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GENERALIZED DISTRIBUTION FUNCTIONS:
THE LINEARLY ORDERED CASE WITH APPLICATIONS
TO NONPARAMETRIC STATISTICS!

By GORDON SIMONS
University of North Carolina

We develop a theory for distribution functions which are defined on an
abstract linearly ordered space. This extends and gives additional insight
into the work of J. H. B. Kemperman who was concerned with a special
class of linearly ordered spaces. Attention is given to nonparametric appli-
cations. The utility of Kemperman’s work on tolerance regions and of
related applications to goodness of fit tests, appearing in this paper, is en-
hanced. In particular, it is shown that a number of standard nonparametric
procedures can be extended to cover almost any kind of random sample
(e.g., multivariate and most time series data) occurring in practice.

1. Introduction and summary. The spaces studied by modern probabilists have
become very general. Frequently some structure is imposed on a space, but
typically not an ordering. Since distribution functions can only be defined on
partially ordered spaces (classically, on finite dimensional Euclidean spaces),
they have become the “poor cousins” of probability measures. Nevertheless,
distribution functions serve several important roles: (a) For the probabilist,
they concisely conserve the information represented by a probability measure on
a finite dimensional Euclidean space. (b) For the statistician, among other
things, they enter into the definition of certain goodness of fit test statistics such
as the Kolmogorov statistic D,,.

In this paper we only consider distribution functions (df) for linearly ordered
spaces. We present what we believe to be a reasonably complete theory for
abstract linearly ordered spaces. An effort is made to find parallels with results
for the real line. We find necessary and sufficient conditions for a df to uniquely
determine the probability measure giving rise to it.

The theory specializes for a class of spaces introduced by J. H. B. Kemperman
(1956). He was studying the subject of nonparametric tolerance regions. We
consider alternative applications—nonparametric goodness of fit tests—in a
slightly more general setting than his. On the practical side, Theorem 3 below
permits one to apply a wide range of nonparametric statistical procedures to
many new situations. What is required is a random sample with the observations
assuming values in a separable metric spéce. This includes multivariate data
and many types of times series data.
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We hope, in subsequent studies, to follow up on these applications and to
consider df’s on partially ordered spaces. The current study was motivated by
the work of Flavio Rodrigues (1972) who used generalized distribution func-
tions while studying relationships between weak convergence and probability
convergence.

2. Distribution functions on linearly ordered spaces. Let 22”7 be a linearly
ordered space. We introduce the following notions: 4 & 2”7 is an initial (ter-
minal) if x < ye A (x > y € A) entails x € 4. An interval is the intersection of
an initial and a terminal. The smallest o-field <& containing the intervals (equiv-
alently, the initials) of 227 is the order g-field and its members are order sets. X
(%) denotes the initial {y: y < x} (terminal {y: y = x}) and is called a closed
initial (terminal). Let P be a probability measure (p.m.) on (27, &&'). The dis-
tribution function (df) of P is the function F defined by F(x) = P(X), x € 2.

For the real line, <7 is the Borel o-field and F (uniquely) determines the values
of Pon <7 for every P. The following theorem tells us when this important
property holds for a given 22 and df F.

THEOREM 1. (i) F determines P on <7 if it determines P(A) for each initial A.

(ii) F determines P(A) for an initial A if and only if either (a) A is expressible
in the form \Jp.,X,, Mo X, & or @ (the empty set), or (b) sup,., F(x) =
inf,, 4 F(y)-

(iii) It is possible for F not to determine P on 5.

Proor. To see (i), observe that F will determine P on the intervals of .2, a
semi-ring. The “if” part of (ii) is straightforward. Therefore, suppose (a) and
(b) do not hold and define a set function Q on the initials satisfying Q(B) = P(B)
if B+ A and Q(4) € [sup,., F(x), inf,,, F(y)] with Q(4) # P(A). Clearly, F
will be the df of any extension of Q which is a p.m. on (2, &#). It remains to
show such an extension exists. The obvious extension of Q to the intervals is
unique and nonnegative. Suppose I = Y 7_, I,, where I and each 7, is an interval.
The needed equality Q(1) = ., Q(1,) is inherited from P except possibly when
I is the difference of two initials B, — B, one of which is 4. Suppose B, = 4.
Then there exists a largest interval 7, , say. Otherwise, by choosing an x, in
each I,, one would obtain the contradiction 4 = |Jy_, X,. Then the interval
I — I, = 371 uen, I, and the equation Q(/) = X n_, Q(1,) is, in fact, inherited
from P. The case B, = 4 is handled similarly. To show (iii), let 2°=
{ordinals < Q}, where Q is the first uncountable ordinal, and P({Q}) = 1. The
initial 4 = 27— {Q} fails to satisfy condition (a) or (b). (A second p.m. with
the same df is given in the proof of Proposition 1 below.) []

Theorem 1 is intentionally expressed in as usable a form as possible. The con-
ditions do not depend on P. Some insight can be gained by noting that condition
(a) characterizes the initials in the o-field generated by the closed initials.

The behaviour of F and its relationship to P largely depends on the atomic
structure of the probability space (27, <&, P). (For background, see Neveu
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(1965), page 18.) There are two types of atoms possible—point atoms and inter-
val atoms which are not also point atoms: An atom 4 will be called a point atom
(interval atom) if there exists a point x (interval /) such that P(4 A {x}) = 0
(P(A A T) = 0).

ProroSITION 1. (i) Every atom of (22, <&, P) is an interval atom.
(ii) Non-point atoms are possible.

Proor. Using Theorem D, page 56, of Halmos (1950), one can closely ap-
proximate an atom A by a finite union of disjoint intervals. Since A is an atom,
this approximation (when good enough) holds for one of the intervals in the
union. The interval needed for the proof of (i) is obtained as the intersection
of a sequence of such approximations. To show (ii), let 22 = {ordinals < Q}
where Q is the first uncountable ordinal. Further, let P(4) = 0 or 1 for each
A e % as A contains a countable or uncountable number of points. It is easily
checked that P is a p.m. and 22 is a non-point atom. []

According to Neveu (1965), page 18, 227 can be decomposed into a countable
union of atoms and an atomless part. With this and Proposition 1, we can easily
obtain:

PROPOSITION 2. P can be decomposed uniquely as a, P, 4+ a, P, 4+ a, P, with
a, + a, + a, = 1 and each a; = 0, where P, is a nonatomic p.m. (when a, > 0),
where P, is a completely point atomic p.m. (when a, > 0), and where P, is a completely
non-point interval atomic p.m. (when a; > 0).

We shall find that F behaves in much the same way as a classical df when
ay; = 0. Throughout the remainder of the paper, we shall link properties of F
with the values of the a,’s. We shall be particularly interested in finding verifi-
able conditions which guarantee that a;, = 0.

The analog of a continuous df is a dense df, a df whose range is dense in [0, 1].
If F is dense, a, = 0:

PROPOSITION 3. F is dense if and only if P is nonatomic (e, = 1).

Proor. The “only if”” part is obvious. Therefore, suppose P is nonatomic.
Let C be the range of P on the initials of 27, It suffices to show C = [0, 1]. It
is easy to check that C is a closed set. Now suppose (P(4,), P(4,)) is a gap in C
for initials 4, and 4,. Then the p.m. Q(.) = P(+)/P(4, — A4;) on (A4, — A,,
(A, — A,)) is 0 or 1 for every interval in 4, — 4, and, hence, on Z&(4, — 4,).
This untenable situation would make 4, — 4, an atom for (&, <, P). [

F is said to be discrete if it can be expressed as F(x) = Y., <, Pa» X €527, Where
each p, > 0 and the x, are distinct. It does not automatically follow that (P =
P,and) p, = P({x,}). (See, for instance, the example in the proof of Proposition
1.) An initial (terminal) is open if its complement is a closed terminal (initial).
F is right continuous at a point x if, for each ¢ > 0, there exists an open initial 4
with x € 4 and F(u) < F(x) + ¢ for each ue A. F is right continuous if it is right
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continuous at each point x for which x = 2. a, = 0 does not imply F is dis-
crete. Neither must F be right continuous:

PRrOPOSITION 4. Suppose a, = 0. Then:

(i) F(x) can be (uniquely) decomposed as a, F\(x) 4+ a,Fy(x), where F,(x) = P(X)
is a dense df and Fy(x) = Py(X) is a discrete df of the form 3., ., Py({x.}), where
{X,}nz1 denote the point atoms of P.

(ii) F determines P on Z%.

(iii) F is right continuous.

For the sake of brevity, we omit the proof of this proposition. The proof
depends on Proposition 3. It is very tempting to conclude from (ii) that the
condition a; = O entails (a) or (b) of Theorem 1 for each initial 4 of &°. This
is not logically necessary and is not true.

Let (2, €, Q) be a second probability space where Z’ is linearly ordered and
& is its order o-field. 27 x Z/ can be linearly ordered lexicographically. Its
order g-field & is a sub o-field of the product ¢-field. Thus one obtains a prob-
ability space (2” x 2/, &, R) where R is the (unique) product measure restricted
to . Since there are three p.m.’s under consideration, we shall express the a,
for P as a,(P), etc. We shall need parts of the next proposition in later sections.

ProrosiTION 5. (i) a,(P) = 1 entails ay(R) = 1.

(ii) ay(P) = ay(Q) = 0 entails ay(R) = 0.

(iii) The point (x, y) is a point atom of R if and only if x is a point atom of P
and y is a point atom of Q.

(iv) Thus ay(P) = 0 and ay(Q) = 1 together entail a,(R) = 1.

Proor. Let F'(x) = P(x — {x}), x € &, and G be the df of R. Then
(1) F(x) < G(x, ) < F(x) , xeZ,ye?.

If F is dense then F° = F and G is dense. Thus (i) follows from Proposition
3. (ii)—(iv) are easily proven. []

3. Kappa spaces. J. H. B. Kemperman (1956) originated and worked with a
linearly ordered space® which we now refer to as a kappa space (x space, for
short). It will be seen that any linearly ordered space with weaker structure can
have non-point atoms («, > 0). In this work, he also assumed that there were
no point atoms (a, = 0). Consequently'(a, = 1 and) F was dense. We find in
the next section that this implies the probability integral transformation F(X) is
uniformly distributed on [0, 1], which is what Kemperman wanted.

An initial (terminal) is approachable if it can be expressed as a countable union
of closed initials (terminals). (The empty set (% is approachable. The index set
of the union is empty.)- A linearly ordered space .2 is a kappa space if each
initial and terminal in .27 is approachable.

2 Actually he was working with a slightly more general ordering by linearly ordering equiva-
lence classes of points. All of our results are expressible in his greater generality.
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THEOREM 2. 7 is a & space if and only if ay = O for each p.m. Pon (Z°, 7).

PRroor. Suppose 27 is a « space and A4 is an atom relative to P. We claim
P(BA) = O for the initial B = {x: P(xA) = 0}. Forif B+ @, then B = J;_, X,,
where we can assume x, < x, < ---. Then P(B4) = lim,_,, P(x,4) = 0. Simi-
larly, P(CA) = 0 where C = {x: P(XA) = 0}. Since P(4) > 0, there exists an
x¢ Bu C. Then P(xA) = P(xA) = P(A4), and it follows that P(4 A {x}) = 0.
That is, 4 is a point atom. Conversely, suppose -2 is not a £ space. We shall
illustrate the (representative) case where a nonempty initial 4 is unapproachable.
Let &, (Z,) be the collection of B e <% which exclude (include) a top piece of
A, a piece of the form x4 with x e 4, and let ¥ = &, U &. % is closed under
countable unions. For suppose B = |Jg_, B,, where each B, € &,. For each n,
there exists an x, € 4 for which X, 4B, = . Since A4 is unapproachable, 4 —
Us., X, contains a point x and X4AB = @. Thus Be &. It easily follows that:
& is a o-field, ¥ = <7, and the set function P which is 0 on &, and 1 on & is
a p.m. P(4) = 1, s0 A is an atom. The unapproachability of 4 insures that it is
a non-point atom. []

The importance of Theorem 2 is that it permits one to immediately make useful
conclusions from the general theory of Section 2. For instance, for a & space,

(i) F determines P,
(ii) F is dense if and only if P({x}) = 0 for each x ¢ 2%, and
(iii) F is discrete if and only if };,,.,, P({x,}) = 1 for some countable set of
distinct points {x,,},5-

The real line is a £ space.

Let P be a p.m. on (S, &) where S is a separable metric space and .5 is its
Borel g-field. An important consequence of the next theorem is as follows: §
can be linearly ordered in such a way that P determines a df F and, conversely,
F determines P on &~

THEOREM 3. S can be linearly ordered as a « space in such a way that the order
a-ﬁeld B =

Proor. (a) (based upon a proof by Skorokhod (1956) page 281) Let |4|denote
the diameter of a set 4 € . One can easily produce a sequence of progressively
refining countable partitions Z,, = {4, , ..., } (m = 1) of S for which: (i) each
element of each partition belongs to &, (ii) sup {|4|: A€ Z,} — 0as m — oo, (iii)
Aoty = Uiy Aigeriyy (M = 1), and (iv) (for convenience) each index i, is
a positive integer.

Each point x € S can be identified uniquely with an infinite sequence of posi-
tive integers i, iy, I, - - - according to its membership in eachset 4; ..:; ,m = 1.
In turn, S can be linearly ordered lexicographically based on these infinite se-
quences. To avoid confusion, we shall provide S with the alternative name .27
which we shall use when referring to this linear ordering. <#is the order o-field

associated with 2.



506 GORDON SIMONS

(b) Showing 27 is a & space. Briefly, any nonempty non-closed initial (termi-
nal) 4 can be expressed as the countable union | {X;: Be Z,, for some m > 1,
B A} (U {X3: Be Z, for some m = 1, B < A}), where x; denotes an arbitrary
point in the set B.

(c) Showing £ < &: Since 27 is a « space, the closed initials generate <#'
and it suffices to show an arbitrary closed initial x ¢ &7 Butx = (y_, B,,, where
B, is the countable union of all sets in Z,, (and consequently members of &)

m

which precede or contain the point x.

(d) Showing ¥ < <#:. Observe that each element C of each partition Z,, is
an interval of 27, and hence belongs to <Z. Thus it suffices to observe that each
open ball Be &7 is expressible as the countable union | {C: C e Z,, for some
mz=1,CgZ B}. ]

Suppose, for example, that S is the open unit square. While the proof of
Theorem 3 shows that there are many linear orderings of S which satisfy the
requirements stated in the theorem, there is one which is particularly easy to
describe. We can linearize S by mapping the point (x, y) € S into the decimal
- X, 1%, Y, -+ +>, Where x = - x;x,--- and y = - y, 5, ---. Of course, we can
linearize S lexicographically. But this would be unsatisfactory here since the
resultant order o-field <% would be smaller than &~

The reader can find some additional material on # spaces in Simons (1972).

4. Probability integral transformations. Let X be a measurable mapping from
some probability space to (2, &%), which we will call a random variable (rv) in
&, and let F be its df (i.e., the df of the induced p.m. P on (&%, &%)). F(X)is
a real random variable (rrv) since F is a measurable mapping from (27, &) to
the real line. It seems appropriate, for historical reasons, to refer to this rrv as
a probability integral transformation. Kemperman (1956) has studied this rrv in
the context of a £ space and used it in establishing nonparametric tolerance re-
gions. We shall study it in a somewhat broader context and, in the next section,
discuss two nonparametric goodness of fit tests based upon it.

PROPOSITION 6. (i) F(X) is uniformly distributed on [0, 1] if and only if F is
dense.

(i) If @y = 0, F(X) is stochastically no smaller than a uniformly distributed rrv
on [0, 1]. '

Proor. If F is dense, then for any u e 2 for which F(u) €[0, 1) and any
¢ > 0, there exists a v e 2 such that F(u) < F(v) £ F(u) + ¢. Thus F(u) =
Px:x=u) S Px:F(x) £ Flu)) £ P(x: F(x) < Fw)) L P(x:x < v) = Flv) £
F(u) + e. Since ¢ > 0 is arbitrary, it follows that P(x: F(x) < f) = ¢t for every
t in the (dense) range of F and, hence, that F(X) is uniformly distributed on
[0, 1]. The converse is immediate. To show (ii), we refer to Proposition 5 and
the notation used in connection with it. By choosing, (Z/, €, Q) so that
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a,(Q) = 1, we see from part (iv) of Proposition 5, that a,(R) = 1; from Proposi-
tion 3 that G is dense; and, in turn, from part (i) of this proposition, that the
corresponding probability integral transformation G(X, Y) is uniformly distrib-
uted on [0, 1]. The conclusion is immediate from (1). []

REMARK. Likewise, from (1), we see that F°(X) is stochastically no larger
than a uniformly distributed rrv on [0, 1].

5. Some applications to nonparametric statistics. Let X, -.., X, be inde-
pendent random variables in &2~ with each possessing a common unknown p.m.
P and related df F. Unless F, determines P,, we must distinguish between the
hypothesis that P = P, and the hypothesis that F = F,, the df of P,. The latter
type hypothesis requires test statistics defined in terms of F,, not P, when the
distinction must be made. We shall find that a generalized Kolmogorov statistic
is easily defined in terms of F, but, unfortunately, a generalized Smirnov statistic
requires P,. (The issue is not very important here since F, determines P, for parts
(ii) and (iii) of the next two theorems.)

Let F,(x) = n™* 271 Iix, <01 X € 2, denote the empirical df. The generalized
Kolmogorov statistic is D, = sup,. .. |F,(x) — Fy(x)|. We define the generalized
Smirnov statistic as W,, = { . (F,(x) — F(x))’ dP,(x) rather than the historically
more appealing § . (F,(x) — Fy(x))’ dF(x), since the latter integral has not been
defined in general. We shall also need generic rrv’s D, and W, corresponding to
the special case where F, is a uniform df on [0, 1] and F = F,.

THEOREM 4. (i) D, is a rrv.
(iiy If F = F, and F, is dense, then D, has the same df as D,.
(iil) If ayP)) = 0 and F = F,, then D, is stochastically no larger than D,

Proor. The proof of (i) is based on the formula
(2) D, = max,c,<n (E+, E_) s

where E, = max, ., (k/n — Fy(X,)) and E_ = max, .., (Fo*(X,) — (k — 1)/n),
where X, ---, X, is X, ---, X, arranged in ascending order, and where
Fy*(x) = sup, ., Fy(u). With (2), the proof of (i) is straightforward but somewhat
tedious (cf., Simons (1972)).

Under the assumptions of (ii), Fy(X)), - - -, F)(X,) are i.i.d. uniform variables,
according to Proposition 6. If one uses them to define D,, then D, = D, follows.

Briefly, one shows (iii) by introducing auxiliary rv’s Y;, - .-, Y, (See the proof
of Proposition 6, part (ii), and the remark following the proof.) and establishing
the inequalities F’(X,) < G(X,, Y,) < Fy(X,), 1 £ k < n(cf., (1)), insuch a way
that G(X,, Y,), 1 < k < n, arei.i.d. uniform variables. (The Y,’s can be chosen
to be i.i.d. uniform random variables which are jointly independent of the X,’s,
for instance.) If these are used to define D,, then the inequality D, < D, follows
from (2). (Note that under the assumptions F" = F*.) []

REMARK. Quite clearly, there is a Glivenko-Cantelli theorem for the D,’s
under assumptions (ii) or (iii) of Theorem 4. That is, D, — 0 almost surely (7).
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THEOREM 5. (i) W, is welldefined (The integrand is <Z-measurable).
(ii) If F, is dense, then W, is a 1rv and can be computed as the Riemann integral

§o(n7" Xk Iipyxpsn — 1)* dt. _
(iii) If F, is dense and F = F,, then W, is distributed as W.,.

For the sake of brevity, we omit the proof. (cf., Simons (1972)).

REMARKS. 1. Standard statistical tables can be used when applying Theorems
4 and 5.

2. Theorem 3 permits one to apply the Kolmogorov and Smirnov goodness
of fit tests (as well as many other nonparametric procedures) much more widely
than heretofore. What is required is a random sample with observations in a
separable metric space. Thus multivariate data and many types of continuous
time series data are suitable candidates for such tests.

3. The linear ordering given in the proof of Theorem 3 is constructable so
that, in principle, the test statistic D, is computable. We have not examined
this matter carefully, but there is no obstacle for multivariate data at least. It
is not essential to have the linear ordering completely specified in order to get
an adequate approximation to D,. Specifically, if one stops with the partition
Z,, and treats each of its elements as if it were a point, Z, will be a linearly
ordered space (induced by the indices on the elements of Z,). One can compute
the analog of D,, say D,™, by identifying each observation X, with that element
of Z, within which it falls. It can be checked, using (2), that D, / D, as
m — oo. A crude (but perhaps adequate) upper bound on the error D, — D,™
Is SUp,cz Py(A).

Acknowledgments. The author was aided by helpful conversations with
Raymond Cannon, Wassily Hoeffding, J. H. B. Kemperman, Balram Rajput
and Flavio Rodrigues. He also wishes to thank the referee for comments which
led to improvements and clarifications.

REFERENCES

[1] HaLmMmos, P. (1950). Measure Theory. Van Nostrand, Princeton.

[2] KEMPERMAN, J. H. B. (1956). Generalized tolerance limits. Ann. Math. Statist. 27 180-186.

[3] Neveu, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day,
San Francisco.

[4] RopriGues, F. W. (1972). Some structural relationships between weak convergence of prob-
ability measures and convergence in probability. Ph. D. Dissertation, Univ. of North
Carolina, Chapel Hill.

[5]1 Simons, G. (1972). Generalized cumulative distribution functions: I. The linear case with
applications to nonparametric statistics. Institute of Statistics Mimeo Series No. 835,
Department of Statistics, Univ. of North Carolina.

[6] SkoROKHOD, A. V. (1956). Limit theorems for stochastic processes. Theor. Probability Appl.
1 261-290.

DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HiLL, NORTH CAROLINA 27514



