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TAILFREE AND NEUTRAL RANDOM PROBABILITIES
AND THEIR POSTERIOR DISTRIBUTIONS!

By KJELL Doksum
University of California, Berkeley

The random distribution function F and its law is said to be neutral to
the right if F(11), [F(t2) — F(t))/[1 — F(t)], - - -, [F(t) — Fte_1))/[1 — F(te_)]
are independent whenever #; < --- < t;. The posterior distribution of a
random distribution function neutral to the right is shown to be neutral to
the right. Characterizations of these random distribution functions and
connections between neutrality to the right and general concepts of neu-
trality and tailfreeness (tailfreedom) are given.

1. Introduction and summary. Recently Ferguson (1973) introduced a class
of random probabilities called Dirichlet processes and showed that they can be
used to solve nonparametric decision theoretic problems. Let the probability
distribution .7 of a Dirichlet process P be called a Dirichlet distribution. The
main properties of P and .7’ obtained by Ferguson are:

(a) Z’is nonparametric in the sense that it has a “large” or “nonparametric”
class of probabilities as its suppport in the topology of weak convergence,

(b) if Pis viewed as a parameter with prior distribution 7 then the posterior
distribution of P given a sample also has a Dirichlet distribution, and

(c) Pis with probability one a discrete probability.

Ferguson’s results apply to random probabilities on abstract measurable spaces.
In Section 3, it is shown that similar results can be obtained for more general
processes in the real case. Let F(f) = P((— oo, t]) denote the random distribu-
tion function corresponding to P, then F, P and & are said to be neutral to the
right if the normalized increments

(LY)  F(n), [F(t) — FW)I[1 — F(t)], - -, [F(t) — Ft,_)I[1 — F(1,-1)]

are independent for all #, < ... < t,. Note that F(t)) is the normalized incre-
ment from —oo to ¢, and that (0/0) is defined here and throughout to be one.
It is shown that:

(@) random probabilities neutral to the right can be chosen to be “non-
parametric” in the sense of Ferguson (Remark 3.3),

(b’) the posterior distribution of a random probability neutral to the right is
neutral to the right (Theorem 4.2), and
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(c’) if the “non-random part” of F is removed, it is with probability one a
discrete distribution function (Corollary 3.2). It is further shown (Theorem 3.1)
that processes neutral to the right can be defined in terms of independent incre-
ment processes as follows: F is neutral to the right if and only if it can be writ-
ten in the form F(r) = 1 — exp[— Y(r)], where Y(r) is an a.s. non-decreasing,
independent increment process with lim,,__, Y(f) = O a.s., lim,_,, Y(f) = oo a.s.
and Y(t*) = Y(r) a.s. The Dirichlet process corresponds to one of these inde-
pendent increment processes Y(r). Section 4 contains formulas and examples
which demonstrate how the posterior distribution of a process neutral to the
right can be obtained.

The concept of neutrality can also be defined for random probabilities on
abstract measurable spaces, which is done in Section 2. It turns out that the
concept of a neutral random probability is an extension to a process of Connor
and Mosimann’s (1969) concept of neutrality for k-dimensional random vectors
as Ferguson’s Dirichlet process is an extension of the k-dimensional Dirichlet
distribution to a process. Connor and Mosimann’s concept of neutrality can be
viewed as a special case of Freedman’s (1963) concept of “tailfree.” Fabius’
(1964) tailfree or F-neutral processes are also defined in Section 2 and some
recent ([7], [11]) results concerning Dirichlet, neutral and tailfree processes are
stated.

Another class of random probabilities that contain the Dirichlet process has
been defined by Antoniak (1969). Generalizations and characterizations of the
Dirichlet process have been obtained by Blackwell (1973) and Blackwell and
MacQueen (1973).

2. Tailfree and neutral processes. Let .2~ be a set with a ¢-field % of sub-
sets. A finitely additive random probability on the measurable space (-2, %) isa
stochastic process {P(4): 4 € .27’} on some probability space (I, & ) such that

(i) P(A) is a random variable with values in [0, 1] for each 4 e &
(iiy P(Z) =1a.s.
(iii) P is finitely additive in distribution, i.e.,

(P(U: 40)s 5 P(Us An)) = o (20 P(Ar)s -5 D P(Any))

for every finite class {4, } of pairwise disjoint sets from %/, where = _ denotes
equality in law. ‘

As shown by Ferguson (1973), it follows from Kolmogorov’s Extension Theo-
rem that if a system of finite dimensional distributions of P(4,,), - - -, P(A4,, )
are given for each finite class 4, ,, ---, 4, , of pairwise disjoint sets from .=/
such that (i), (ii) and (iii) holds, then there exists a process P with these finite
dimensional distributions. The distribution of P will be denoted by =’ and is a
probability on ([0, 1], 6(<%Z*)), where o(<Z-*) denotes the o-field generated
by the field <& of Borel cylinder sets in [0, 1]*.

P is said to be a random probability if it is also g-additive in distribution, i.e.,
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if ~#°(P(A,)) tends to the law degenerate at zero as k — oo for each decreasing
sequence {4} of sets from % with lim,_, 4, = @. Since P(4,) = P(4,)) = - --
a.s., it follows that this is equivalent to having lim,_,, P(4,) = 0 a.s. Note that
s g-additive whether or not P is s-additive in distribution. The above defini-
tions can easily be shown to be equivalent to those of Ferguson (1973), however,
the terminology is different in that here random probabilities are necessarily
g-additive in distribution unless they are called finitely additive.

Some connections between finitely additive random probabilities and their
expectations are given in

LeMMA 2.1. Let 8 be the set function on &7 defined by B(A) = E(P(A)), then

(a) B a finitely additive probability

(b) for Ae o7, P(A) = 0 a.s. if and only if B(A) = O

(c) for A, e 7, L (P(A,)) converges to the law degenerate at 0 as k — oo if
and only if B(A,) — 0 as k — oo, in particular, P is o-additive in distribution if and
only if B is o-additive.

Proor. (a) and (b) are clear. (c) follows if one recalls that a sequence of
uniformly integrable random variables converges to an integrable random vari-
able in probability if and only if it converges in the mean to this variable.

We now turn to concepts and terminology needed in the definitions of F-
neutral (tailfree) and neutral random probabilities or processes. The definition
of F-neutral is essentially a definition of Fabius’ term tailfree. Following a sug-
gestion of Fabius (personal communication), the term tailfree is not used here
since the definition does not in general depend on the tails of the real line.
However, it does include Freedman’s (1963) tailfree random probabilities in the
discrete case (see Remark 2.2).

The processes or random probabilities are defined in terms of independence
properties of P(A4,), ---, P(4,) for measurable partitions 4, ..., 4,. These
independence properties are desirable because they lead to processes whose
probability distributions are nonparametric in the sense of Ferguson (1973) and
one would expect them to have more or less tractable posterior distributions
(Fabius (1964)). It should be noted that the type of independence properties
considered are not necessarily the only ones that will lead to these desirable
properties.

Let {J],.: m = 0, 1, ...} denote a sequence of nested, measurable partitions
with [, = {#7}. Let {4,,,, ---, A, , } denote [,. Since the partitions are
nested, then for s < m, there is one set in [], that contains A, ,; this set will be
denoted by 4,,,. Note that 4,,,, = 22 For two measurable sets 4 and B,
P(B| A) equals P(An B)/P(A) on the subset of I' where P(4)#> 0 and, by con-
vention, equals one elsewhere. Thus P(B| A) is the conditional random prob-
ability of B given A4. It will sometimes be useful to regard the partition
{Ap1> -5 Am,} DOt just as a collection of sets, but as a collection of sets with
the order indicated, that is, 4, , precedes 4, ,, which precedes A4, , etc. We
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use the term ordered partition in this case. Finally, 4° denotes the complement
of the set A.

DEFINITION 2.1. P (and .2°) is F-neutral with respect to the sequence {[],,} of
nested, measurable partitions if there exist nonnegative random variables Z, ,
i=1,..-,k,, m=1,2,...such that for each m > 1, the families of random
variables {Z,,: i = 1,---, k},- -+, {Zps1s: i = 1,- -+, k,,,} are independent and

(2'1) (P(Am,l)’ Tt P(Am,km)) = & (H?:l Zs,l(l)’ R H:n=1 Zs,l(km)) .

DEFINITION 2.2. P (and &) is neutral with respect to the sequence {[],} of
nested, measurable, ordered partitions if for each m > 1 there exist nonnegative
independent random variables V,, ;, - -+, V. with V,, , =1 and

(22) (KA., P(Ano)s - o5 P(An i)
= (V'm,l’ Vm,2(1 - Vm,l)’ Tt Vm,km H];"é'l_l (1 - Vm,:‘)) .

Note that F-neutrality refers to independence properties between partitions
and essentially means that the families

(2.3) {P(A,;| Ay i=1,-- . k}, s AP(Apiryi| Ampy) 1 1 = | P

are independent; that is, when the sets in one partition, say [],, are divided into
new sets for the next partition [[,,,, the relative random probabilities assigned to
these new sets are independent of the corresponding relative random probabilities
assigned to the sets in other partitions. If P is such that the families (2.3) are
independent, then P is F-neutral with respect to {]],} since we can define

(2'4) Z +1,0 — P(Am+l,i I Am,l(i)) .

m

The term neutral refers to independence properties within partitions and
essentially means that for each m > 1, the random variables

(2.5) P(A,, ), P(A, 2] A% 1), P(Aps| (Api U Apo))s <oy P(Am,kmlAm,km) =1

are independent. Thus as one moves to the right in an ordered partition, the
relative random probability assigned to the next set is independent of the cor-
responding relative random probabilities assigned to the other sets in the parti-
tion. If Pis such that the random variables (2.5) are independent then P is
neutral since we can define

(2.6) Vi = P(Api| Api U -+ U Ay, ).

The random probabilities that Kraft and van Eeden (1964) and Kraft (1964)
call processes obtained by “Z-interpolation” or “independent interpolation” are
F-neutral with respect to a tree of partitions made up of intervals. The processes
considered by Dubins and Freedman (1966) are F-neutral with respect to a tree
of partitions when their “base probability” assigns probability one to a vertical
line in the unit square. Furthermore, the processes considered by Metivier
(1971), which generalize the Dubins-Freedman processes, are F-neutral when
the “X,” of Metivier’s paper are degenerate.
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Freedman’s (1963) “discrete tailfree” random probabilities are neutral when
“N” in that paper is zero (see Remark 2.2). The word neutral was introduced
by Connor and Mosimann (1969) who defined the concept for random vectors.
It is possible to construct many interesting classes of neutral processes. One of
these classes is the class of processes neutral to the right considered in Sections
3 and 4. Another class is given in Example 3.2.

Let a be a finite, nonnull, finitely additive measure on (.27, .%7"). The Dirichlet
process with parameter « is a finitely additive random probability P with the prop-
erty that for every measurable partition {B,, - - -, B} of =27, (P(B,), - - -, P(B,))
has a Dirichlet distribution with parameter (a(8,), - - -, a(B,)). When a(B)) = 0,
the interpretation is that P(B;) = Oa.s. The Dirichlet process is F-neutral with
respect to every sequence of nested, measurable partitions. To see this, note
that for this process, (2.1) holds when, for each r, Z, ., - - -, Z,, ., are inde-
pendent beta random variables with parameters (a(A4, ;,,), (") —a(A4; 1)) *»
((Ap1m)s A(Ap_1,1r)) — @(Ay 4(,y))- Similarly, the Dirichlet process is neutral
with respect to every sequence of nested, measurable, ordered partitions, since
if Pis a Dirichlet process, then (2.2) holds when, for each m, the V,, ; are inde-
pendent beta random variables with parameters (a(A,.), 2 zi01 @(A4n,5)),
i=1, ...k,

It turns out that the Dirichlet process is essentially the only random probability
that is independent of the defining partitions in the sense of having the desired
independence properties for all sequences of partitions. Let C, denote the class
of all random probabilities P such that either

(i) P is degenerate at a given probability distribution P,,
(ii) P concentrates on a random point, or
(iii) P concentrates on two nonrandom points.

THEOREM 2.1. Suppose P is not one of the random probabilities in C,.

(a) If Pis F-neutral with respect to all sequences of nested, measurable partitions,
then P is a Dirichlet process.

(b) If P is neutral with respect to all sequences of nested, measurable, ordered
partitions, then P is a Dirichlet process.

This result follows immediately from Theorem 2 of Fabius (1973). It was
obtained simultaneously and independently in [7] using the results and conditions
of Darroch and Ratchiff (1971). These conditions are stronger than the ones
above. If we combine the (a)-part of the result with Theorem 2.1 of Fabius
(1964), we get an interesting corollary:

CoROLLARY 2.1. The Dirichlet process is the only process not in C, such that for
each A e o7, the posterior distribution of P(A) given a sample X,, --., X, from P,
depends only on the number N, of X’s that fall in A (and not on where they fall within
or outside of A).

The property that the posterior distribution of P(A4) depends only on N, for
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the Dirichlet process is what makes the posterior distribution of this process so
easy to handle. Otherwise, it is not necessarily a desirable property since the
posterior distribution is rather insensitive to the values of the sample. For
instance, if .27 is the real line and A4 is an interval [a, 5], one may want the
posterior distribution to give more weight to [a, 6] if x falls in the middle of the
set than when it falls on the boundary. Thus, in addition to the Dirichlet process,
it is useful to consider processes that do not have the property of Corollary 2.1.

REMARK 2.1. A sequence {[],} of nested, measurable (ordered) partitions is
said to be a tree of (ordered) partitions if the collection of all sets in the par-
titions generate .. Trees of partitions exist if and only if .2 is separable
(countably generated). Fabius’ (1964) definition was in terms of trees of parti-
tions. The definitions and results of this section may be restricted to such
sequences of (ordered) partitions when .o/ is separable. In this case, F-neutral
processes can be constructed from Z’s satisfying the independence properties of
Definition 2.1 by using (2.1) to define P(B) for B in Jj_, [[. and setting
P(B) = inf {37% P(A4,)} for other Be .o/, where the infimum is over 4,, -- -, 4,

in Uz, [].. satisfying |J¥ 4, D B.

REMARK 2.2. There are sequences of partitions for which the concept of F-
neutrality coincides with neutrality. Let B, B,, --- be a measurable partition.
Define {{[n: App > Apmar} Oy Ay = Bii=1, -, my A, 0 = (Ul By
Then it is easy to check that P is F-neutral with respect to the sequence of parti-
tions {]],.} if and only if P is neutral with respect to the sequence of ordered
partitions {[],}. If 22 is the reals, or an interval, with the Borel o-field, then
the {]],.} above can not be chosen to be a tree of partitions. However, suppose
&2 is the positive integers and % the class of all subsets. Then if B, = {i},
{I1.} is a tree of partitions, moreover, if P is F-neutral (neutral) with respect to
{I1 ..}, then it is tailfree in the sense of Freedman (1963).

REMARK 2.3. It seems that the camcept of neutrality is more useful than the
concept of F-neutrality in the sense that even though it is not possible to find pro-
cesses (other than the Dirichlet process or processes in C,) neutral with respect
to all sequences of nested, measurable, ordered partitions, it is possible to find
processes neutral with respect to every member of large classes of sequences of
nested, ordered partijtions. See for instance Remark 3.1(a) and Example 3.2.
It is apparently not possible to do the same with the concept of F-neutrality for
interesting classes of {]],} in the real case.

3. Tailfree and neutral processes in the real case. If one views the definitions
of F-neutral and neutral as attempts to define general classes of finitely additive
random probabilities that have certain independence properties with respect to
all trees of partitions, then these attempts fail since in both cases, only the
Dirichlet process have these properties. However, it turns out that in the real
case, where (27, %) is the real line R with the Borel sets <7, it is possible to
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define a wide class of “neutral” random probabilities which contains the Dirichlet
process. Moreover, for the processes in the class, it is possible to compute the
posterior distribution given a sample.

We will make use of the order properties of the real line, thus it is natural
to introduce the random distribution function F corresponding to the random
probability P. It is defined by F(rf) = P((— oo, t]), and it follows that F is a
stochastic process with a separable version (a process with the same probability
distribution as F) which satisfies

(I) Fis a.s. non-decreasing, i.e., &(F: F is non-decreasing) = 1,
n lim,,_, F(t) = 0 a.s., lim,_,, F(r) = 1 a.s., and
(II) lim,_,+ F(s) = F(¢) a.s. for each ¢ R.

F is continuous in probability ( from the right) if, for all ¢, whenever s— 1 (s — t*),
F(s) converges in probability to F(f). If F is separable, then it is said to be con-
tinuous a.s. (from the right) if

{F: F(1) # lim,_, F(s)}({F: F(t) # lim,_+ F(s)})
is a &”null set for each ¢, and it is said to have a.s. continuous sample paths if
FAF: F is continuous) = 1. Let B(f) = ((— oo, t]) = E(F(1)), where S(A),
A€ <Z, is as defined in Section 2, then S(¢) is a distribution function. From
Lemma 2.1 and some standard arguments, we have:

PROPOSITION 3.1. F is continuous in probability from the right. It is continuons
in probability if and only if B is continuous. There exists a separable version of F
such that AF: F is a distribution function) = 1; moreover, F is continuous a.s. if
and only if B is continuous.

Proor. In view of Lemma 2.1, the only part that requires some arguments is
FAF: Fis a distribution function) = 1. Since F is a.s. non-decreasing, almost
every sample path of F has only jump discontinuities. Since F is continuous in
probability from the right, the result follows (e.g. Breiman (1968 page 299).

If P is the Dirichlet process with parameter «, then B(f) = a(f)/a(R), and
Ferguson (1973) has shown that there is a version of F such that S%F: Fis a
discrete distribution function) = 1 whether or not §(r) is continuous.

We have shown that for each random probability P, there is a separable
version of the random distribution function F corresponding to P such that
SA(F: F is a distribution function) ='1. We now show that we can also go the
other way.

PROPOSITION 3.2. Suppose that F is a separable stochastic process satisfying (I),
(I1) and (111); then there is a version of F such that:

(@) The random set function P, defined on intervals of the form (a, b], a < b, by
Py((a, b]) = F(b) — F(a) can be extended to a random probability P, on (R, 7).

(b) P, can be chosen so that if </ denotes the probability distribution of P,
G P: Pisa probability on (R, &£)} = 1.
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(c) If Fis a version of the random distribution function corresponding to P, then
G = P

Proor. Using Proposition 3.1, we choose a separable version of F such that
almost all the sample paths are distribution functions. For Ae &Z, define
Py(A) = inf {*_ [F(b;) — F(a;)]}, where the infimum is over all classes
{(a;, b;), a; < b;,i =1, -+, k} of intervals with rational endpoints satisfying

. (a;, b] > A. Py(A) depends only on the values of F at the rationals, thus
P,(A) is measurable. For almost every F, P, is a probability, thus (a) and (b)
follow. (c) is a consequence of P((a, b]) = F(b) — F(a) a.s. for all a < b.

Because of this result, we can call every separable stochastic process F satis-
fying (I), (II) and (III) a random distribution function since it is the random
distribution function corresponding to some random probability. Combining
Theorem 2.1 (a) and the proof of Proposition 3.2, we have

COROLLARY 3.1. If P is F-neutral with respect to every tree of partitions made
up of intervals of the form (a, b], a < b, with endpoints in a dense subset of R, and
if Pisnotin C,, then P is a Dirichlet process.

We now introduce the new processes.

DEFINITION 3.1. The random distribution function F (and the corresponding
P and &) is said to be neutral to the right if for each k > 1and 1, < --- < 1,
there exists nonnegative independent random variables V,, - .., ¥, such that

(B.1)  (F(n), F(tg), - -+, F(1h))

=, (Vpl = (A =V)A =V, -, 1 =TI, (1 = V).
The equations
3.2) Fir)y=1—-1I:"., (1 =V, i=1, ...,k
yield
(3.3) F(t) — F(t,o) =V, II:iss( = V), and

[F(t;) — Ft,_))[1 — F(t._)1 =V, i=1,.-,kity= —oc0.
Thus “F is neutral to the right” essentially means that the normalized increments

(3.4)  F(t), [F(t;) — F()[1 — F(t)), - -+, [F(t,) — F(t,)]/[1 — F(1,-)]
are independent for all 1, < ... < t,. Definition 3.1 is preferred because of the
possibility of dividing by zeros in (3.4).

Remark 2.2 and (3.3) result in

REMARK 3.1. The following three conditions are equivalent to F being neutral
to the right.

(a) P is neutral with respect to every sequence of nested ordered partitions
of the form {Hm: Amyl’ Tt Am,km} with Am,i = (tm,m tm,i+l]9 i=1, .- k,,,;
—0 =ty < o <y =oosm=1,2,.-..
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(b) Foralls, < --- < 1, there exists independent random variables V', - .., V,
such that
(F(t), F(t;) — F(t), -+ -5 F(t) — F(,))
=, WVl = V), - Vi II5s (= 7))
(c) P is F-neutral with respect to all nested sequences of partitions {]T,,:

Am,l’ R} Am,m+1} with Am,i - (tz’ t7.+1]’ i = 1’ s, M Am,m+1 - (U’:nzl Am,i)o’ for
some —oco = < t, < -

The class of processes defined below contains those defined by Freedman
[(1964), Definition 2] in the discrete case.

DerINITION 3.2. A random distribution function F is railfree with respect to
the tail (s, o0) if for all s = 1, < ... < 1, there exists nonnegative independent
random variables V', - .-, V, independent of {F(r): t+ < s} such that

(3.5)  (F(t), - -+, F(1,))
=, (F() +[1 = FOII — [T 1 = Vplii=1,--, k).
REMARK 3.2. It is easy to check that

(a) F is neutral to the right if and only if F is tailfree with respect to (s, co)
for all 5 in R.
(b) If Fis tailfree with respect to (s, o), then there is a version of F such

that for all 1, < ¢, < .-+ with ¢, = s for some r, (F(,), -- -, F(t,,,)) and
<F(tr+k+1) '_ F(tr+k)‘ , F(t'r+k+2) - F<[r+k+1) , - )
1 - F(tr+k) 1 - F(tr+k)

are independent for each integer k > 0.

The random distribution function corresponding to the Dirichlet process
with parameter a will be called the Dirichlet random distribution function with
parameter a(f) = a((—oo, t]). We now show that it is not the only random
distribution function that is neutral to the right, in fact, random distribution
functions neutral to the right can be constructed from certain independent in-
crement processes Y(z). We allow these processes Y(r) to equal co with positive
probability. This will not lead to difficulties as long as we use the convention

o0 — OO0 = ©O0.

THEOREM 3.1. F(t) is a separable random distribution function neutral to the right
if and only if it has the same probability distribution as
(3.6) 1 —exp[—Y(1)]

for some separable, a.s. non-decreasing, right continuous a.s., independent increment
process with lim,__, Y(f) = 0 a.s. and lim,_,_, Y(t) = oo a.s.

Proor. Suppose that Y(r) is as described in the result, then F(s) =1 —

exp[ — Y(7)] satisfies Definition 3.1 with ¥V, =1 — exp{—[Y(z,) — Y(¢,_)]}, i =
1, ..., k. Conversely, if F is neutral to the right, then Y(r) = —log[1 — F(1)]
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has the stated properties since if V), --., V, are as in Definition 3.1, then
(Y(1) — Y(t5), -+, Y(1,) — Y(1,_y)) =, (=log (1 — V), - -+, —log (1 — V})).

ExampLE 3.1. We show that a process Y(7) satisfying the conditions of Theo-
rem 3.1 can be constructed from each nonnegative, infinitely divisible random
variable Y and any distribution function §,. Define y(r) = —log[1 — B,(r)]/log 2
(we allow y(f) = oo from some point on). Let ¢,(v) = E(exp(ivY)) denote the
characteristic function of Y. Now let Y(r) be the separable stochastic process
defined by

3.7) Y(r) has independent increments and characteristic function
Prw(v) = [$r (V)] .

It follows that for £ <, @y, ye,)(V) = [$y(v)]7* 7). Note that for
F(t) =1 — exp[—Y(9)],

(3-8) E(F@) = p() =1 = [6,()]" =1 — [My(=D1)I"",

where M, (v) is the moment generating function of Y (M (v) exists for all v < 0).
If we let Y have the gamma distribution with ¢,(v) = (1 — i)™, then Y(¢) is
the gamma process with independent increments and we call F(¢) the exponential
gamma process with parameter y (or 8,). For this process

(3.9) E(F()) = (1) = 1 — 277 = By(1) .

There are processes Y(t) satisfying the conditions of Theorem 3.1 that can not
be defined by (3.7). If F(r) is the Dirichlet process, then Y(r) = —log [l — F(7)]
is not of the form (3.7), but has a version that satisfies the conditions of
Theorem 3.1.

It is known (e.g. [13]) that independent increment processes such as Y(7)
have the property that if the component in the Lévy representation of
log E(exp(—ivY(t)) that corresponds to the random part of ¥(r) is zero, then it
increases only in jumps with probability one. Thus from Theorem 3.1, we get

CoROLLARY 3.2. If the random distribution F(t) is neutral to the right and if
—log [1 — F(t)] has no nonrandom part, then

(3.10) AF: F is adiscrete distribution function) = 1.
In particular, (3.10) holds for the exponential gamma process.

REMARK 3.3. We say that a given distribution function F, is in the support of
Fifforeache >0and any 1, < ... <t,, F{F(t) — Fy(t)| <e,i=1,---, k} >0.
Consider the random distribution functions defined in Example 3.1. If the
distribution function of Y is strictly increasing on (0, o) and if y is continuous
and strictly increasing, then the support of &’ contains the class of all continuous
distribution functions. Thus & is “nonparametric.” More generally, if the
distribution function of Y is strictly increasing, then the support of &7 will
contain the class of all distribution functions absolutely continuous with respect
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to Bty = E(F(1)) = 1 — [My(—1)]"® (or y(¢)). Note that when F, is continuous,
then the neighborhoods {F: |F(t,) — Fy(t,)] < e, i =1, ..., k} are equivalent to
sup norm neighborhoods.

F is said to be neutral to the left if P is neutral, in the sense of Section 2, with
respect to those sequences of nested, ordered partitions where the ordered parti-
tions are of the form (1, co), (,_y, t,], -+, (t;, 1], (8, —o0) With ¢, < - -+ < 1.
Essentially, F is neutral to the left if

E(t,), [F(t,) — F(,_)V/F(1), - - -5 [F(t) — F(0)]/F(1,)
are independent. It is conjectured that the Dirichlet process is the only process
which is both neutral to the right and neutral to the left (except for processes
in C,). However, it is possible to have processes neutral to the left for r < ¢

and neutral to the right for > ¢ as in the following example (where we have
¢ = 0)

EXAMPLE 3.2. Let Y,(f) and Y,(f) be two independent, a.s. non-decreasing,
right continuous a.s., independent increment processes defined on (— oo, 0] and
[0, o) respectively and satisfying Y,(0) = Y,(0) = 0 a.s., lim,___, Y,(#) = —oo
a.s., lim,__ Y,(f) = co a.s. Let V' be a random variable with values in [0, 1]
independent of Y,(¢) and Y,(f). Define the random distribution function F() by

F(t) = (1 — V)exp[Y,(r)] for r<0,
=1 — Vexp[—Yy1)] for +>0.

F is neutral with respect to those sequences of nested, ordered partitions where
the ordered partitions are of the form (0, o), (s5,, 0], - - -, (5;, 8], (8, — o0) With
5 < --- < 5, < 0and with respect to those sequences where the ordered par-
titions are of the form (—o0, 0], (0, #,], - - -, (#,_1, 1] (f4, 20) WithO< s, < - - - < 8.

4. The posterior distribution of tailfree and neutral processes. R is the real
line and <% is the o-field of Borel sets. P is a random probability (process) with
distribution .7 and F is the corresponding separable random distribution func-
tion which is a.s. a distribution function. . will be called the marginal or prior
distribution of F. (X, ---, X,)is a random vector with values in R*. We would
like to say that the distribution of (X), ---, X,) given P (or F) is that of a ran-
dom sample from a population with probability distribution P. This is achieved,
as usual, by defining the joint probability distribution &, of X, ..., X, and P
as follows:

(4‘1) %(Pe D’ X1 € Bl’ Tt Xn € Bn) = Es?(ID(P) HiSn P(Bi))
where D is in (<% <), By, ---, B, are in &%, and I,(P) is 1 if Pis in D and is O

otherwise. (4.1) determines a probability &, on (R™ x [0, 117, ¢(Z" x £ <))
where <" denotes the Borel cylinder sets of R™.

LemMMA 4.1. The marginal distribution of P is 7, i.e., (P e D) = (P e D).
For B, ..., B, in <&, we have
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(a) The conditional distribution of (X,, - --, X,) satisfies
(4.2) F(X,eB, ---, X, eB,|P) =1];<. P(B;) a.s.
(b) The marginal distribution of (X, - - -, X,) is given by

4.3) FX, e By, --+, X, e B,) = E(]] ;<. P(B))),
in particular, (X, < x) = B(x) .
(c) If By, ---, B, are pairwise disjoint Borel sets and if N, denotes the number of
X’sin B, i=1, .., k, then for D € ¢(<%7),
(4.4) FYPeD|N,=ny, -, N, =n,) = E (In(P) T1 ;5 P*i(B;))
E (I1;s Pri(By))

provided the denominator is greater than zero and provided ) n, = n.

Proor. (a) follows since if the right-hand side of (4.2) is integrated over the
set D with respect to the distribution of P, then we obtain (4.1).

(b) follows from (4.1) by letting D = [0, 1]<.

(c) is a consequence of

..
1 k

n! i -
Ny =y - Ne =) = ———— Eo([Lise P(B)))

which follows from (b).

Note that here and throughout, 0° is understood to be 1.

The following result shows that if F is tailfree with respect to the tail (s, o),
then the posterior distribution of {F(f): t < u}, u > s, depends on the X’s only
through the X’s smaller than or equal to . This motivates the use of the word
“tailfree.” The result extends results of Freedman [14] page 1401.

THEOREM 4.1. Let F be tailfree with respect to the tail (s, co), let t, < t, < - -+

be a sequence of numbers with t, = s for some r = 1 and lim,__ t;, = co. Let N,

denote the number of X’s in (t,_,, t],i=1,2, ...;t, = —oco. Then for k = 0,
C e gr+k

GHEFY, -, Ft, o NEC|N,=n, N, =n,, --)
(4.5) =a(r + KE_(I,(F(t), -+, F(t,,,)

X ATTisrer [F(1) — F(t, )" — F(2,40)]7r+%)
where m; = n — 3., n;, I is the indicator function,
a(r + k) = Eo({TLisrsi [F(1) — Ft )]} — F(1,00]"7 %)
and it is assumed that b= > 0, where
(4.6) 67 = E (IL: [F(r) — F(t:-1)]™) -

Proor. Let M = max {i: n, > 0}. When M < r + k, the result is clear by
Lemma 4.1(c); consider, therefore, the case wherer + k + 1 < M. If Gis any
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bounded measurable function of F(¢), - - -, F(t,,,), then by Lemma 3.3(c),
(A7) E (G I e [F() — F(1,21)]")

_ P F(t,) — F(t,.,)
=E, <Hi=r+k+1 <m
By Lemma 4.1(c), GA(F(t), -+, F(t,;,)) e C|Ny=n, Ny=ny, ---) =
bE _(I(F(t)), - - -, F(t,42) TTE, [F(t;) — F(t,_,)]*). The result now follows by
applying (4'7) with G = C(F(tl)’ T F(tr+k)) H:Lk [F(ti) - F(ti——l)]ni'

REMARK 4.1. The result'holds if we have only a finite number of £’s, ¢, - - -, ¢,
with 7, > s. In this case, we define N, as before when i < /, and define N,,, to
be the number of X’s in (¢,, o).

Let

) EGLL = Fit, 1)

V(F) = [F(t,) — F(t,_)[[1 — F(t,_))] where (0/0) =1.

CoROLLARY 4.1. If F is neutral to the right, if t, < t, < .- either is a finite
sequence or satisfies lim;_ t; = oo, and if b=* > 0, then for k = 1, C € R¥,

FAEW), -+, F1,)) e CI Ny =m, Ny =my, - - +)
(4.8) = a(k)E(I(F(1), - - -5 F(t))ILisi [F(1) — F(o)"}[1 — F(£)]™)
= EU(F(1), - - -, F(1))ILise Vm(E)1 — Vi(F)]™))
E(Ilisi Vir(F)[1 — V(F)]™)
Proor. The first equality follows from Lemma 3.3 (a) and Theorem 4.1. The
second equality is a consequence of the first equality, (3.3) and (3.4).

REMARK 4.2. Let Q denote the domain of X, ..., X,. Then from (4.1), it
follows that the set Q, = {w: E_{T]X [F(t,) — F(t;_,)]"#“’) > 0} has probability
one. Thus we could avoid the condition 4=* > 0 in the preceding results by
defining the conditional distribution in an arbitrary measurable manner on the
complement of €}, or by writing a.s. (almost surely) after the equalities.
Ferguson’s posterior corresponds to using the same formula on the complement
of Q, as in Q,. This makes his Bayes procedures based on the Dirichlet prior
consistent where they do not deserve to be. Compare Freedman (1963) who
leaves the posterior undefined outside of Q,.

The above results are useful for “guessing” the conditional distribution of a
neutral process given X, ..., X,. We need some additional notation. Recall
that for ¢, , < t;and F(r,_)) < 1 a.s.,

(4.9) vyF) = FU) = Fli) (l’f)__F(f (j;) .

For each Borel set 4, H, ,, .. is the extension to (R", ¢(£#")) of the measure
defined on (R", <#'"), by

(4.10)  H, . (IIi-1 B)
= EL(L(V{(E)[1 — FI™ 11i- P(BY)) » Ili- Bie &7,
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wherel < r<nand0 < m < n. B, is the measure defined on (R", o(Z")) by
Bmi; = Hpm.;» and B, is the probability law of X, ---, X, i.e., B,(I]i.. B)) =
E_(I]2., P(B))). We note that H Ame; 18 absolutely continuous with respect to
B, and let (dH, , . [dB, . )(x;, - -, X,) denote the R — N (Radon-Nykodym)
derivative of H, , , with respect to §,, ,. evaluated at (x,, - -, x,). From (4.1)
it is clear that

(4.11a)  H,, . (ITi- B)

=AVi(F)eA, X,eB,, ---, X, eB, X, >t, -, X, ,.>1)-
and
(411b) ABm,tj(Hz':l Bz) == "%(Xl € Bv M) Xr € Bra Xr+1 > tj’ AR ) X¢+m > tj) .

It follows that (dH , , ,;/dBw,.;)(x,, - - -, x,) is essentially the conditional probability
distribution of V,(F) given that the first r X’s equal x,, - - -, x, and that m — r X’s
exceed t;. Welet M, = n — 3, N, be the number of X’s that exceed ;. Recall
that B° denotes the complement of the set B.

THEOREM 4.2. If F is a random distribution function which is neutral to the right,
then the posterior distribution of F given X,, - - -, X, is neutral to the right. That is,
if —oco =1, < --- < t, < oo are given with (F(t,) < 1) = 1, then for Borel sets
Av‘ t Ak"—&/_z;(Vl(F)eAl" T Vk(F)eAlev‘ : ~,Xn):PI'(WleA1,~ t WkeAk)
a.s., where W, ..., W, are independent and Pr (W ;€ A;) = F(V(F)e A;| X}, -
X,) a.s. Moreover, on the set Q, = {w: X(w)e(t;_,, t;],i=1,---,n},

bl

T A A

On the set
Q, = {o: Xyo) et 1] ie{h, -, i} # @5 Xw) e (o G5 1€ {h, - -5 1)
(4.13) GV F)e 4;| Xy, -+, X,) = TV (F)e 4;| Xy, -+, X, , M)
_ M (x X)) as.
dABMj,tj
Proor. For convenience, we will write V', instead of V (F). We first con-
sider the case n = 1. It is enough to show that for all Be <7,

(4.14) s Lo, TV, € A;| x)B(dx) = YV e Ay, -+, V, € A, Xe B).

where the integrand is defined by (4.12) and (4.13), and 8§ = §,. This will follow
if we can show that equality holds for all half open intervals B,. We write B, as

(4.15) B, = Ui [(fi-0, ] 0 B)] U [(2,, 00) N B .

If B, , = [(#;_1, 1,] N B,] is nonempty, it will be denoted by (s,_,, 5,], 1 =1, - -+, k,
and we write (s, $,.,] for B, .., = [(,, o) N B,] when this set is nonempty. We
next show that (4.14) holds when we integrate over (s, ,, s,], i = 1,---, k4 1. If
B, is empty or F(X € B, ;) = 0, then (4.14) trivially holds, so without loss of
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generality we assume that B, , is nonempty and &5(X e (s;_,, 5,]) > 0,i =1, - .-,
k1. Let Z, = [F(s) — F)[1 — F(t)], W, = [F(s)) — Fs-)l[1 — F(si)l,
then these quantities are a.s. finite and
FVied, -, V,eA, Xe(s, 1))
= E,(I15 Ly (VUL (1 = VI — Z)W,.)
= [ Eo(L (V)1 — V)EL((1 — Z)Wys) -
On the other hand,

S 151 05 € 4,08 = T 202D e )

= GYVi€A, -, V, €A, XE(S Siq1l)
since X € (5, Sea]) = [T EL(1 — VHE (1 — Z,)W,,,). Similarly, for
i=1,..., k.
AV,eA, -, V., €A, Xe(s, 1, 5])

= E (1151 L ,(VILFE(s,) — F(si-)])

= E_([I15= Lo,(VHIIL= (1 — VIl — Z_)Wy)

= [ EL(L (V) = V)EL (V) — Zi )W) T-ia Eo(Li (V) -
Next note that as given, .Z(V; € A,| x) is constant as a function of x in (¢,_,, #,]
except when i = j. We obtain

$io, -0 151 ZUV 5 € A; | x)B(dx)

_ 1—1 Ey(IAj(Vj)(l - V:i)) op k
= I3 £ — V) Ve Ay, Xe (s 8.]) TG-n B, (V)

= (Vi€ Ay, -, V,e A, Xe (5,1 5.])

since
(//2(Vz € Az’ XG (Sz—l’ sz]) = Ey(IA,(Vz)[Hz_:ll (1 - V])](l - Zz—l) Wz)
= E (L, (V) — Z_ )W) IS E(1 = V).
It follows that (4.14) holds for half open intervals B,, and we turn to the case
n > 1. By induction, we have that V', - . -, V, are independent given X, - . -, X,.
Thus we need only verify the formula for )V, e 4,| X,, ---, X,), i.e., it is
enough to show that

4.16) S, o N, AV e Ay Xy, -, x)Bu(dxy, -, dx,)
= A(V;eA;, X, € B, -, X, € B,)

for all half open intervals B, i =1, ---,n. Since B, = (B, N (—oo, t;,_,]) U
(B; N (t;_1, 1;]) U (B, N (1, c0)), we can without loss of generality assume that for
some0</,r<n,B C(—oo,t;, Jfori=1,---,1, B,C(t;,,,t;]fori=1+41,. -,
I+ r,and B, C (t;, 0) fori=1+r+ 1, .-.,n Welet(r,s] denote B, and
assume without loss of generality that r, < s, and (X, € B,, ---, X, € B)) > 0
since otherwise (4.16) holds trivially. Let W(s, 1) = [F(r) — F(s)]/[1 — F(s5)],
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s<t, and W(s;) = W(r;, s;). Repeatedly using the independence propertie§
defining neutral processes, we obtain
Ba(I1i= Bi) = E(113-: [F(so) — F(r)]) ,
= E_({ILi=s PBYHIITETa W(s)(L — W(t,, tHIL — F(2;20)]}
XAzt ra WL — W25, )1 — VI — F(2;20)1})
= 9([H L PB)NL — F(;20)]mi-)
EL({IIE WSl — W, r) L — V5]™)
E@(H?:Hrﬂ W(s)[1 — W(t;, r)])
= (I1ix Bi)ﬁ(z)(Hil—Lf+1 Bi)ﬁ(S)(Hi=l+r+l B;)
where m;_, =n—1, my=n— (I +7r), and g®, B® and B® are the three
measures defined on the Borel sets of (—oo, t;], (f;_y, t;]” and (¢;, co)"~“+"
respectively, by
B (IThes B) = E([TTo PBII[L — F(t;_)]"5-)
@ (T — E (I P(BII[ — F(t;)]™9)
e e SO U
(3) — E?(H?=l+r+1 P(Bl))
BO(Mtersrn B) = 7t S0
Since we can write Z5(V,; € A;, X,€ B, ---, X, € B,) = E_(I,(V,) [Ii- [F(s;)) —
F(s;_,)]), the above computation shows that

FYV;eAd;, X, eB, .-, X, €B,)

Hyimje; (H£+{+1 B)
= BU(I]i- B ) 9(][1 ]_ F(t] NEE 1/3(3)(].—_[1 rar1 Bi)
Note that as given, (Ve 4;|x,, ---, x,) is constant as a function of x, in
B, except whenie{l + 1, ---, [ 4 r}. Using the representation 8, = fVB*»E®
and Fubini’s Theorem, we obtain for x; = X(w), w€Q, (r =0 and m,_, =
m; = Myw)),

SB,n e SBI l?;(I/J € Al[xl’ Tt xn)ﬁn(dxl’ T dxn)

Eg(IAj(Vj)[l B F(tj)]mj (1 . B)3®
T Fupy P (L BYE ([Tt B)
= %(VjeAj,Xler ""XneBn) .

For w € Q, (r > 0), the computation becomes
SB,, et SB] "O];(VJ € A~[X1, ] xn)ﬁn(dxl’ R } dxn)
= A Ve A Xpn€Byy, -, X, €B , Xy >t o, X > )
X ‘B(l)(Hi=1 Bi)ﬁ(a)(]:[?=l+r+l Bi)/Eg([l - F(tj—1)]mj_1)

= Aj’mjvti( 2001 B)BY (ITiet B)BP (Iirh ri1 BYEL([1 — F(t;-1)]"i71)
= ‘%(VjeAja XleBn "',XneBn)‘
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CorOLLARY 4.1. [If F is neutral to the right, if w € Q,, and if A(F(t;) < 1) =1
then the posterior law A; of V ,(F) is absolutely continuous with respect to the prior
law p; of V (F) and
dA;

1 _ /U)M]((u)
@5 ) = L
dp;

CE([1 = V()

Note that the posterior distribution of F(r) can be obtained from Theorem
4.2 since if t = 1, then V\(F) = F(t) a.s. The joint posterior distribution of
F(t), ---, F(t,) is obtained by observing that F(r,) =1 — [[,o; (1 — V,(F)),
j=1, -, k.

(4.17)

REMARK 4.3. It is useful to state Theorem 4.2 in terms of limits instead of
Radon-Nikodym derivatives. For any collection of numbers x,, - - -, x,, let n,
denote the number of distinct x’s, let x,, < --- < x, , be the ordered distinct
x’s, n;, be the number of x’s equal to x;,, letm ;, =n — 3 _;n,,j=1,---,n,
let n(f) denote the number of distinct X’s less than or equal to ¢, let m(r) be the

number of x’s greater than ¢, and ¢, = x, ,,. We define x,, = —co and
(4.18) W, = W(xgo x,] = L) = F&an)
I — F(x;)

Now we can write

(4.19) F(ry =1 — 130 (1 — Wl — Wy,
where W, , = W(1, 1].

The W’s are independent both under the prior and the posterior distribution of

F. Moreover, if 8(x,) — 8(x, — 0) = E[F(x,) — F(x, — d)] > 0, which is the

case a.s., then we can typically obtain

(4.20) AW, < w|x, -+, x,)

E([1 — F(x,)]" o g, (W) F(x,)) — F(x; — 0)]"2

= limaﬂo
E([1 = Flx )"0 [F (x,) — F(xg — )"

a.s.

(5)

when this limit exists. Ifre{x,, ---, x,}, thenW,, = 0. Ifr¢{x, ---, x,}, then

(4.21) Ay Wieswlx, -0, x,) = E;([IE—([IIT(Z]M}(:{;)]E;:J?)WOt)—) a.s.

Also note that E_(W,|x, ---, x,) can be obtained by replacing 7, ,,(W,) in
(4.20) by W, while E_ (W, | x,, - - -, x,) results if we replace 7}, (W, ,) by W, ,
in (4.21). Sometimes it is useful to write (1 — W) = (1 — W ,)(1 — Z,,), where
(1= W) =[1= F(xj =1 — F(xyo)], (1—Z;) =[1—F(x, )I/[1 - F(x,,, — )],
and o e (0, x,, — x;_,). W;; and Z,, are independent given x,, - - -, x, and we
obtain

4.22) E (1 — W,|x, -, x,)

_ 1im,,_,0+ E/([l — W’.J]M(j—'lwl) lim,,_.0+ E?([l _ Zja](m(”+l’Zj7,,f‘J’) '
E (1 — Wja]m"’_l)) E (1 — Z”]’"M)Zj’ofm)
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ExaMPLE 4.1. Let F(f) = 1 — exp[— Y(¢)] be one of the random distribution
functions defined in Example 3.1 by (3.8) and (3.9). We will compute
E_(F()|X, ---, X,), which is the Bayes estimate of F for the loss function
L(F, F) = § (F(t) — F(1))*A(df), where 2 is a finite measure on (R,-7).

Letting E denote E_,, we obtain

E([1 — W;,]") = E(exp{—m[Y(x;;, — ) — Y(x;-0)]})
= [My(—m)]ir=m=9-rEG-nl

and

B = W) _ (Ml (e + D700 700007

lim(,_,0+ -
E([l - Wja]m(’_l)) MY[_m(j—l)]

where 7 is assumed to be continuous at x;,.
Using the binomial expansion for Z3@ = [1 — (1 — Z;,)]"9, we have
E(l — Z;,]"0Z59)
= B2 (V)DL = Zymore)
= E(37 (O (=1 exp{—(m;, + H[Y(x;)) — Y(x; — 9)]}
= DI (O DML = (my, + DI -ramo,
It follows that if y has a derivative y’ with y’(x,;)) > 0, then
E( — Z,, "1 Zy)
E(L = Z,, "9 Z,37)
_ E ()= log My[—(my, + i+ D]
L () —1)" log My[—(m;, + 1)]
We note that the right-hand side is independent of y, and denote it by
C(n,, m, M;). Thus, for the case that all the x, are different

1imﬁ—~0+

Cl,n —j, M,) = log My[—(n — j + 1)] — log My[—(n — ] + 2)]
s s My log My[—(n — j)] — log My[—(n — j + 1]

We also need (see (4.19) and (4.21))

E,(1 =W, )|x, - x,) = {My[—lm(t) + 1)]}[r<z)—ruo>] .

M, [—m(t)]
Putting these results together, we have
E,([1 — F(O)][x, - - -5 X,)
N M, [ —(m, ._ +1 [rez—riz;-1)1
x (M=l £ DY
M, [—my(1)]

If Y(r) is a gamma process with independent increments, i.e., My (v) = (1 — v)7},
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and ifn; =1,j=1, ---, n, then (4.23) simplifies to

E(1 = FOlx, -+, x,)

lo (n_—_f_ir_£> :
nF () n—j+3 {n —Jj+ 3}‘[7"0'))‘7"(7'—1))]

j=1

| <£:.J_+i n—j+2
¢(7 =1 5)
{n — nF, (1) + 2}—[7(0-7(:0)]

where F,(f) = n='[n,(t)] is the sample distribution function. When n =1, this yields

(1

(2]
(3]

(4]
(5]

(6

—_—

[7

—

(8]

(9]
(10]
(1]
[12]
(13]
(14]
[15]
[16]

(17]

E (F(|x)=1— @) for x>t
=1— (.58)(3)7@2-7»  for x<t.
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