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ASYMPTOTIC MAXIMA OF CONTINUOUS
GAUSSIAN PROCESSES!

By M. B. MaARrcus

Northwestern University

Let X(t) be a stationary Gaussian process with continuous sample
paths. The behavior of | X(#)| as t — oo is considered. In particular, condi-
tions on the spectrum of the process are given which determine whether
lim sup;-.« | X(#)|/(log )t = Const. > 0. These conditions are complete ex-
cept when the spectrum of the process is continuous-singular. The main
concern of this paper is to study the asymptotic behavior of some specific
examples of X(¢) with continuous:-singular spectra.

Many examples are given showing the asymptotic behavior of station-
ary Gaussian processes with discrete spectra and their indefinite integrals.

1. Introduction. This paper continues the program of Marcus (1972a) to
study the asymptotic behavior of continuous Gaussian processes with minimal
conditions imposed on the covariance or spectrum of the process. Let X(¢) be a
separable, stationary Gaussian process, EX(t 4+ h)X(t) = F(h) = §i cos Ah dF(2).
Clearly, EX*(t) = F(0) = F(co).

If lim sup,_,, |X(#)|/9(f) = C, a.s., 0 < C < oo, then X(r) will be called rela-
tively stable with respect to g(f). We will consider the question of when X(¥)
is relatively stable with respect to (log f) and state our results in terms of the
spectrum F of the process.

Belyaev (1958) has shown that when the spectrum has a continuous component
lim sup,_,, | X(f)] = oo a.s. If F is discrete denote the points of increase of F by
{2} and the corresponding jumps by {a,’}. Belyaev (1958) also points out that
if 3} a, < oo the corresponding process is continuous and if 3} a, = o and
the 2, are incommensurable, then the corresponding process is unbounded with
probability 1. The remaining case is obvious. If 3 @, = co and the 4, are not
incommensurable (i.e. there exist integers n, and a # > O such that 1, = n,6)
then, since the corresponding process is periodic, if it is continuous it must be
bounded.

In Marcus (1972a) it was shown that for all continuous stationary Gaussian
processes

. X
(1.1) lim sup, .. (Th(ig)_l)& < Fi(oo0) as.

It also follows from Berman (1964) and Pickands (1967) that when
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lim sup, ., F(h) < & (3 > 0) then

| X(0)|
WQ(F(OO)_B)%'

It is well known that F = F,, + F,, + F, has a decomposition into an abso-
lutely continuous, continuous singular and discrete measure (with respect to
Lebesgue measure) with lim,_, £,,(k) = 0 and lim sup, ., F;(k) = £,(0) = F,(c0).
Furthermore, F,, = M + M, has a decomposition into pairwise mutually sin-
gular measures with lim,_,, M,(k) = 0 and lim SUp;_... M(h) + 0.

Using the above notation (1.1) and (1.2) together imply that if F = F,, + M,
then

(1.2) lim sup,_,,,

. X(t
1.3) lim sup, .. Tzilo%y = (Fo(c0) + My(oo))t a.s.
In Theorem 2.1 we show that if F = F, then
1.4 lim su _1X(0l 0 a.s.
(1.4) Pee (2 log 1)

so that if F = F,, + M, + F, (with F,(co) > 0) (1.3) still holds although in this
case F(co) > F,(00) + My(c0).

In order to fully answer the question of when X(f) is relatively stable with
respect to (log#)? it remains only to consider the case F = M. As long as
lim sup,_., M(h) < M(co) (this can be realized) (1.2) can be used to show that
X(r) is relatively stable with respect to (log r)? although we cannot determine
the proper constant. However, it is possible that lim sup,_., M(kh) = M(co). In
this case (1.2) is of no help.

In Theorem 3.2 we give examples of stationary Gaussian processes with spec-
trum of the type M where lim sup,_,M (h) = M(co) and for which

lim sup,_,, _& =C a.s.
(log 1)
for some C > 0. Therefore, the conditions used in (1.2) are not necessary in
general.

It seems reasonable to conjecture that if X(f) is a continuous stationary
Gaussian process and if its spectrum F has a continuous component of mass
F(c0) = F,(0) 4 F,(c0) then limsup, ., |X(#)|/(2 log t)* = F,}(co0). If this is
true it would be an elegant extension of Belyaev’s result.

Considering (1.4) it is interesting to see what growth rate can be achieved by
continuous stationary Gaussian processes with discrete spectrum. We examine
examples of these processes given by

(1.5) X(H) = oo a[n, cos 27427 + 7’ sin 27%12x]

where 7,, ,’, k =0, 1, ... are independent standard normal random variables
with 3] |a,| = oo ({a,} € I is necessary for EX*(f) < o). In Theorem 3.1 and
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Corollary 3.2, utilizing the lacunary nature of the processes (1.5), we show that
various growth rates are possible. In particular examples of these processes are
found that are relatively stable with respect to (log )*~*/* for any ¢ > 0.

In Marcus (1972a) the following upper bounds for the asymptotic maxima
of a continuous Gaussian process with stationary increments is given: Let Y(¢)
be such a process with EY*(r) < Q%f), Q 1, then

(1.6) lim sup, ... IY((:))’ <C as. (C>0)

where

h(t) = Q(f) [(log log 1) + (Ql(t) i _Q.(ui‘)_ du)*].

We obtain examples of continuous Gaussian processes with stationary incre-
ments by considering

(1.7) Y(f) = ¢ X(u) du

for processes X(u) given by (1.5). In Theorem 4.1 we show that many of these
processes are relatively stable with respect to A(#), i.e. the upper bound is achieved
up to a possible multiplicative constant. Other results relating to the examples
in (1.5) and (1.7) are given in Sections 3 and 4.

Throughout this paper the symbols C and C’ are used to designate finite con-
stants that are greater than zero. The appearance of the same symbol in two
different equations does not imply that the constants necessarily have the same

value.
I acknowledge with thanks many helpful discussions with my colleagues Colin

Graham and Don Saari.

2. Processes with discrete spectra. Let F = F,. The spectrum is charac-
terized by a sequence {a’}, k =0,1, ... such that F(1,) — F(4,—) = a},
e oa,’ = F(oo). A stationary Gaussian process with this spectrum is given by
2.1) X(t) = XDrooay[n cos A, t + ' sin 4, 1]
where 7,, 7,/ are independent standard normal random variables. The following
theorem is a simple application of Theorem 1.4 in Marcus (1972a).

THEOREM 2.1. Let X(t) be a real valued continuous stationary Gaussian process

with discrete spectrum; then

i Xl _
(2.2) lim sup,_,., W =0 a.s.

Proor. All such processes can be represented as in (2.1). For any ¢ > 0
choose N sufficiently large so that Y 3y, 4, < ¢*. Consider

(2.3) Y(r) = Mo auln, cos 4.1 + 3, sin 4, 1]
Z(t) = Dvan+1Wln, cos A, + 7,/ sin 2,¢]
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Clearly X(t) = Y(¢) + Z(t). Since |Y(1)| £ D a7 + [7])> |Y(9)] is finite
almost surely. By (1.1)

lim sup 120 € as
T 2lognt = o

Consequently

lim sup, ., _1X@l <e¢ as.
(2 log 1)
and since this result holds for all ¢ the result follows. ,
As a Corollary of Theorem 2.1 we obtain a useful result about cosine series.
(This is known in the theory of almost periodic functions.)

COROLLARY 2.2. Let {a,} € I* and {1} be a sequence of nonnegative numbers; then
2.49) limsup, ., 2ii,acos 4,h = 7, a,.

Proor. For these values of {a,} and {4,} consider the process Y(¢) given in
(2.3). The covariance of Y(¢) is };¥_,a,*cos 4, h and

2.5) lim sup,_., 217 oa,cos A,h = XV a2,

To see that (2.5) holds note that Y(r) is a continuous stationary Gaussian process
with discrete spectrum. Its covariance is equal to };&_,a,* at # = 0 and if (2.5)
is not correct then (1.2) implies a contradiction of Theorem 2.1. Since (2.5)
holds for all N (2.4) follows.

Given Theorem 2.1 the question arises how fast can continuous Gaussian
processes with discrete spectrum grow. We will show by examples that diverse
growth rates are possible including processes that are relatively stable with re-
spect to (log #)*~9/ for any ¢ > 0. Four lemmas are needed to do this.

LeMMA. 2.3. Let{a,} € I’ and &, be independent standard normal random variables.
Then

lim supy_. | 25w Al <1 a.s.
RlogN 3x_ya)t —
Proor. Y, = Xv_ya, 6. /(Xa_ya,’)t is a standard normal random variable;
Prob[Y, = (1 + ¢)(2log N)}] < 1/N**¢. The result follows from the Borel-
Cantelli lemma.

LemMA 2.4. Let {a,}el', a, >0, }},.va, > 0forall N> 0 and &, be inde-
pendent standard normal random variables. Then

lim sup,_,, Ly @l <C as.
max [>2 ya,, (logN X»_ya,’)] —

for some constant C < oo.

Proor. This is Lemma 2.1 of Marcus (1972b).
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The next lemma is similar to Lemma 2.4; however, since we consider the
sums Y ¥ ,a,|§,| it is not necessary to require that {a,} !, i = 1, 2.

LemMmA 2.5. Let a, = 0 and &, be independent standard normal random variables.
Then

lim sup,_,., 2ia-0 95| <C as.
max [3ia, 4., (log N 270 a,7)] — -

for some constant C < oo.

Proor. This proof follows from the proof of Lemma 2.1 of Marcus (1972b).
In the next lemma the random variables are not required to be normal.

LEMMA 2.6. Let {a,} € ? but not in I', a = 0 and &, be independent identically
distributed random variables with E|§,|* < co. Then

lim sup,,,_,m,ZZ:EV’IL"—‘Z"EIGI{'ﬂ| =1 a.s.
n=0 an n

Proor. Inequality IT in Kahane (1968) page 6, states that for a positive ran-
dom variable X such that EX? < oo and for 0 < 2 < 1, by Schwarz’s inequality,

Prob [X > 2E(X)] = (1 — 2 £X)
E(XY)
With X = >I¥_,a,|§,| we obtain
(2.6) Prob [M > z] > (1 — 2C
Zﬁ:o anE|En|
where C = E*|¢,|/E|§,|>. By takingA=1—10,0 < d < 1 we have
N
2.7 lim sup, ., —2n=0 %l > 1
@7 P e Bl =

which probability at least Cé*. However, since )] a, = oo the event in (2.7) is
a tail event and therefore it holds with probability 1. Since this is true for all
0 < 0 < 1 the lemma follows.

THEOREM 2.7. Consider
(2.8) X(H) = Nrooan[n, cos 27*2x 4 3,/ sin 27¥12x]

where 1, n,’ are independent standard normal random variables, {a,} € I* but not in
Iand a, = 0. Then for each sample path in a set of measure 1 there exists a T,
such that forT = T,

(2.9) SUP;cro,r1 [ X(0)] = C'{ 20" a, + (log, T 35267 a,%)t}

for some constant C' < co. Furthermore
(2.10) limsup,.. — AWl > ¢ as
| 225224 ay|

for some constant C > 0. (Note [.] denotes integral part).
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Proor. Since the points of increase of the spectrum of X(f) are bounded
above, X(¢) is continuous (see Belyaev (1959)). We shall obtain the upper bounds
for X(r) first. Let 0 < ¢ < 2% and set X(f) = Y, () + Z,(f) where

(2.11) Yu(t) = Zisoaln, cos 27*2x + 5" sin 27*2x]
(2.12) Zy(t) = Yr-n1 @[7, €08 27427 + n,' sin 2-*127] .
We have

SUP;eroomy [Yu(D)| = Zio @u(|mi] + I24)]) -
Next consider
Zy(t) = X5_yn @[l — (1 — cos 2-*127)]
(2.13) 4+ w1 @y, Sin 27¢ 27
1Zy(D] = |2 5-we1 @l + X 7_ys1 a7y sin? 271z
4+ Divone1 @G| sin 272z
The last term in (2.13)
Dii=na @l SIn27F 27 < 2728 Y% L. 4,27k p,|
S dym2" Ve v |9,'|27*

where 4, = sup,. a,. Similarly

Divon+1 Q|m| Sin? 275t < wd 2V Y L |27

Combining these equations we obtain

(2'14) IZN(t)l = |Z?¢°=N+1 ak7]k| + dy w2V Dihen+1 |?k'|2_k
+ Ay 2 T w27

We apply Lemmas 2.3 and 2.4 to (2.14) and obtain that for each sample path
in a set of measure 1 there exists an N, such that for N > N,

(2.15) 1 Zy(0) S 2108 (N + 1) Ef_pmal] + Cay(log (V + 1))
S CTlog (N + 1) iy al]t.

Similarly we apply Lemma 2.5 to Y ,(7) to obtain that for each sample path in
a set of measure 1 there exists an N,’ such that for N > N/

(2.16) |Y,()] < Cmax [, a,. (log N T, a,)] .

For each sample path on a set of measure 1 choose N > max (N,, N,’) then (2.15)
and (2.16) both hold. Also since {a,} € I, | Z,(f)| = o(log N)* as N — oo on this
set. Note that the base of the logarithm whether 2 or e only affects the values
of the constant. Therefore (2.9) is satisfied for T = 2%, M = N. We can readily
extrapolate for the intermediate values of T because {a,} € I* implies a, — 0 as
k — co. Therefore for T, sufficiently large (dependent on the sample paths in a
set of measure 1) we obtain (2.9).
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We now obtain (2.10). Let 0 < ¢t < 2%, set & = t/2¥ and define ¥, (k) =
Yy (2"h) for Y, given in (2.11), i.e.

Yy(hy = DY oa[n, cos 2Y~*m2x + 5.’ sin 2Y~*h27x] .
The random function ¥, (k) is periodic on [0, 1]and is a lacunary series; therefore

(2.17) SUDPye 0,13 |YN(h)| = C i oayn

for some constant C > 0. This inequality exhibits a property of lacunary series,
for further reference see Marcus (1972b) Section 2. It follows that

(2.18) SUP;ero,2n | Yul(t)| = C 200 ai|nal -

Applying Lemma 2.6 to (2.18) we obtain that for each sample path in a set of
measure 1 there exists a sequence of integers N, — oo such that

Supte[O,ZNkllyNk(t)I = (1 —¢C ikay.

Note that Z () (see (2.12)) is symmetric and for each k it is independent of
Yy, (7). Consequently with probability at least § (2.18) holds with X, (r) re-
placing Y (7). It follows that (2.10) holds with probability at least . However,
since }; a, = oo (2.10) is a tail event so the probability must be one.

In the following Corollary we present some examples obtained by employing
Theorem 2.7.

CoROLLARY 2.8. Let X(t) be given by (2.8) then under the following conditions
on {a,} it is relatively stable with respect to the corresponding g(t), i.e.

2.19 lim su Wl’ﬂzc a.s.
(2.19) Pem s

The conditions are (define a, = 1):

a) g, =k 3 <a< 1;g(t) = (log )=

b) a, = k7¥(log k)= ¢ > 0; g(f) = (log t)¥(log log r)=1+a/2

€) a, = (log k)?[k; B = —14; g(f) = (loglog £)'+¢.

Proor. The only point to comment upon is that the lim sup in (2.19) is a con-
stant. From Theorem 2.7 we see that the lim sup is bounded above and below
by positive nonzero constants; however, since it is a tail event it must be equal
to some constant a.s.

We have now shown that the processes given in (2.8) can have diverse growth
rates. It seems natural to question how important is the fact that the points of
increase of the spectrum converge to zero. Can similarly rapid growth rates be
achieved if the points of increase are bounded away from zero? Using Slepian’s
lemma we show that the convergence of the points of increase of the spectrum
to zero is of no particular significance.

Let us slightly modify the series given in (2.8) and consider

(2.20) Y(1) = £/2¢ 4+ N5, @[y, cos 2-#2x + p,’ sin 2-+2x]
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where ¢ like 7, and 7,’ are independent standard normal random variables. Also
let >75_,a,; = 4. The covariance of Y(¢) is

(2.21) T(h) = } + XI5, a, cos 2-*h2x .

Note that I'(0) = 1 and I'(#) = 0. Y{(r) is only a slight modification of X{(f) and
it is easy to see that the results in Corollary 2.8 also appl)" to Y(t) (except to
change the constant C in (2.19)). Now let I',(k), I';(0) = 1 be any covariance
function and let Z(f) be a stationary Gaussian process with covariance R(k) =
L'(#)T, (k). It follows from Slepians’ lemma (see Marcus, Shepp (1972) Lemma
2.2) that if Y(r) satisfies (2.19) then

2.22 lim su ﬁwlz.(’_)'zc a.s.
(2.22) Pee T 2

Suppose we choose I'y(h) = cos 2h2x; then
R(h) = %{cos 2h2x + Y v_,a’[cos (A + 27¥)h2w + cos (2 — 27*)h2x]} .

In this example the points of increase of the spectrum converge to 2. Similarly
T',(h) can be taken to be any countable cosine series and R(k) will then be the
covariance of a stationary Gaussian process Z(f) with discrete spectrum and its
growth rate will be greater than that of Y(¢).

3. Processes with continuous singular spectrum. As stated in the introduc-
tion F,, = M + M, can be decomposed into pairwise mutually singular measures
with lim,_,, My(h) = 0 and lim sup,_,, M(k) # 0. From (1.3) we see that with
regard to relative stability processes with spectrum of the type M, behave the
same as those with spectrum of the type F,,. The gap in our knowledge con-
cerning the relative stability of stationary Gaussian processes occurs for pro-
cesses with spectrum of the type M. We make one contribution in this direction
by exhibiting examples of continuous stationary Gaussian processes with spec-
trum of the type M for which lim,_, M(h) = M(oo) and which are relatively
stable with respect to (log f)t. This shows that lim sup,_., M(h) < M(oo), which
implies relative stability with respect to (log #)* by (1.2), is not a necessary con-
dition. We begin with a lemma.

LemMa 3.1. Let T'(h) = TI5.: Uy (k) where

_ 1 A g -n
(3.1) Ty ) = (1 + gy Tt cos2 h27r>
and N;,j=1,2, - .. isan increasing sequence of positive integers with 3,5_, N;™' < oo.

Then T'(h) is a characteristic function, I'(0) = 1 and lim sup,_,,, I'(k) = 1.

Proor. It is clear that T'y (k) is a characteristic function since it is a cosine
transform of a discrete measure with mass at zero and 2z/2", n =0, 1, ...,
N; — 1. The function T'(h) = lim,,_,, []7-1 [y (k) is a limit of characteristic
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functions. To show that I'(k) is a characteristic function it is only necessary to
show that it is continuous at # = 0. Let & < 1, then

F(h) = I (L + 71__‘ in_ol (1 _ 2~2mp2 >>
= Jj= 2 2Nj = >

w B vty

(3.2) =TI (1 - 4y, T2 ")
= (1_ K )>ex [_]ﬁ © L}
= J7=1 2NJ = p i=1 Nj .

Since 3} N;7! < oo, I'(h) is continuous at ~ = 0. It is obvious that I'(0) = 1;
we now show that limsup, ., I'(k) = 1. To do this we calculate I'y, (2%¥). If
J=kTy(@") =1 IfN;>N, + 3

1 2%2n Ni-1 2%, gt
FNj(sz) =3+ 2N, { nky cOS T 1+ Znizv,,+s<1 - W?)}

2

=1 - —.
= N

J
This calculation also shows that I'y (2") = (1 — 2/N;) if N, < N; < N, + 3.

Therefore

e = (1= ) 00 435

J J
and since >} N,;7! < oo, lim sup,_, I'(k) = 1.

THEOREM 3.2. Let X(t) be a stationary Gaussian process with covariance function
I'(h) = 117 Uy ;(h) where T'y () is given in (3.1) and N; is an increasing sequence
of positive integers with 3,5., N,™* < oo. Then X(t) has continuous sample paths,
T'(h) = M for some continuous singular measure M, lim sup, ., I'(k) = I'(0) = 1 and

(3.3) lim sup,_,., _X@l > C a.s.
(2 log t)t
for some constant C > 0.
Proor. The continuity of X(r) follows from (3.2). To obtain (3.3) we com-
pare X(f) with processes

1 N1 - PP
Xy () =72t + __—__ i7" 9, cos 27" 2x . SIN 27" 127
(1) =7/ + Ny PIEr + 7

where %, 3,, 7., n =0,1, ... are inde'[)endent standard normal random vari-
ables. By precisely the same method used to obtain (2.15) we obtain

C i
SUP;e 0,2/ 51 |XNj(t)| = Nt pIRErTA

J

It follows from (2.6) that for some C’ < 1
Prob [sup,co,an ;3 | Xy, (0] = C'Nit] =2 «a
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for some @ > 0 independent of N;. Therefore

| X s ()]
Prob [supte[,’,yﬂ ( : gﬂ L = CH:I >a.
The covariance of Xy (1) is T'y () given in (3.1). Note that.I'y () = 0 and so
INGESS w,(k) whereas I'(0) = I'y (0). Therefore by Slepian’s lemma (see Marcus,
Shepp (1972), Lemma 2.2 for further reference)

| X(9)| "
(3.4) Prob l:sup,e[,,,,vﬂ Tog 1)F =2C" |z a
and this holds for all N;. Consequently, (3.3) holds on a set of measure greater
than or equal to a. Since (3.3) is a tail event and a > 0 the measure must be
equal to one.

4. Processes with stationary increments. We will now examine integrals of
continuous stationary Gaussian processes of the type given in (2.8) to obtain
examples of continuous Gaussian processes with stationary increments that have
various rates of growth. Consider

4.1) Y(t) = §t X(s)ds = Y5_o 2%a,[n, sin 27%2x + 7,’ cos 27*12x] .
Note that
E(Y(t + ) — Y(1) = 4 Xip_, 2%a,? sin? 2~ *hn < 4ak® T5. @)

for k sufficiently small; therefore the random series in (4.1) is a continuous
Gaussian process with stationary increments. In fact it is almost surely the
integral of X(s) as claimed. This follows since a random series of the type given
in (2.8) can be taken to be the Karhunen-Loeve expansion of X(s). If X(s) is
continuous then almost surely the series is uniformly convergent (see Garsia,
Rodemich and Rumsey (1970) for further reference) and therefore it can be
integrated termwise.

Following the discussion in the introduction we will find a monotone majorant
Q'(?) for EY*(1).

EY* (1) = 4 3 7., 2%, sin® 27 %tz .

Let 271 < ¢ < 2%; then

(4.2) EYY(t) < 4 DV 2%a? + o2 D5 v al]
When ¢t = t, = (%)2¥
(4.3) EY() 2 4] 32 D20 + 5 2 Brnar |-

It follows from (4.2) that we can choose
(4-4) Q'(r) = C{Xi2p" 2%a + 1 XV nog,41 W'}

and we see from (4.3) that this function cannot be made appreciably smaller.
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Let g(¢) be an increasing function for which

i Yol _ :
(4.5) lim sup, ., 00090 = C as.;

we can now state Theorem 4.1.

THEOREM 4.1. Let Y(t) be given by (4.1), Q(¢) by (4.4) and g(¢) by (4.5). The
following examples can be realized:

a, (1) 9(?)
la. 27*k~Y(logk)*, B = —3 1 (log log 7)**#
Ib. 27 k=, I <a< 1 1 (log 1)*-=
Ic. 27kk=i(log k)=+7%, ¢ > 0 1 (log £)}(log log £)=-+e/2
2. 27kg-d (loglog )t  (log t)}(loglog 1)~}
3. 27k a< d (log £)t-—= (log £)}
4., 27RMETHEO0< r< 1 exp{3(log 1)} (log¢)*-m72
5. 27k, 0< B< ], —0o <a< oo tH(logt)~* (loglog £

The upper bounds given in (1.6) are achieved in Examples 3, 4 and 5.
Proor. For 2¥-! < ¢t < 2% let Y(¢) = Xy(f) + Zy(f) where
Xy(t) = 2.0 2%a [y, sin 2727 + 5,'(1 — cos 27*12x)] .

Therefore,

(4.6) SUP;epo,amy | Xn(D)] = 2 20 2% (Il + [74]) -
Also with probability at least 4

4.7) SUP;epo,2vy [ Xn(1)] = € Xk 2%a|mu|

for some C > 0 independent of N. Inequality (4.7) is obtained in a similar
manner as (2.15) by considering the sine series, under a change of scale, as a
lacunary series. Since the series in (1 — cos 27%12r) is independent of the sine
series and symmetric it is equally likely positive or negative when the sine series
achieves its maximum. This accounts for the probability 4 however, since we
are ultimately concerned with tail events any positive probability suffices. Also
since Z(f) is symmetric and independent of X,() it follows that with proba-
bility 1

(4.8) SUP; e 0,277 | Y(7)] _2,_ C X 2"l -

The lower bounds for the limit superior of Y(¢) are all computed from (4.8) by
means of Lemma (2.6) except for Example 5. In this case we make use of the
fact that lim sup,_, |7,|/(2 log k)t = 1 so (4.8) is greater than 2%a,(2 log N)}
infinitely often. ,

It we could replace X,(¢) in (4.6) by Y(r) we would be finished since the upper
bounds could be obtained by Lemma 2.5 and in the cases considered they would
agree with (4.8). In fact this is possible; we now show that Z,(f) does not
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contribute to the upper bound (except perhaps to increase the multiplicative
constant).

Zy(t) = Dvenws 2ka [y, sin 2-*2x 4 ,’ sin® 2~ *¢x] .

It is enough to consider the first term

w1 2kayy, sin 27F2x
= Miv-yn 2ka,n[27*2x + (sin 27*2x — 27%27)]
S 20| Do @l + Di-nia 25y |n]|sin 274 2r — 27*12x]

S 2 Ny Gl + 47 Dy @27y -

Using Lemmas 2.3 and 2.4 we see that for each sample path in a set of measure
1 there exists a T so that for t > T, Z,(f) is a.s. bounded by

ClH X v-y+1 a2)(log log 1)t + dy . (log log £)t]

where N = [log, f] and 4, = sup,. a,. From (4.4) we see that Q(r) is at least
comparable to #(37. 4, ')t s0 Z,(¢) is a.s. bounded by C’'Q(¢) (log log #) for
t = T. In the examples given Q(#)g(?) is calculated from (4.6) and is at least
this large.

It is a simple matter to check that the upper bounds given in (1.6) are achieved

in Example 3, 4 and 5.
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