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ON THE MOMENTS AND LIMIT DISTRIBUTIONS
OF SOME FIRST PASSAGE TIMES

By ALLAaN GuT
Uppsala University

Let Sp, n=1,2,3, ..., denote the partial sums of i.i.d. random varia-
bles with positive, finite mean. The first passage times min {n; S» > ¢} and
min {n; S» > ¢ - a(n)}, where ¢ = 0 and a(y) is a positive, continuous func-
tion on [0, co), such thata(y) = o(y)asy 1 oo, are investigated. Necessary
and sufficient conditions for finiteness of their moments and moment gen-
erating functions are given. Under some further assumptions on a(y), as-
ymptotic expressions for the moments and the excess over the boundary
are obtained when ¢ — co. Convergence to the normal and stable distribu-
tions is established when ¢ — co. Finally, some of the results are generalized
to a class of random processes.

1. Introduction. Let (Q, 7, P) be a probability space, let X, X,, --- be a
sequence of random variableson Q, let & = o{X,, X,, ---, X,}, n =1,2, - -,
and set &, = {¢, Q}. A random variable N, defined on Q, with positive integer
values, is called a stopping time (a stopping variable) of the sequence X;, X,, - - -,
if the event {N = n}e .5, for every n > 1.

The only case considered here is when X,, X;, - . . are independent, identically
distributed (i.i.d.) random variables with expectation & > 0. Let X be a random
variable on Q, independent of, and with the same distribution as, X, X,, - - -.
Set §, =0, S, =3, X,, X~ = min{0, X} and X* = max{0, X}.

Let ¢ be a nonnegative constant and let a(y), where y € [0, o0), be a positive,
continuous function, such that a(y)/y — 0 as y — oco. The stopping times studied
are

D min {n; S, > c}
and
In min{n; S, > ¢ - a(n)}.

According to the strong law of large numbers the stopping times are finite
with probability 1 in both cases, that is, they are proper random variables.

The purpose of this paper is to find necessary and sufficient conditions for
finiteness of the moments and moment generating functions of the stopping times,
to find asymptotic expressions for the moments and the excess over the boundary
as ¢ — oo, and to prove that, under general conditions, a stopping time, suitably
normed, has a limit distribution as ¢ — co. When treating Case II as ¢ — oo
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278 ALLAN GUT

some further conditions on the functions a(y) are imposed. For sufficiently large
¥, a(y) is then supposed to be a non-decreasing, concave, differentiable function,
that varies regularly at infinity with exponent a, where 0 < « < 1, i.e. a(y) =
y* - L(y), where L(y) varies slowly at infinity. (About regular and slow varia-
tion, see Feller [14] pages 268 ff.) To simplify, this restricted situation is called
Case III.

Case I has been treated by Heyde [19], [20], [21], [22], and Chow [8], who
has also studied Case III with L(y) =1, i.e. a(y) = y*, 0 £ « < 1, but with
considerably weaker conditions on X}, X,, --.. Heyde [21] and Siegmund [31]
have studied the asymptotic normality in Case I and Case III respectively (the
latter with L(y) = 1), and in Heyde [22] a theorem about attraction to stable
laws is proved in Case I. When P(X = 0) = 1 Case I reduces to classical renewal
theory.

In the last chapter some of the results are generalized to separable random
processes with independent, stationary increments and without positive jumps.

2. First passage times across horizontal barriers.

2.1. Throughout this chapter only Case I is considered. Let X, X,, - - - bei.i.d.
random variables such that 0 < EX =6 < co. Define N = N(c¢) = min{n; S, > c}.

THEOREM 2.1. Letr = 1. Then

(@) E|JX7|" < oo = EN" <

(b) EN" < oo = E[X|" < o

(€) E(XT) < o0 = ES,;" < 0.

Proor. If X, X,, - -- are nonnegative random variables then X, =0, v =
1,2, ..., and (a) reduces to a well-known result from renewal theory (see e.g.
Prabhu[26] Theorem 2.1, page 155). If P(X < 0) > Oand ¢ = 0, then N = N(0)
equals the first (strong ascending) ladder index, and then (a) and (b) are known
from Heyde [19] Theorem 3, page 221, if r > 2 is an integer, and from Feller
[14] page 396, if r = 1. (EX~ < oo, since EX = § < o0.)

Set M, = max,.,.,S,. Then {M, < ¢} ={N > n} and thus EN" < oo =
Dwa iTP(M, < ¢) < oo, which is seen after a simple rearrangement of the sum.
(a) then follows from Heyde [20] Theorem 3, page 705, if r = 1 is an integer.

From n~'P(S, < 0) < P(M, < 0) < P(M, < ¢) < P(S, < c) (see Heyde [19]
page 220) it follows that EN" < co = D 5 0" 'P(M, < ¢) < 0o = Y12 n"*P(S, <
0) < o0 = E|X7|" < oo, according to Smith [34] Theorem 7, page 274, if r > 1,
and so (b) is proved.

It remains to prove (a) when r > 1 is not an integer, and (c). The proofs are
based on some lemmas.

LemMA 2.1. Letr = 1. If E|X|" < oo, then
E|X,| < [E|Xy|"]V" < [EN - E|X|]V".

Furthermore, since P(X,, > 0) = 1, |X,,| and |X| above may be replaced by X ,* and
X*, respectively.
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Proor. The first inequality of this well-known lemma is true because (E|X|")"/"
is a non-decreasing function of r (see e.g. Loéve [23] page 156). The second
inequality follows from |X,|" < |X,|” + |[X;|" + --- + |X,[" and Wald’s lemma.
The rest of the proof is immediate. '

PROOF OF (c). Since S, = X,*, E|X~|" < oo does not imply that ES,” < oco.
Suppose that E(X*)" < co. From S, < ¢ + X, and P(X,; > 0) = 1 it follows
that X, = X,*, and hence

ES,” < E(c + X%y < 27c" + E(X,*)) < 277(c" + EN - E(X*)") < oo,

where the c -inequalities (Loéve [23] page 155), Lemma 2.1, and (a) with r = 1,
have been used. The converse is immediate, since S, = X;*.

ProOF oF (a). The following truncation argument shows that it suffices to
prove (a) when E|X|" < co. Define

X =X, if X,<A4
=0 if X”>A, )1:1,2,-~',S,n': ;’leXp',nzl,Z,...,

and N = min{n; S,’ > ¢}, and choose A4 such that0 < EX,” = 6, < oo. Obvi-
ously E|X-|" < oo = E|X'|" < oo. Since X, < X, S,/ < S, it follows that N < N/,
and hence EN" < E(N')". Thus it suffices to prove (a), when E|X|" < oo.
Assume that E|X|" < oo, where r > 1.

0 ENT < 27-Y(E|Sy — NO|" + ES,")
and

E|S, — NO|" < 2""YES," + 0"EN"),
where the ¢ -inequalities have been used. Thus it follows from (c) that

EN" < 00 = E|Sy — NO|" < oo .

(If r =2 then E|S, — Nf|* = Var X - EN according to Chow, Robbins and
Teicher [7] Theorem 2, page 791).

Set Y¥,=X, —60, v=1,2,.... Then EY, =0, and thus (a) is proved if
E|X" < oo = E|TY, Y,|" < co,r> L.

The following lemma is Theorem 9, page 1502, of Burkholder [5].

LemMA 2.2. Let {Z,} be a martingale and suppose that E|Z,|? < oo, p > 1. Set
Y,=2,Y,=2,—Z, ,,n=2,3,---. Then

¢ E| S5 V" < E|ZP < C, BTt VP,
where ¢, and C, are constants depending only on p.

When Y,,v = 1,2, ... are i.i.d. random variables such that EY,6 = 0 and
E|Y,|? < oo, then the lemma reduces to a well-known inequality, originally due
to Marcinkiewicz and Zygmund (see [25] Theorem 13, page 87).
IfY,=X,—6,v=1,2, ..., then {}r_, Y }r_, is a martingale and, since
E|Y|" < oo, Lemma 2.2 applies. Define N, = min{N, n}anddefine U, = 3}{_, Y, -

IN,=v}, k=1,2, ..., n, where [{.} denotes the indicator function of the set
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in braces. Then also {U,};_, is a martingale, U, = Y¥» Y, = Sy, — N,0, and

E|U,|" < E|U,]" < E|X1_, Y,|" < oo, since {|U,|"}i_, is a submartingale. (See
Doob [11] Theorem 2.1, page 300). Thus {U,};_, satisfies Lemma 2.2, and hence

¢, E|S¥n Y "* < E|U,J" = E|Sin Y, < C, - B[S Y .
The following lemma completes the proof of (a).
LemMMA 2.3, Set p, = E|Y|', s < r. If p, < oo, then

(@) ElZ)L Y| =C, - p, - ENK 0 if1l<r<2
(b) E[Z)L Y| =C(rp) EN? < oifr>2

where C(r, p,) is a constant depending only on r and p,.

ProoF oF (a). If 1 < r < 2 then EN < oo and thus only the first inequality
has to be proved. Furthermore, } < r/2 < 1 and so the c,-inequalities (Loéve
[23] page 155) and Wald’s lemma on the right-hand inequality above give

ElU["<C, B[S Y"* < C, - ES¥n|Y,)s =C, - EN, . y, < C,pt, EN .
Now Fatou’s lemma gives
E[$Y, Y, < liminf, . E|U,]" < C,p EN
and thus (a) is proved.

ProoF of (b). The proof consists of a step-wise reduction to (a). If r > 2
then ENU") < co and thus also EN"? < . Hence it remains to prove the first
inequality.

Assume that 2* < r < 2¥*!, where k > 1 is a integer. Then

B dm Y = C - E|Zim YR S 2770 C, - E[E 0 (Y, — )|
_|_ 27/2—1 . Cr . #21-/2EN"7-/2 é 21-/2—1 . Cr . EIZC,;LI (YVQ _— #g)l'r/z
+ 21‘/2—1CT #r EN’r/? .
Since {317_, (Y,” — p,)}v_, is a martingale and
E|Z 0 (Y, — )| = Cpn™E|Y — | < o0,
Lemma 2.2 is applicable. Define the martingale transform {U,,}:_,, where
Up= 2k (Y2 =) - N, =v}, k=1,2,---,n.

U, = 20» (Y,” — p;). With the same arguments as before it follows that

E|20m (Y, — )" < Cppy - E|Dm (Y2 — )’
If k =1,ie. 1< r/2 <2, then it follows as in the proof of (a) that
E|X 0 (Y, — m)|? < C, - E|Y? — p|"? - EN.
If r/2 > 2 then
E|Z3m (Y, — )P < Copy v E|SVm (Y2 — )7
<24 Cop s E|Sn (V2 = ) — BV — )™
+ 2770 Copy - E|Y? — pff - ENT/
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and the process continues. It terminates, however, after k steps, (where 2% <
r < 2k, If all the terms are collected into one inequality it follows that

E|Z¥n Y,|" < by EN + 3k, b, - EN7™,

where by, by, ---, b, are constants depending only on r and g, s < r. Since
(E|Z|")" is a non-decreasing function of r it follows that p, < p,*7, s < r, and
thus by, by, - - -, b, may be increased to b/, b,/, - - -, b,/, which depend only on r
and p,. Furthermore, EN*™" < EN"?, v =1,2, ..., k, and thus

Eyin Y| = C(r, p,) - EN?,

where C(r, ) is a constant depending only on r and g,.
Finally Fatou’s lemma gives

E[DI, Y < liminf, . E[S)s, Y,]" < C(r, ) - EN"

and thus the lemma is proved, and hence also Theorem 2.1 a.
The following result on moment generating functions is Theorem 1, page 220
of Heyde [19].

THEOREM 2.2. There exists a t, > 0 such that Ee'” < oo, |t| < t, if and only if
there exists a t; > 0 such that Ee'*™ < oo, |f] < t,.

2.2. In the remaining part of this chapter asymptotic properties of N = N(c)
will be studied.

THEOREM 2.3. Letr = 1. Then

(@) Njc—,, 07! as c — oo.

(b) E|X~|" < oo = E(N[c)" — 077, as ¢ — co.

(¢) EJX7|" < o0 = E(NJc) > 0=, asc— oo foralls,0 < s < r.
(d) E(X*)" < oo = E(S,[c)" — 1, as ¢ — co.

(a) is proved in Heyde [20], Theorem 7, page 710. If P(X = 0) = 1 the result
of Doob [10], Theorem 1, pages 423-424, is obtained. Chow [8] has proved (b)
and (c) when r = 2, pages 385-386, and Chow and Robbins [6] have proved (b)
when r = 1. Heyde [20] has proved that E|X-|"*' < co = E(NJc)" — 0~" as
¢ — oo if r = 1 is an integer, see Theorem 6, page 709. If P(X = 0) =1 then
X~ = 0 and the results follow from Hatori [18] Theorem 1, page 141.

Proor oF (b). Let r > 1. The necessity follows from Theorem 2.1 b since
EN" < oo if ¢ < oo.

Now assume that E|X-|" < co. (a)and Fatou’s lemma give liminf,_, E(N/c)" =
6.

It remains to prove lim sup, ., E(N/c)” < 6-7. This is first proved under the
assumption that also E|X|" < co. Let 0 < d < ¢ and define N,(c) = min {n;
S, > ¢, n > c/d}. For simplicity, assume that ¢, = ¢/d is an integer.



282 ALLAN GUT

Define 4, = {S, > cjand 4, = {c —v < S, =c—(v—-DhLv=12, .-
EN" = EN'(c) < EN,’(¢c) = E(N,"(c)| 4,) - P(4,)
+ LI E(N(e) [ 4,) - P(A,) < E(N,7(¢) | S, = ¢) ~ P(4)
+ LI E(NG(0) ]S, = ¢ —v) - P(4,) = E(c, + N(0))" - P(A)
+ X E(e + NQ))™ - P(4,).
let0<r<landlet 0y <1. Then (1 4+ =14r(1 49"t
1 4+ r.2""'t and thus

(@+ by <a 4 r-2"ab=' 4 r. 2" 4 b7

From this inequality and the c,-inequalities it follows that

E <M> <E (5 N(0)> P(4) + Yo E <% + ZV%)’ P(A,)

4

1 sl 1 EN(0) 1 EN"-Y0) EN™(0)
< Lo L ENY) L
o T <5"1 c + 0 ¢t >+ cr
. w (1 EN"(v)
271, > (— + X2 P(A4
+ ol < 5T > (4,)
S L (BNO) L ENTO) | ENO)
r 51’ .cr cr
+ 220 = ) + 2 2 PO .

By Theorem 2.1a EN*(0) < oo, s < r and by the strong law of large numbers
1 — P(4)) = P(S,, < ¢,0) — 0 as ¢c— oo. Thus

lim sup,_,., <N(c)> — + 27'limsup,_,, 37, EN() | P(A4,).
c cr

The next step is to prove that lim,_, >, E(N"(v)/c) - P(4,) = 0. If v =
1,2, ..., then
PA)=Pc—v<S, =c—(—1)
=Pley(d —0) —v <S8, —cf Sc(6—0)—v+1)
S Ple(0 —0) +v—1= 1S, — ] < e —3) + v)
if ¢ is so large that ¢, (¢ — d) — 1 > 0." This can always be achieved since § is
chosen before c.

Np) = Ny — 1) + min{n; S, — Sy,_y > 1Sy, =v—1}=Nv — 1) +
Ny(1) and so N(v) < Ny(1) + Ny(1) 4+ --- + N,(1), where N,(1), k = 1,2, ..., v
are distributed as N(1). Minkowski’s inequality implies that

(EN"(v))/m < v - (ENy(1))Vr .
By Theorem 2.1a

(MY < BNl < oo, v=1,2,
v



FIRST PASSAGE TIMES 283

Hence
B (MO . poa)
(4
é M . ) yT P(Au)
CT
< BN s L p(ey(0 — 8) v — 1 S IS, — 8] < (0 — 3) + )
CT
= P g o e — ) = 1y
X P(eff — 0) + v — 1 < |S,, — 8] < cld — 3) + »)
§ ENI'"(I) . EISCO _ Coair‘
CT

If r > 2 then, by the inequalities of Marcinkiewicz and Zygmund (see [25]
Theorem 13, page 87) and Minkowski

E|S,, — cb]" = C(r) - E|X%. (X, — 0)™*
< C(F) - 7 E|X — 0] = C(r) - (é)’”’ . E|X — 0],
where C(r) is a constant depending only on r. Hence
0 < limsup,_.., ;°:1E<ﬁ(c”_)>' . P(A,)
< limsup, ... E]\g(l) . C(r) - (%)m CEX—0"=0.

If 1 < r < 2 then, by the inequality of Marcinkiewicz and Zygmund and the
¢,-inequalities,

E|S,, — ¢,0]" < C(r)E| X5, (X, — 60)"
< C(r) Yoo, E|X, — 0" = C(r) %E]X— q,

where C(r) is a constant depending only on r. Hence

v=1

0 <limsup,_, >, E <M>r - P(4)
C
< tlimsup,.. ZN) ¢y . < Ex -0 =o.
c'r

Thus limsup, ., E(N(c)/c)" < o for all 9, 0 <o < 6. It follows that
lim sup, ., E(N(c)[c)" < 6-.

To complete the proof of (b) it remains to remove the assumption that E|X|" <
co. Thus, suppose only that E|X-|" < oo and define X,’, S,’ and N’ = N'(c) as
in the proof of Theorem 2.1a. Choose A such that EX,’ = 6§, > 0. Since
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X ’

n

lIA

X, S,/ = S,, N(c) < N'(c) and E|X'|" < oo the above result implies that

limsup,,, E <M>r < limsup,_,, E <]£(c_)>r < 01 .
¢ c Al

However, 4 may be chosen such that ¢, is arbitrarily close to # and thus
lim sup, ., E(N(c)/c)" < 6.

Proor or (c). (c) follows from (a), (b) and Corollary 1, page 164, of Loéve
[23].

Proor of (d). The necessity follows from Theorem 2.1c¢, since ES,” < oo if
¢ < co. Now let r = 1. Then by Wald’s lemma and (b)

L

=1 as ¢— oo.

Finally, let r > 1. From ¢ < S, < ¢ + X,*, Minkowski’s inequality and
Lemma 2.1 it follows that

¢ = [ESy] = [E(c + Xy = ¢ + (E(X,*))" < ¢ + (EN - E(XT)).

Hence

1

IA

=14 /1. <¥>w - (E(XH)r)r

By (b) the last term tends to 0 as ¢ — oo and so (d) is proved.

REeMARK. Allowing § = + oo the following generalization of Corollary 3,
page 386, of Chow [8] can be proved.

CorOLLARY 2.3.1. Let r=1. If E|X-|" < o0 and 0 < EX = 0 < oo, then
E(Njc)y" — 0-" as ¢ — oo, where 0= is interpreted as 0 if § = + oo.

Proor. If 0 < 6 < co there is nothing more to prove. Let § = 4co. The
method of Prabhu [26] Theorem 3.1, page 161, is used. Define X/, S,’ and N’
as in the proof of Theorem 2.1a. Again X,’ < X,, S, < S, and it follows that
N < N'. Furthermore, A4 is chosen such that 0 < EX,’ = 6, < co. Theorem
2.3 applied to the sequence X/, X/, - .- gives

r (AN
0 < limsup,_,, E <E) < limsup, ., E <E) = ! .
c c 0,

Since 4 may be chosen arbitrarily large and since 1/, — 0 as 4 — oo it follows
that lim sup,_., E(N/c)” = 0 and hence lim__, E(N/c)" = 0.

THEOREM 2.4. If E(X*)" < oo, where r = 1, then

@) [E(Sy — ¢)']jc— 0, as ¢ — oo,

(b) [ESy — c]/c" — 0, as ¢ — oo,

(c) [EN — ¢/0])c"" — 0, as ¢ — oo.



FIRST PASSAGE TIMES 285

Sy — c is called the excess over the boundary. See also Lorden [24].
To prove the theorem the following lemma is used.

LEMMA 2.4, Let E(X*)" < oo, wherer = 1. Then

(@) EXy"/c — 0, as ¢ — oo,
(b) EXy/c’m — 0, as ¢ — oo.

Proor. The technique is similar to the one used in Gundy and Siegmund [16]
page 1916. For a slightly different situation where r = 2, see Siegmund [32]
page 1075, Lemma 2.

Let ¢ > 0 be an arbitrarily small given number and choose n, so large that
E((X*) - K(X*) > (¢n)V")) < e if n = n,.

EXy" = E(Xy")" = E((Xy")" - {(Xy")" = eNY) + E(Xy7)" - {(Xy*)" > eN})

= eEN + E(25 (X,7) - [(X,7)" > k)

= ¢EN + E((Li- (X7) - {(X,7)" > ek) - AN < eny))
+ E(Za (X7) - (X)) > ek) - KN > eny))

< eEN + E((Zi2V (X)) - [N < eny))

+ E((ZZP (X)) - AN > eny))

+ E((lecv=[£n0]+1 (X)) - (X, F) > e'n)) - N > eny))
¢EN + en E(X*)" + E(Zi (X,.7)" - K(X")" > €'n})
= ¢EN + en E(X*)" 4+ EN - E((X*)" - I{(X*)" > 'n,})
< ¢EN 4 en,E(X*)" + EN - ¢ = ¢(2 - EN 4 n,E(X*)").

IA

The last inequality holds because of the way ¢ and n,are chosen and the preceding
equality is a consequence of Wald’s lemma.

Thus 0 < EX,"/EN < 2¢ + ¢(n E(X*)"/EN), from which it follows that 0 <
lim sup,_,, EX,"/EN < 2¢. Since ¢ was arbitrary 0 < lim sup,_., EX,"/EN < 0
and thus lim,_, EX,"/EN = 0. By Theorem 2.3b EN/c — 6" as ¢ — oo, from
which (a) follows.

(b) is an easy consequence of (a) and the lemma is proved.

ProOF OF THEOREM 2.4. From ¢ < S, < ¢ + X, and Lemma 2.4a it follows
that

O§E(SN_C)T§EXNT—>O as ¢— oo .
c c
(b) is an easy consequence of (a), and (c) follows from (b) and Wald’s lemma.
The next problem is to establish the asymptotic normality of N = N(c) if
Var X = ¢® < co. '

THEOREM 2.5. Let 0 < EX =0 < o0 and Var X = ¢* < oo. Then

oo (N — ¢l _ e
& <(02c/03)9> N, 1) as c .
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The proofs in the case when P(X > 0) = I are due to Feller [13] if X has a
lattice distribution, and due to Takacs [36] if X has a non-lattice distribution.
The present proof, which is quite different from that of Heyde (see [21] Theorem
4, page 148), is a combination of the following lemmas, which aré Theorem 1,
page 193, and Lemma 3, page 197, of Rényi[27], and which are similarly applied
there.

LEMMA 2.5. Let Y, Y,, --- be i.i.d. random variables with expectation 0 and
variance 1, and let Z, = Y,"_, Y,. Let v(t) be a positive integer valued random vari-
able for any t > 0, and assume that v(f)|t >, k as t — oo, where k is a positive
constant. Then

Z(\_, oo
g((y(g)g) NO, 1), as t .

Lemma 2.5 is a special case of a theorem originally due to Anscombe (see [1]).

LEMMA 2.6. LetY,,Y,, ... bei.i.d. random variables and suppose that the second
moment exists. If v(t) is as in the previous lemma, then

Yv(t) _)PO
((1))*
ProOOF OF THEOREM 2.5. By Lemma 2.5, with Y,, = (X,, — 0)/o, t = ¢, u(t) =
N (= N(c)), and k = 67, it is found that

Sy, — NO
oN?

as t— oo.

y( >=>N(0,1) as ¢— oo .
From ¢ < S, < ¢ + X, it follows that

c— NO <SN_N0SC+XN_N0.
oNt oN? - oN?

Lemma 2.6 implies that X, /¢N* —,0 as ¢ — oo, and hence

<c—N0

):N(o,l) " as c— oo,
oNt

Theorem 2.3a and Cramér’s theorem (see Cramér [9] page 254) imply that

g<N¢9 — ¢

W):N(O, 1) as ¢ — oo

from which the conclusion follows.

Theorem 2.5 does not imply that EN ~ ¢/6 or Var N ~ ¢%c/0® as ¢ — co. The
following theorems state, however, that these results are true.

Let X,, X,, - - - bei.i.d. random variables and let N;,, N, - N,, N, + N, +N,, - - -
be the successive strong ascending ladder indices, i.e. N, = min{n; S, > 0},
N, + N, =min{n > N;§,> S, }, ---andlet ¥, =S8, , Y, + Y, =Sy 4p,, -+~
be the corresponding ladder heights. Then N, N,, --- and Y,, Y,, --- are two
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sequences of i.i.d. positive random variables. Furthermore, Y,, Y,, - - - constitute
a renewal process (see e.g. Prabhu [26] Chapter 6.2, page 208 ff.) and hence the
results from renewal theory are applicable.

With a slightly different notation, and with the assumption that Var X < oo
also in (a), the following theorem is stated and proved in Heyde [21] page 147.

THEOREM 2.6. Let X, X,, - - be i.i.d. random variables with a non-lattice dis-
tribution and suppose that 0 < EX = 0 < oo and E(X*)* < oo. Then

(@) EN =c/0 + EN, - EY}*/2(EY))* 4+ o(1), as ¢ — oo}

if also Var X = ¢ < oo, then

(b) VarN = d’c/0® + o(c), as ¢ — oo.

Siegmund [32] has proved EN ~ c¢/f and Var N ~ ¢°c/0® as ¢ — oo for more
general sequences X, X,, ---. If (X =0)=1 then Ny =N,= ... =1 and
Y, =X, i=1,2, ... and the theorem reduces to the classical results (see e.g.
Smith [33]).

The present proof of (a) makes use of the ladder variables defined above, a
method introduced by Blackwell [3] in a similar context.

ProoOF OF (a). The crossing of the boundary ¢ must occur at a ladder point.
Therefore, let M = min{m; ;™ , Y, > c}. By Theorem 2.1a EN, is finite and
by Theorem 2.1¢ EY, = ES,, and EY," = ES}, are finite. Hence the relation
(a) for M, (which is already known to be true), gives

_ ¢ n EY}?
EY,  2(EY))

+ o(1) as ¢—co.

Since the crossing occurs at a ladder point it follows that
N=N+N,+ ... +N,,.
All expectations involveq are finite, and thus Wald’s lemma implies that
EY, =6 . EN, and EN = EN, . EM .

Finally EN = EN, - EM = EN, - (¢/0EN, + EY,/2(EY,)* + o(1)) as ¢ — co and
(a) is proved.

Now let X, X,, .- - have a lattice distribution, i.e. a discrete distribution with
masses at the points md, where m = 0, +1, +2, ... and where d > 0 is the span.
Assume that d = 1 for notational convenience. Then N = min{n; S, > ¢} =
min{n; S, > [c]}. Therefore, define N = min{k; S, > n}.

With this notation the corresponding result is

THEOREM 2.7. Let X,, X,, - - be i.i.d. random variables with a lattice distribu-
tion with span d = 1 and suppose that 0 < EX = 0 < oo and E(X*)* < oo. Then

(a) EN™ = n[60 + EN,- EY?2(EY))* + 1/20 4 o(l), as n — oo;

If also Var X = ¢® < oo, then

(b) Var N™ = ¢’n/6® + o(n), as n — oo.

With the original notation the result is
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THEOREM 2.7'. Let X, X,, - -+ be i.i.d. random variables with a lattice distribu-
tion with span d = 1 and suppose that 0 < EX = 0 < co and E(X*)’ < co. Then

(@) EN =c¢/0 + EN,. EY}*2(EY,)* 4+ 1/20 — (¢ — [c])/0 + o(l) as ¢ — oo;

If also Var X = ¢* > oo, then

(b) VarN = ¢%/6® + o(c), as ¢ — co.

Note that the statements about EN in the last three theorems are sharper than
Theorem 2.4 c with r = 2.

If (X =0)=1, thenagain N, =N,= ... =l,and ¥, = X, i =1,2, ---,
and formulas similar to formulas (6.7) and (6.10) of Feller [13] page 111, are
obtained. The proof of Theorem 2.7a is carried through in the same way as
the proof given above of Theorem 2.6 a with the only change that M is replaced
by M™ = min{k; >}%_, Y, > n}. Hence

n EY? 1

EM™ = 1 1 as n ,
*aEvy T aEy, TOW -

according to Feller [13] page 111.
As mentioned above, a proof of (b) is found in Siegmund [32].
Since 0 < Y, = S, < X}, and EY, = 0 - EN,, Lemma 2.1 implies that

0 < EY;? < E(X},)" < EN, - E(X*)?,
and hence
EN, - EY{ _ (EN)Y - E(X*) _ E(X*)

0< < =
= T2EY) =  2(EN)- 6 26°

Thus, the following corollaries are proved. (See also Lorden [24] Theorem 1,
page 521, for a related result).

COROLLARY 2.6.1. If X has a non-lattice distribution with 0 < EX = 0 < oo
and E(X*)? < oo, then

gENg_;_+§%:_)i+o(1), as ¢— oo.

CoRrOLLARY 2.7.1. If X has a lattice distribution withd = 1 and 0 < EX =0 < o0
and E(X*)? < oo, then

%

E(X*)?

%gEN §7+ T +_+o(1) as n— o
%gEN§;+E(2);Z) +—_+o(1) as ¢ — oo .

2.3. Let X}, X,, --- be i.i.d. random variables such that 0 < EX = 0 < oo.
In the first of the following theorems it is assumed that E|X|" < oo or E(X*)" < co,
where 1 < r < 2, and in the second theorem it is assumed that the sequence
X,, X,, --- belongs to the domain of attraction of a stable law with exponent
B, 1 < B <2. (See e.g. Feller [14] Chapters IX. 8 and XVII. 5, and Gnedenko-
Kolmogorov [15] Chapter 7.)
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THEOREM 2.8. If E|X|" < oo, where 1 < r < 2, then
(@) (N —c¢/f)[c'" —,, 0, as c — oo;

If E(X*) < oo, where 1 < r < 2, then

(b) (EN — ¢/0)/c* " — 0, as ¢ — oo.

(€) (ESy —¢)/c* " — 0, as ¢ — oo.

Note that because of Theorems 2.5—2.7 the theorem is false when r = 2. When
r = 1 the theorem is a part of Theorem 2.3. Since2 — r < r-*when1 < r < 2,
(b) and (c) are sharper results than (c) and (b) of Theorem 2.4.

To prove the theorem two lemmas are needed. The first lemma is Theorem 1
of Richter [28], where a proof is found.

LemMMA 2.7. Let Y, Y, Y, ... be random variables such that Y, —, Y, as
n— oo. Further, let u(t) be a positive integer valued random variable for any t > 0,
and assume that v(t) —, . oo, ast — oo. Then

Y, =us ¥ as t— oo .
LEMMA 2.8. Let E|X|" < oo, where 1 < r < 2. Then

XN-—>HO, as ¢— oo .

v S

Proor. According to Loéve [23] page 243,

n},, (X, —0) >, 0, as n—s oo .
Thus, also
oy D = 0= 0
and
nm AN (X, —0) >, 0, as n— oo .

Since X, /n"" = n~¥" 30 (X, — 0) — n~Y" Tr2l(X, — 0) 4 0/n*" it follows
that

2 —.5.0, as n— oo .
n'r

Since Njc —, , 6',as ¢ — oo, Lemma 2.7, appliedto Y, = X, /n'/",n = 1,2, ..,
and Y = 0, gives that
X
Sy
Now X, /¢ = X, /NY" . (N6/c)"" - 6=/ and hence the result follows.
Next the theorem will be proved.

0, as ¢— oo.

Proor oF (a). Lemma 2.7, applied to the sequence Y, = (S, — nf)/n"/", n =

1,2, ..., with Y = 0, gives (S, — NO)/N'" —,, 0, as ¢ — co. From Njc —, .
6-1, as ¢ — oo it also follows that
Sy — N@

— as ¢ — oo .
cl/,r a.s. 0 )
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Since ¢ < S, < ¢ + X,, it follows that
¢c—No _Sy—NO _c—NO+ X,

el clr cyr

By Lemma 2.8 (¢ — NO)/cV/" —, . 0, as ¢ — oo, from which the result follows.

Proor oF (b). If P(X = 0) = 1 the result is already proved by Técklind [37]
page 9. If P(X < 0) > O the ladder indices N,, N, + N,, - - - and ladder heights
Y, Y, + 7Y, .--and M = min{n; }}*_, Y, > c} are defined as in Theorems 2.6
and 2.7. From Theorem 2.1 ¢ it follows that

EY™ = ES; < oo,
and thus, according to Tdcklind’s theorem,

C
EY,

where 1 < r < 2. Since EN = EM - EN,, and EY, = 6 - EN, it follows that

EM = + o(c*7) as ¢— oo,

EN = EN, - (o~ + o(e)) as ¢
v\ (¢) —
and so (b) is proved.
ProoF oF (¢).
E.ILC_ — 0 . M —_ O as ¢ — oo
c2—r c2—r

according to Wald’s lemma and (b).

If the sequence X;, X,, - - - belongs to the domain of attraction of a stable law
with exponent 8, then X possesses absolute moments of every order < 8. (See
Feller [14] Lemma 2, page 545, or Gnedenko and Kolmogorov [15] Theorem 3,
page 179).

THEOREM 2.9. Let B, B,, - - - be positive normalizing coefficients such that

P<u§x>—>05(x), as n— oo,
B,
where G ,(x) is the distribution function of a stable law with exponent B and 1 <
B =<2. Then )

P<Mg—x>—>0p(x), as ¢ - oo,

B(c/0)/0
where B(y) is such that B(n)y = B,, n = 1,2, 3, ... and B(y) ~ B([y]) elsewhere.
Moreover,
(@) If B = 2 then U(x) = \*, u* dF (u) varies slowly at infinity and
n - U(B,) -k, as n— oo,

B}

where k, > 0 is a constant,
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(b) If 1 < B < 2 then
P(IX — 6] > x) ~

as x— oo,

L(x)
xt
where L(x) varies slowly at infinity and

n-LB) 2—§ ,
B,”p 2

as n— co,

where k, > 0 is a constant.

The theorem is stated and proved in Heyde [22] Theorem 2, where B(c) cor-
responds to B(c/f) above. It is possible, however, to prove it using the same
technique as in the proof of Theorem 2.5. To do so, a result corresponding to
Lemma 2.6 has to be proved.

LeMMA 2.9. If the assumptions of Theorem 2.9 are satisfied, then
(a) By/B(c/0) —, 1, as ¢ — oo;
(b) Xy/B(c/0) —,0, as c — oo.

Proor oF (a). Since N/c —, 67, as ¢ — oo, there is for every ¢ > 0 a c,
such that if ¢ > ¢, then P(A) = P(|N — c/0| > (¢/f)e) < e. Then

P(‘B(li/e) 1‘ >0 B(c/(?) B 1’ > 5} " A)
B(c70) B 1} > 5} " Ac)
< P(A) + P<H§(%/%) - 1’ > o} n a).
o B 1y p 5 oo
" LCUUEC as ¢ oo

(see e.g. Feller [14] page 305). If 6 > 0 is given, it is possible to choose ¢ > 0
so small that max {(1 +¢)? — 1,1 — (1 —¢)f} = (1 +¢)) — 1 < 6. Then

v _tlsslnay=0 if .
B(c/6) >0} n4) ez
Thus
P<’B(lj'/0) — 1} > 5 < PA) < e if ¢ > max{c, ¢},

which proves (a).

Proor oF (b). As mentioned before, E|X|* < o if s < f. Sincel < <2,
may be chosen such that 1 <s<2. According to Theorem 2.8a (N—c/0)/c"* —
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0, as ¢ — oo, and hence also (N — ¢/8)/(c/0)"* —, ;. 0, as ¢ — co. Given ¢ > 0,
¢, is chosen such that if ¢ > ¢,, then P(4) = P(IN —c/0| > (c/0) - ¢) < ¢. Define
n, = [c/6 — (c/0)" - e] and n, = [c/0 + (c/6)" - €].

(ol > °) = (i > 2 4) + # (fgy > o 0 )

< P(4) + P<{B_|(Aci70!_) > 5} n A°>

¢+ P<{max"1<”§"2 1X,|> 6 - B<%>} n A¢>

IA

lIA

e + P(maxnlqén2 |X,| > - B<-;-_>>

IA

e 4 ZZ2=M+1P<IX7»| >d-B <_;—>>

— e (m—n) - P<|X|>5-B<%>>.

First assume that § = 2. Then, according to Feller [14] page 303, [x* - P(|X| >
x)]/U(x) — 0 as x — co. Since n, — n; < 4 - (c/f)"” - ¢ it follows from (a) of the
theorem, that

o)z s e (5) e p(n>aa(5)

46 1 c/f - U(B(c[9) U(B(c/f) - b)

=&+ 5s  o1-1s (B(c/0))? U(B(c|8))
o (B(c[0) - 3 - P(X] > b - B(c/9)
U(B(c[) - 6)
_,5+542';?/8.0.k1.1.0:e as ¢ — oo .

Since ¢ is arbitrary the conclusion follows.

Now suppose that 1 < g < 2. Then P(|X| > d - B(c/0)) < P(|X — 6] > /2 -
B(c/0)) if ¢ > ¢, and hence if ¢ > max {c,, ¢,} it follows from (b) of the theorem
that

Xyl c\v¢ 0 ¢
> )= () e (s 3 ()

Bejg)” 0) =T A G) e P> 5 B

~c 4e0 L cfb - L(B(c[f)) L(B(c[f) - 5/2)

(0/2)° - ' =t (B(c[0)) L(B(c/6))

4¢0 2 -8
.0. k., -

— e + (5/2)}9.01/3 ﬁ 2
which completes the proof.

l:e, as ¢— oo,

Proor oF THEOREM 2.9. Since lim,_,lim, ., B, /By, ., = lim,_ (1 4 8)~9» =
1, Theorem 3 page 77-78, of Richter [28] applies. Let Y, = (S, — n)/B,, n =
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1,2, ...,andlet Y havea stable distribution with exponent 8. Then P(Y, < x) —
P(Y < x) as ¢ — oo, thatis P((Sy — NO)/B, < x) — G(x),as ¢ — oo. (Another
way to obtain this would be to prove a generalization of Lemma 2.5.)

From (¢ — N@)/B(c/6) < (Sy — NO)/B(c/f) < (¢ — Nb 4+ X,)/B(c/0), Lemma
2.9 and Cramér’s theorem ([9] page 254) it follows that P((N6 — c)/B(c/0) =
—Xx) — G,(x), as ¢ — oo, from which the conclusion follows.

If the sequence X, X,, - - - belongs to the domain of normal attraction of a
stable law with exponent 8, 1 < 8 < 2, then B, = A - n'/?, where A4 is some
constant, and the theorem then states that P(N — ¢/8)/(A/0) - (c[0)"? = —x) —
Gy(x), as ¢ — co, where thus B(y) = 4-y%, y > 0. If § =2, then VarX =
0’ < oo and 4 = o, (see Gnedenko and Kolmogorov [15], Theorem 4 page 181),
and the statement reduces to Theorem 2.5.

3. First passage times across general continuous barriers.

3.1. In this section Case II is considered. Let X, X,, --- be i.i.d. random
variables and let 0 < EX = 6 < co. Define

N = N(¢) = min{n; S, > ¢ - a(n)},
where c is a nonnegative constant, and a(y), y € [0, o0), is a positive, continuous
function such that a(y)/y — 0 as y — oo.

THEOREM 3.1. Letr = 1. Then

@) E|X7|" < oo =EN" < ©

(b) EN' < 00 = E|X-|" < oo

(©) ElXI" < 0o = ES,” < 0.

Proor OF (a). Assume that E|X~|" < co and ¢ > 0. By the assumptions there
is for every 0 > O an a,, such that ¢ - a(y) < a, + dy forall y > 0. Choose é < 0,
and introduce the stopping time N, = min{n; S, > a, 4+ on}. Then N < N, and
hence it suffices to prove that E|X~|" < co = EN,” < co. But

N, =min{n; S, > a, + dn} = min{n; S, — on > a,} = min{n; 37 Y, > a},
where Y, =X, —d, v=1,2,.... Since EY, =8 — 0 > 0 it follows from
Theorem 2.1athat E|Y,"|"< oo = EN," < oo, and since E|X~|" < oo = E|Y™|" < o0,
the result follows.

Proor oF (b). Define N, = min{n; S, > 0}, i.e. N, is the first ladder index.
Then N, < N and thus EN" < oo = EN;” < oo and according to Theorem 2.1b
EN/ < o0 = E|X7|" < co.

Proor orF (¢). If r = 1 Wald’s lemma and (a) imply that ES, = §EN < oo.
Let r > 1. From (a) it is known that ¢ -a(y) < a, + dy and thus S, < c-
alN—-1)4+ X, <a,+ 6N — 1)+ Xy, < a,+ 0N + X,. Therefore it follows
from Minkowski’s inequality, Lemma 2.1, and (a), that

(ESy)"" = ag + O(ENT)V" + (E|X,[")""
< a, + O(EN")/" 4 (EN - E|X|")'" < oo,
if E|X|" < oo.
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REMARK. Since the class of admissible barriers is rather large, there does not
exist a general converse to (c). There are, however, several cases where more
precise results can be given. One example is Case I, (see Theorem 2.1¢). If
a(y) is assumed to be non-decreasing, then S, = X;* and thus E(X*)" < oo is
necessary. Finally, let a(y) = y*, y =20, 0 < a < 1, and let r be such that
ar > 1. By the usual arguments it follows that

c- NS, Zc- N+ X+, and
¢ - EN" < ES," <2771 . ¢« EN*™ 4 271 . EN . E(X*)"

Therefore, ES,” < oo if and only if E(X*)" < oo and E|X~|*" < oo, since a(y)
is non-decreasing and because of (a) and (b).

THEOREM 3.2. There exists a t, > 0 such that Ee'”N < oo, |t| < t,, if and only
if there exists a t; > 0 such that Ee'*” < oo, |t| < t,.

Proor. Define N, and N, as before, i.e. N, = min{n; S, > 0} and N, =
min{n; S, > a, 4+ on} = min{n; 3;*_,(X — 0) > a,}. Then N, < N < N,.. Since
N,and N, are stopping times of Case I-type, and since Ee'*™ < oo <= Eet ¥~ < oo,
the theorem follows from Theorem 2.2,

3.2. In the remaining part of this chapter Case III will be studied. Let X,
X,, -+ be i.i.d. random variables such that 0 < EX = 6 < oo, and define N =
N(¢) = min{n; S, > c - a(n)}, where ¢ > 0 is a constant and a(y), y € [0, c0), is
a positive continuous function such that a(y)/y — 0 as y — co. Furthermore,
assume that a(y), for sufficiently large values of y, is a non-decreasing, concave,
differentiable function that varies regularly at infinity with exponent a, 0 <
a < 1,1i.e.a(y) = y* - L(y), where L(y) varies slowly at infinity. It is sufficient
to assume that a(y) has these properties for large y, since N —,  +oco0 as¢ — oo.

Some examples of functions a(y) of the above kind are

a(y) =y* - logy, 0<a<l
and
a(y) = y* - arctany , 0<a<l1.
Any function a(y) that has a positive finite limit when y — oo is slowly varying
(see Feller [14] page 269).
Earlier work has mainly dealt with the case when L(y) = 1. (See e.g. Chow
[8] and Siegmund [31].) If « = 0 and L(y) = 1 Case I is obtained.
Let 2 = A(c) denote the solution of the equation ¢ - a(y) = dy. If ¢ is suffi-
ciently large, 4 is unique. If a(y) — 1 as y — co then

/02 = 1/a(2) — 1 ' as ¢— oo,

since ¢ — co implies that 2 — co. If @ = 0 and a(y) has a finite limit when
y — oo it is no restriction to assume that the limit is equal to 1, because a limit
other than 1 may be absorbed in the constant c.

The following theorem corresponds to Theorem 2.3 (a)—(c).
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THEOREM 3.3. Letr=1and 0 < a < 1. Then

@) NJA—, . 1l,as¢c— oo
(b) E|X-|" < o0 = E(NJA)" — 1, as¢c— oo
(¢) E|X7|" < oo = E(NJAy - 1,as¢c— oo foralls, 0 < s<r.

Proor of (a). For 0 < a < 1 a proof is found in Siegmund [30] Lemma 4,
page 1643. For a = 0 the same method gives that (a(N)/a(2)) - /N —, ;. 1, as
¢'— oo, from which (a) follows from Sreehari [35] Lemma 2.3, page 259, and
from the fact that N —,

Whenr = 1and 0 < « < 1 Siegmund [30] has proved that EN/2 — 1 as ¢ — co,
and there X, X,, - .- are not assumed to be identically distributed.

To prove (b), introduce the auxiliary stopping time N* of Siegmund [30] page
1643. Define

N* = N*(¢) = min{n; S, > 0a()n + 04(1 — a(2))}

. v X, — fa()
— min {n, Z““zlﬁ(l — O‘W > 2} )

co0, a8 € — 0.

where «(2) is a function which tends to @ as 2 — co. The first part of the fol-
lowing lemma shows that the choice a(2) = (4 - a’(4))/a(2) is permitted.

LemMMa 3.1. Let 0 < @ < 1. Define a(at) = (4 - a’(At))/a(2). Then
(@) a(dt)y > a-t*7!, as A — oco.
(b) If N* is as above with a(A) = (4 - a’(2))/a(R), then
N*\r
ﬂxr<an=E¢T>_u, as 21— oo .
where r > 1.

Proor oF (a). Let 0 < a < 1. With u(f) = a'(¢), U(t) = a(¢r) and s = a the
result is proved in the lemma on page 422 of Feller [4]. Now let « = 0. If
0< 1t <t, then

a(4t,) — a(an) = {& A a'(Ay) dv > A a(a) = a(dt)) = 0
a(2) “Ta(d) = a2 =

since a’(y) is non-increasing and nonnegative. But

a(t) —altt) o _q_g¢ as 21— oo
a(4)
because of the slow variation of a(y). Hence
a(at) —» 0 as A— oo .

With r = 1 (a) states that a(d) > aas 41— o0, 0 < a < 1, and thus N* is a
stopping time of the above kind.

Proor oF (b). Choose 4,s0 large that 0 < a(2) < 1if 2 > 4. If E(N*/2)y — 1
as A — oo then E(N*)" is finite if 2 is finite and, since E((X, — fa(2))/0(1 —
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a(4))) = 1, it follows from Theorem 2.1b that E|((X, — 6a(2))/0(1 — a(2)))~|" <
oo, which in turn is equivalent to E|X~|” < oo, and so the necessity is proved.

Now assume that £|X~|" < co. Choose ¢, such that 0 < ¢ < 1 — « and then
4, such that 2 > 2, implies that |¢(2) — a| < e. (When a = 0, 4;is chosen such
that 2 > 2, implies that 0 < (%) < ¢). Set 2, = max {4, 4,}. Define

N** = min{n; S, > 0(a 4 e)n + 20(1 — a + ¢€)}

. e X, —O(a +¢) }
=min{n; 37, r AT T 2 5 2
{ Ll 6(1 — a + ¢) >
and
Nyy = min{n; S, > 0(a — &)n + 20(1 — a — ¢)}
e X, —O(a—¢) }
=mindn; 37 v " ") % 2
. {"Z ol —a—e)
and let 4 > 4,. Then N,, < N* < **, and according to Theorem 2.3b it fol-
lows that

E(N**>r—><l_ﬂ>r as 41— co,
2 1l —a—c¢
and
E<N>ﬁ(l—$ﬁ) as 1— oo .
A l —a+c¢
Hence

A

(uy < liminf,__ E<E;—>T < limsup, ., E <E*_>T

<1—a+e>’
l —a+c¢ A l —a—c¢/

Since ¢ is arbitrary (b) follows.

Proor of THEOREM 3.3 (b). Letr > 1andassume that E|X~|" < co. If a(2) =
4. d'(4)/a(4), Lemma 3.1 b is true, if 2 — oo is replaced by ¢ — oo, since ¢ — oo
implies that 2 — oo.

Furthermore, fa(2)y + 26(1 — a(2))is a line support to ¢ - a(y) (= 0a(y)/a(2))
at the point (4, 40). Because of the concavity of a(y) it follows that N < N*.
Therefore limsup,_., E(N/2)" < limsup,_,, E(N*/2)" = 1, and from Theorem
3.3a and Fatou’s lemma it follows that lim inf,_, E(N/2)” > 1, which proves
the sufficiency. The necessity follows as in Theorem 2.3 b.

ProoF oF (¢). (c) follows from (a), (b) and Corollary 1, page 164, of Loéve
[23].

ReMARK. If @ = 0 and a(y) — 1 then 2/c/0 = a(2) — 1 as ¢ — oo, and thus
Theorem 3.3 is true with 2 replaced by ¢/f. For example, if a(y) = 2/x arctan y
this is the case.

Since S, — ¢ - a(N) is the excess over the boundary, (a) and (b) of the fol-
lowing theorem correspond to Theorem 2.4a and b.

THEOREM 3.4. Letr>1and 0 < a < 1. If E(X*)" < oo, then
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(a) [E(Sy —c-a(N))']/A—0asc— oo,

(b) [E(Sy — ¢ -a(N))]/3"— 0 as ¢ — oo,

(c) [E(N — ¢/8 - a(N))]/2"" — 0 as ¢ — co,

(d) limsup,_.. (EN — 2)/2"" < 0.

The proof is similar to the proof of Theorem 2.4.
Lemma 3.2, Letr = 1. If E(X*) < oo, then

(a) EX,/2—0, as ¢ — oo,
(b) EX,/2" — 0, as ¢ — oo.

Proor. Exactly as in the proof of Lemma 2.4 a it follows that lim,_, EX,"/
EN = 0. Since EN/2 — 1 as ¢ — oo, (a) follows, and then (b) is immediate.

Proor oF THEOREM 3.4 (a)—(c). 0 < [E(Sy — c-a(N))]/2 < EX,"[2— 0 as
¢ — oo by Lemma 3.2a. Thus (a) is proved. (b) is then immediate, and (c)
follows from (b) and Wald’s lemma.

ProorF oF (d). Set again
N* = min{n; S, > fa()n + 0(1 — a(2))} = mln{ r X, > 1},

where X’ = [X, — 0a(2)]/6(1 — a(2)). Choose ¢, (and 4,) such that ¢ > ¢, im-
plies 0 < a(2) = 2d’(2)/a(2) < 1. As in the proof of Lemma 2.4a it is found
that

Mo (XYY g, 4 . M2 - (ECXY) + 0)

) <2 :
st EN* 6 - (1 — a(Z)) EN*

0 < By
EN*

B

where the last inequality follows from the c, -inequalities. Since EN*/A —1 as

¢ — oo, it follows that 0 < limsup, _,,, E(X}.)"/4 < 2¢. Thus lim,_, E(X}.)"/2=0

Since 1 < S, = DM X, < 2+ X, it follows that

E(Sy. — A" - EX)
2 -2

0 as ¢ — oo.

Thus also lim,_,, (ESy. — 2)/A¥" = 0, and since EX,’ = 1 Wald’s lemma implies
that lim,_, (EN* — 2)/2Y" = 0. As before N < N* and hence lim sup,_, (EN —
2)]24" < 0, which proves (d).

REMARK. Although n,, as chosen in (d), depends on 2 it is easily seen that
the same n, may be chosen for all 4 > some 4,.
The asymptotic normality of N = N(c) will now be investigated.

THEOREM 3.5. Let0 < a < 1 and assume that 0 < EX = 6 < co and Var X =
' < co. Then

N—2
DCZ(WW—@):N(O’I)’ as ¢ — oo .

The case when a(y) = y%, 0 < @ < 1, has been studied by Siegmund [31],
where the corresponding result was proved differently.
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PROOF. (c - a(N) — NO)[oNt < (Sy — NO)[oN? < (c - a(N) — N6 + X,)/aNt.
With Lemmas 2.5 and 2.6 applied as in the proof of Theorem 2.5, it is found
that . “4(Z,) = N(0, 1)as ¢ — co, where Z, = (N§ — ¢ - a(N))/oZ* An expansion
of a(y) at the point 2 leads to

z, = N0 —ea® + (N = 2) - @@+ p(N = )

At
_ N0 — 20 — M0a(2) - (N—2) - a’A+pN—=2)_ N—2
= oAt I
where
Yy = 1 —[4- a'('zl‘i‘ p(N — Z))]/a(l) and 0< p=p(N,c)<1.
—«a

If it were known that Y, —, 1 as ¢ — oo, then, by Cramér’s theorem (see [9]
page 254), Z, and [(N — 2)/02%]/0(1 — a)would have the same limit distribution.
Thus, with the following lemma the proof of Theorem 3.5 is complete.

LeMMA 3.3. Let 0 < a < 1. If Y, is as above, then
Yy—.. 1, as ¢— oo .

Proor. It suffices to prove that [1a’(2 + o(N — 2))]/a(2) —, . a, as ¢ — co.
Set 4 = {w; N/A— 1 as ¢ — c0}. According to Theorem 3.3a P(4) = 1. Let
w € A and choose ¢ > 0. Then there is a ¢, such that ¢ > ¢, implies that
N — 2] < Z,and then (1 —¢) < 24+ o(N — 2) < (1 + ¢). Sincea'(y)is non-
increasing it follows that
a(A(1 + ¢)) = A-a(2(1 + ¢)) < Aa'(2 + p(N — %))
a(2) a(4)
< 2@ —9) _ 0 — )
a(2)

if ¢ > ¢, From Lemma 3.1a it then follows that

a(l + &)1 < liminf,__* ¥4+ p(N = 2)
a(4)
< limsup,_,, A-d(A+ p(N = 2) < a(l —¢e)* 1,
a(4)
Since ¢ was arbitrary lim,_. [1- (2 + p(N — 2))]/a(2) = « for that particular
o, but since € 4 was chosen arbitrarily and P(4) = 1 it follows that

A-d(A+ p(N—2) |
a(4)
Suppose that « = 0 and a(y) — 1 as y — co. Then 2/(c/6) — 1 as ¢ — oo and
N—2=N—clf +c/0d —2=N —c/60 + [A(1 — a(2))]/a(2). Thus, if

ﬁl(l _a(x))—>0 as ¢ — oo,
a2t)6 - a(2)

a, as ¢ — oo.

a.s.
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then

N —c/f e
52<W> — N0, 1) as ¢

by Cramér’s theorem and Theorem 3.5, and thus the following éorollary is
proved.

CoRroLLARY 3.5.1. If a =0 and a(y) > 1 as y — o0, if 0 < EX = § < oo,
Var X = ¢* < oo, and if y4(1 — a(y)) —> 0 as y — oo, then

oo (N —¢l0\ _ o
/<W> NO, 1, as ¢ .

In particular, if a(y) = 1 the corollary reduces to Theorem 2.5.
As a special case, let a(y) = 2/ arctan y'*, s = 0. Then @« = 0 and a(y) — 1
as y — oo and

P —a(y)) = y <1 — —i_arctan)ﬂ“)

= yt. larctany““—»O if s<?2
T
L2 if s=2
T

— 4 oo if s>2.

Thus
L (N — c/0> .
F(—— 7)) —= N, 1 if 2
<(a2c/03)* ( ) $<
=>N<—20 1) it s=2
Tag
= does not exist if s>2.

As in Section 2 the convergence in distribution does not imply that EN ~ 2
or Var N ~ ¢°2/6*(1 — a)® as ¢ — co. By Theorem 3.3c it follows, however,
that ENJ2 — 1 as ¢ — oo, and the next result gives upper bounds for EN — 2
as ¢ — oo, but it remains to find the complete solutions of these problems.

THEOREM 3.6. Let0 < a < 1 andsuppose that L(y) = 1. If 0 < EX =0 < o0
and E(X*)* < co, then

limsup,_., EN — 2 < C(a),
where C(a) is defined as E((X — 0a)*)?/20*(1 — a)? in the non-lattice case and as
E((X — 0a)*)?/20%(1 — a)* 4+ 1/20(1 — a) in the lattice case.

If also Var X < oo, the above inequality is given on page 1645 of Siegmund
[30]in the non-lattice case. If a(y) = 1 the theorem reduces to the upper bounds
of Corollaries 2.6.1 and 2.7.1. Furthermore, the theorem gives a sharper upper
bound than Theorem 3.4d does, when r > 2.
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Proor. Since L(y) = 1 it follows that a(4) = 4. a’(4)/a(d) = a. Hence

N* = min{n; S, > 6an + 26(1 — a)} = min {n; PN LN z} .
(1 — a)
From N < N* it follows that EN — 2 < EN* — 2, from which the conclusion
follows by Corollaries 2.6.1 and 2.7.1.

3.3. Let X, X,, --- be a sequence of i.i.d. random variables such that 0 <
EX = 0 < co. In the next theorem it is assumed that E|X|” < oo, where 1 <
r < 2, and in the last theorem it is assumed that the sequence X, X,, - - - belongs
to the domain of attraction of a stable law with exponent 8, 1 < g < 2.

THEOREM 3.7. Let0 < a < land 1 < r < 2. If E|X|" < oo, then
@) (N—=A)/A"—,, 0,asc— oo,

if E(X*)" < oo and if also L(y) = 1, then

(b) limsup,_. (EN — 2)/#*" < 0.

Note that, because of Theorem 3.5, (a) is not true when r = 2. If r =1, (a)
reduces to Theorem 3.3 a and (b) is contained in Theorem 3.4d. Furthermore,
(b) is a sharper result than Theorem 3.4d (if L(y) = 1).

For the proof of (a) the following lemma is used.

LeMMA 3.4. Let 1 < r < 2. If E|X7| < oo, then
X

y » 0, as ¢ — oo .
Zl/r a.s.

Proor. The proof that X, /NV" —_ 0, as ¢ — co is the same as in Lemma
2.8. Since N/2—, 1, as ¢ — oo, the result follows.

Proor oF THEOREM 3.7 (a). Obviously

c.a(N)—No _ Sy —No _ c-a(N)— N + X,
AT AT = QT :

As in the proof of Theorem 2.8a it follows that

— No
&N” as. 0, as ¢— oo,
and since N/A —, , 1, as ¢ — oo also
— Ni
£A’Tl/r——ﬁ—ni.s‘o, as ¢ — oo.

By Lemma 3.4 it follows that Z, —, 0, as ¢ — oo, where Z, = (N§ — ¢ -
a(N))/2V7. An expansion of a(y) as in the proof of Theorem 3.5 yields

- N=2
61 — a)

N ’

where Y,, is as before. According to Lemma 3.3 Y, —,, 1, as ¢ — oo, and
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thus (N — 2)/2" . 0(1 — a) -, 0, as ¢ —oo. Since 0 < (1 — a) =< 0 the
result follows.

PrOOF OF (b). With the same method as in the proof of Theorem 3.6 it follows
that
EN — 2

EN* — 1

lim sup, ., == =0

< limsup, .,
by Theorem 2.8b. Thus (b) is proved.

With arguments similar to those of Corollary 3.5.1 the following corollary is
proved.

CoroLLARY 3.7.1. Ifa =0anda(y) —>1asy— oo, if E|X|" < 0,1 = r <2,
and if y="7(1 — a(y)) — 0 as y — oo, then
N—clf

i as. 0, as ¢— oo .

If a(y) = 1 the corollary reduces to Theorem 2.8 a and if a(y) = 2/ - arctan y'”,
then

N—cf_, o it Lyl
cr s r
2 o1 1
e ——— if — — =1
—)a.s. T . 01” 5 "'— 7
—, .. does not exist if L + _1_ <1
S r

The last theorem of this section is the result corresponding to Theorem 2.9.

THEOREM 3.8. Let0 < a < 1. If all the assumptions of Theorem 2.9 are satisfied,
then

N -2
P<B—(i)/0(1——a-)_g —x)—»Gﬁ(x), as ¢ — oo,

where the function B(y) is defined as in Theorem 2.9.
The proof is similar to the proof of Theorem 3.5.
LeEMMA 3.5. If the assumptions of Theorem 3.8 are satisfied, then

(a) By/B(A)—,1,as¢c— oo
(b) Xy/B(A) —,0, as c— oo.

The proof is carried through in exactly the same way as the proof of Lemma
2.9 and is therefore omitted.

Proor oF THEOREM 3.8. As in the proof of Theorem 2.9 it is found that
P((Sy — NO)/B, < x) — G4(x) as ¢ — oo. From (c - a(N) — NO)[B(2) < (Sy —
N6)/B(3) < (c - a(N) — N0 + X,;)/B(3), Lemma 3.5a and band Cramér’s theorem,
it follows that P(Zy = —x) — G,(x)as ¢ — oo, where Z, = (N0 — c - a(N))/B(2) =
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(N — A/[B(A)/6(1 — a)]- Y,, and Y, is as before. Lemma 3.3 and Cramér’s
theorem imply that (N — 4)/[B(2)/0(1 — a)] and Z, have the same limit distri-
bution, i.e.

p < N — 2

Wg—x>—>Gﬁ(){) as ¢ — oo .

In the case of normal attraction, i.e. when B, = A4 . n"# the theorem states
that P(N — )/[A/0(1 — )] - 2% = —x) — G,(x) as ¢ — oo. If 8 = 2 this result
reduces to Theorem 3.5.

The following corollary is proved with arguments similar to those of Corol-
laries 3.5.1 and 3.7.1.

CoROLLARY 3.8.1. Suppose that « = 0 and a(y) — 1 as y — oo. If the sequence
X, X,, -+ belongs to

(a) the domain of attraction of a stable law with exponent 8, 1 < 8 < 2, and if
y(1 — a(y))/B(y) >0 asy — oo, then

P(.N—c/ag—x>—>Gﬂ(x), as ¢ — oo,
[B(c/0)]/6

(b) the domain of normal attraction of a stable law with exponent 8,1 < 8 < 2,
and if y(1 — a(y))/y"* — 0 as y — oo, then

P<_]1:L/0_g—x>—>Gﬁ(x), as ¢— oo .
(A/0)(c[0)"*

4. First passage times for some random processes. In this chapter some of
the previous results are generalized to separable, left continuous random processes
with independent, stationary increments. Let {X{(¢); t = 0} be such a process
and suppose that EX(r) = 16, 6 > 0. Suppose also that the process is continuous
from above, in the sense that X(¢ + 0) — X(r) £ O for all r > 0. This means
that X(7) has no positive jumps, or equivalently, if X(z,) = x, and X(1,) = x,,
where x; < x, and #, < t,, then for any x e (x,, x,) there exists, with probability
1, a te(t, ;) such that X(rf) = x. (See Borovkov [4]). Set X(0) =0, &, =
{¢, Q) and let .7, = o{X(s); s < t}, te (0, o). A finite, nonnegative random
variable T, defined on Q, is called a stopping time if the event {T < 1} € &, for
all 1€ [0, c0).

4.1. In this section the stopping time
T = T(c) = inf{s; X(¢) > c},

where ¢ = 0, is considered. Since X(r) is continuous from the left and from
above it follows that P(X(T) = ¢) = 1. Define T, = inf{#; X(f) > ¢, t = lisan
integer} and set X, = X(1) and X, = X(v) — X(v — 1), v = 2,3, -... Then X,
X,, -+ - arei.i.d. random variables such that 0 < EX = 6 < oo and hence T, =
min{n; >17_, X, > c}is a stopping time of the Case I-type considered in Section 2.
Obviously 0 < 7 < T, and thus Theorems 2.1 and 2.2 imply
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THEOREM 4.1. (a) Letr > 1. Then E[X(1)7|" < o0 = ET" < 0.
(b) There exists an s, > 0 such that Ee’" < co, |s| < s, if there existsan s, > 0
such that Ees* V™ < oo, |5| < ;.

THEOREM 4.2. (a) T/c—, 07, as ¢ — oo.
(b) Letr = 1. Then E|X(1)~|" < oo = E(T[c)" — 0", as ¢ — oo.

PrOOF OF (a). Since P(.z,,{7(c) > t}) = P(T(c;) > 1) = P(sup,g,, X(s5) <
¢,) — 1 as ¢, — oo, it follows that T(c) —, , + oo as ¢ — oco. An investigation
of the proof of Lemma 2.7, i.e. Richter [28] Theorem 1, shows that it is ap-
plicable and thus, from X(r)/r —, . 6 as ¢ — oo (see Doob [11] page 364), it
follows that X(T)/T —, . 6 as ¢ — oo. Since P(X(T) = c¢) = 1 the result follows.

Proor oF (b). (a)and Fatou’s lemma imply-that lim inf, ., E(T/c)” = 6. By
Theorem 2.3b limsup,_., E(T/c)” < limsup,_,., E(T,/c)" = 0-7, where T, is as
above. Thus lim_,, E(T/c)" = 6.

Suppose that Var X(r) = ¢’ < oo and set ¢,(s) = Ee**”. Since X(¢) has no
positive jumps, the canonical representation of ¢,(s) = Ee**™ is ¢,(s) = e’
where

$(s) = log py(s) = ifs — Ds* + §0. (e — 1 — isu)ﬂ;uiz”_) :
where D = 0, G(—o0) = 0, and G(x) is a distribution function except for a mul-
tiplicative constant. Furthermore ¢,(s) = (¢,(s)), and thus log¢,(s) = - ¢(s).
(See Doob [11] page 417 ff, and Gnedenko and Kolmogorov [15] pages 84-85.)

Setz = x + iy. Since {°, (¢"** — 1 — izu) dG(u)/u’ is analytic when Im (z) < O,
it follows from Esseen [12] Theorem 2, page 67, that the canonical representation
is valid in the domain Im (z) < 0. In particular, it follows that

EetX®) = et 1=0,

where

() = 02+ D2+ § (e — 1 — au) 9,

u
THEOREM 4.3. Let 0 < EX(t) = 0t < oo and Var X(t) = ¢°t < oo. Then
(@) Ee T = e=¢7'N 2 > 0, where {7)(2) is the inverse function of {(R).
(b) ET = ¢/0 and Var T = o’c/6®.

ProOF OF (a). Define Z, = e ¥ [Eet " = et¥®-t¢h 2> 0. Then{Z,; = 0}
is a martingale and EZ, = 1, i.e. Ee*®~%% = 1. Define T, = min{T, n}.
According to Doob [11] Theorem 11.8, page 376, it follows that EZ, = 1, i.e.

1 = Ee?X(Ty) =Ty LD
— E(ekx'(T)—TC(X) . [{Té n}) + E(exX(m—nC(D . [{T > n}) .

The derivatives of {(4) show that {(4) is a positive, increasing, convex function.
Furthermore, X(n) < ¢ when 7' > n. Thus

E(exxm)—nc(l) . ]{T > n}) —0 as n-— oo
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and hence Ee?*™-7¢b — 1, From P(X(T) = ¢) = 1 it follows that Ee-7¢® =
e~ and from the convexity of {(4) it follows that the inverse function £-(2)
exists. Hence

Ee=3T — e=ct™lh | A=0.

A proof of (b) is obtained by taking derivatives of the Laplace-transform. (b)
is also proved in e.g. Borovkov [4] page 334, and follows also from results of
Hall [17] pages 61 and 63. If X{(f) is the Wiener process, (b) follows from Shepp
[29] Theorem 1, page 1912.

THEOREM 4.4. Let 0 < EX(f) = 0t < oo and Var X(t) = 6% < oo. Then

T(c) — ¢/

g( e >=>N(O, 1), as ¢ — oo .

Proor. T(c) = T((n — 1)/n - ¢) + inf{t; X() — X(T((n — 1)/n - ¢)) > ¢/n|

lX<T<n_ 1c>>=”‘ lc} - T<”— 1c>+ T,.

n n n
Thus T(¢) =T, + T, + --- + T,, where T}, T,, - --, T, are i.i.d. random vari-
ables distributed as T(c/n). Since this partition is possible for n = 1,2, - .-, it
follows that T(c) has an infinitely divisible distribution. (See also Borovkov [4]
page 333.) Hence Ee“"® = (Ee®*"M)*, —co < 5 < 0.

Also, E exp{is(T(c) — c/0)} = (E exp{is(T(1) — 8-")})*. Since E(T(1) —6-) =0
and E(T(1) — 07" = ¢*/6%, it follows that

Eexp{mW} - (Eexp{bzo_%;ew(nl) — %)})

(1))

— e as ¢— o0, —00 < 5§ < 0.

The result follows from the continuity theorem.

REMARK. If X(¢) has a density f,,(y), t = 0, then, according to a result of
e.g. Borovkov [4],

fT(c)(t) = % : fX(t)(c) s

where [, () is the density of T(c). If, for example, X(¢) is the separable Wiener
process with EX(f) = 6t > 0 and Var X(r) = o%, then

' 1 (¢ — 10y
(2ra®r)t exp( 20% )

_ ¢
fT(c)(t) - T
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Set Ty(c) = (T(c) — c/0)/(o*|6%). Tt follows that

1 1 e 1
[riolt) = 2x) (0 + o)) exP(_? T?W>

_,(2_711)%_.(”/2 as ¢ — oo,
and the result follows from Scheffé’s theorem. (See e.g. Billingsley [2] page 224).
4.2. In the second part of this chapter the stopping time
T = T(c) = inf{t; X(r) > c - a(1)}

is considered, where ¢ > 0, and a(y), y€ [0, ), isa positive, continuous func-
tion such that a(y)/y — 0 as y — co. Since X(¢) is continuous from the left and
from above, it follows that

P(X(T) =c-a(T)) = 1.

Define
T, = inf{s; X(t) > ¢ - a(f), t = 1 is an integer}
=min{n; >7_, X, > c - a(n)},
where X}, X,, ... are as above. Then 0 < 7 < T,, and since T, is a stopping

time of the Case II-type, Theorems 3.1 and 3.2 imply

THEOREM 4.5. (a) Letr = 1. Then E|X(1)7|" < o0 = ET" < co.

(b) There exists an s, > O such that Ee'™ < oo, |s| < s,, if there existsan s, > 0
such that Ee**™M™ < oo, |s| < 5.

Now assume that a(y) also satisfies the regularity conditions set up when
Case I1I was studied. Again, let 2 = A(c) denote the solution of the equation
c-a(y) = 0y.

THEOREM 4.6. (@) T/ —,, 1, asc— co.

(b) Letr=1. Then E|X(1)~|" < oo = E(T/2) — 1 as ¢ — oo.

PROOF OF (2). As in the proof of Theorem 4.2a it follows that

X1 g,
T a.s.

as ¢ —oo.
Since P(X(T) = ¢ - a(T)) = 1, the conclusion follows as in Theorem 3.3a when
a = 0, and as in Siegmund [30] Lemma 4, when 0 < a < 1.

Proor oF (b). (a) and Fatou’s lemma imply that

lim inf E<7T> > 1.

c—0o0 =

By Theorem 3.3b

lim sup,_, E <_§_>T < limsup,, E <_>r =1.
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Thus

lim,__ E (1> —1.
2

THeoreM 4.7. Let0<a < 1. If 0 < EX(f) = 10 < oo and Var X(1) = o% < oo,
then

g(ﬁt_co):mo,l), as ¢ — oo

The proof is similar to the proof of Theorem 3.5.
LemMa 4.1. Let 0 < a < 1, define a(At) = 2 - a'(At)/a(2) and

y, = L= [2- &G+ o(T = D)fa(h)]
)

where 0 < p = o(T,c) < 1. Then

(a) a(dt) > at*7!, as ¢ — oo

(b) Y-, 1l,a5¢—

(¢) L((X(T) — TO)]oT?) = N(O, 1), as ¢ — oo.

Proor. The proofs of (a) and (b) are the same as the proofs in Section 3.
Since A{((X(f) — 10)/ot*) = N(O, 1) as t — oo, (c) may be proved exactly as
Lemma 2.5, i.e. Rényi [27] Theorem 1, was proved. The details are therefore
omitted.

Proor oF THE THEOREM. According to Lemma 4.1¢

g(X(T)—T"):N(o,l) as ¢ — oo .
oT?
Since P(X(T) = ¢ - a(T)) = 1 it follows that
LA(Z,) = N0, 1) as ¢— oo,
where
ZT:Tﬁ—c-a(T): T —2 Y, .
oAt oAtjo(1 — a)

Now the conclusion follows from Lemma 4.1b and Cramér’s theorem ([9] page
254).

ReMARK. If a(y) = 1, Theorem 4.7 reduces to Theorem 4.4 and thus another
proof of this theorem has been obtained.
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Carl-Gustav Esseen, who introduced me to the present problems, for his most
valuable advice and support and for his helpful criticism.

Note added in proof. I want to thank Dr. Torbjorn Thedéen for some valuable
remarks, a referee for pointing out that Lemma 2.3.b is a consequence of Burk-
holder and Gundy, Acta Math. 124 (1970), Theorem 5.3 part (iv) and also of
Burkholder, Ann. Probability 1 (1973), Theorem 21.1, and Professor J. L. Teugels
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informing me about the existence of so called conjugate slowly varying

functions, with the aid of which it is possible to express the asymptotic behavior
of the solution A(c), introduced in Section 3.2.
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