set of orderings such that Ry jSa;—1,
1 <j<n. Since j<a; <m+ j, we have 0 < a, — j < m. Let a;, be the
number of times a number < i appears in the set {a; —jlji=1,2,---,n},
for i=0,1,...,m. Clearly a,=n and 0<a,<a,,<n Then for
i=0,1,2,...,mwe have the following relations and implications (put a_, = 0)

A1 — (@0 + )=i= Sal_1+1 za,+i+1A AR <a_,+1i

=i—= S, =a +i AR, Za,+i—1

aaz - al. a;
=R, Za_, +1,
= Rz é al_l —+— i .
Regardless of the values of the a,, it is, clear that {a,_, + i|i=1,2, ..., m} =

{a;}° where complementation is respect to the set {i|1 < i < m + n}. Putting
b, = a,_, + icompletes the sketching of the proof since {a,_, 4 i}is an increasing
sequence and since i < a,_, + i< n+ i []

CoroLLARY. [f{a;}and {B;} are increasing sequences withj < a; < B, < m + j,
then {sample orderings|a; < S; < f;} = {sample orderings|a, < R, < b,} where
{a.} = {B;}, {6} = {a,} are increasing sequences with i < a, < b, < n + i.

CoroOLLARY. PR, = b,1 <i<m|mn F=G")=PR,<a,l <i<n|n,
m, F = GY*) where {a;} = {b,)}.
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A proof very similar to that of Theorem 1 will prove
THEOREM 3.
P(Rngu1§l§m|m,n,F: 1 —(1 _G)k)

_ n! det{( . ] > I‘(goj—|—k(m—i—}j 1))} ’
(n + km)! j—i+1 C(p; + k(m — j)) ) mxm

where {b,} is an increasing sequence of integers and ¢; = n — b; + j + 1.

COROLLARY.
PR, =b,1<i<m|mn F=1—(1—G)F
=PR, za,1<i<n|n,mF=1—(1 -G,
where {a,} = {b;]}°.
4. Examples. Take m = 2, n = 3, k = 3. Then from Lehmann (1953) we
have the following table of probabilities.

TABLE 1.
1680 - P(R; = r1, R2 = rz2| F, G)

(rls rZ) (1’2) (1s3) (1’4) (1,5) (213) (2s4) (215) (314) (3’5) (4’5)

F =G3 20 30 42 56 90 126 168 252 336 560
F=1-(1-G)p3 560 336 168 56 252 126 42 90 30 20
Note that

P(RI:rl,Rzzr2|F=G3):P(R1:6—r2,R2:6——r11F:1—(1—G)3).

ExAMPLE 1.
')y I
2 rey Ie) :H_ 308

9l | 2[(9)| 60 1680°
I'(6)

This answer is also obtained from the table as 20 + 30 + 42 + 90 + 126.

P(Ry<2,R,<4|2,3,F =G =

EXAMPLE 2.
P(Rl g 2’ R2 ;4'2, 3,F: G3)
=PR, <1,R,<3,R,<5]|3,2, F=GY)

@ TG e r'g) 2rg@ 1
r'ay Iy L 3 3
_2 20 |, S0 27
! rq r@E | ° I'Gg) 2r@)
0 1 3F(1§2) 0 1 .__Z.A_‘.i_
() 40T(2)
103 1442

= — = —

120 1680
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This answer is also obtained from the table as 126 + 168 4 252 + 336 4 560.
It is left to the reader to use Theorem 3 and its corollary to verify

EXAMPLE 3. 1680 . P(R, = 3, R, = 4|2,3, F =1 — (1 — G)®) = 140.
EXAMPLE 4. 1680 - P(R, < 1, R, < 42,3, F =1 — (1 — G)*) = 1064.

5. Applications to the distributions of one-sided Smirnov and Rényi statistics.
The one-sided Smirnov statistics are D), = sup, [F,(x) — G,(x)] and D, =
sup, [G,(x) — F,(x)]. Steck (1969) shows P(mnD},, < r) = P(R, = a;,,1 =i < m)
and P(mnD,, < s)= P(R, < b,,1 <i<m) where a, = {{i(m + n) — r}/m)
and b, = [{i(m + n) — n + s}/m] with [x] = largest integer < x and (x) =
smallest integer > x. Thus Theorem 1 together with the corollary to Theorem 3
give the distribution of D, for F = G* and 1 — (1 — G)*, k > 0, respectively.
The corollary to Theorem 1 together with Theorem 3 do the same for D,.

The one-sided Rényi statistic is R,* = sup {N[F,(x) — G (x)]/[mF.(x) +
nG,(x)]} where the supremum is taken over those x for which mF,(x) +
nG,(x) =1t 0<t<m-+ n=N. This is a modification of D}, which gives
more weight to differences occurring for small X’s and Y’s. Since R,* cannot
increase unless x = X, for some k, it follows that

< mon e {  Be

where the maximum is over those k for which R, = ¢. Consequently, it can
be shown that P(R,* < a(m + n)/mn) = P(R, = ¢,, | < k £ m) where ¢, = k
fork < kyandc, = k(m + n)/(m + a) for k = k, with k, = {t(m + a)/(m + n)).
Hence the remarks concerning the distribution of D}, apply to R,* as well.
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