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SUMS OF INDEPENDENT RANDOM VARIABLES ON
PARTIALLY ORDERED SETS

By R. T. SMYTHE
University of Washington

Let (57, <) be a partially ordered set, {Xa}ae .o @ collection of i.i.d.
random variables with mean zero, indexed by . Let Sp = Yasp Xa,
|8| = card {a e : a < B}. We study the a.s. convergence to zero of Z; =
S5/|Bl, when [8] - co.

We first derive a Hijek-Rényi inequality for K7 = {(k1, k2, =+, kr): ki
a positive integer}. This is used to derive a sufficient condition for the
convergence of Zp for a class of partially ordered sets including K7. For
many of these sets (and certain other sets as well) this condition is shown
to be necessary. Finally a weaker sufficient condition is derived for a
much larger class of sets, giving a theorem analogous to one of Hsu and
Robbins for the linearly ordered case.

0. Introduction. This paper contains complements to and generalizations of
the results of [9]. In Section 1 we prove a Hajek-Rényi type inequality for n-
dimensional integer lattices, verifying a conjecture of Pyke [8]; in Section 2
this inequality is used to prove a strong law of large numbers for a class of
partially ordered sets, including the integer lattices considered in [9]. The
present proof is completely elementary and offers some insight into the need for
the moment conditions found to be necessary and sufficient in [9]. Section 3
contains a partial converse to the law of large numbers of Section 2. Finally
in Section 4 we prove an analogue of a theorem of Hsu and Robbins which
gives sufficient conditions for a strong law of large numbers on a large class of
partially ordered sets.

1. A Hajek-Rényi inequality for integer lattices. In 1955 Hajek and Rényi
proved the following inequality [6]:

(1.1) Let X, X,, -+, X,, - -- be independent random variables with mean
zero and Var (X,) = g,2 < oo for each k. Let {b},_,,.. be a non-decreasing
sequence of positive numbers, ¢ any positive number. Then

P{max, gz, [Si/bi] = ¢} < (1/¢*) Zja0/b7%

where S, = >, X,.

In this section we will extend this inequality to sums of random variables
indexed by an integer lattice. Let K, be the set of r-tuples k = (k;, k;, - -+, k,)
with positive integers for coordinates; let < denote the coordinate-wise partial
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ordering on K,. We consider a set {X, : k € K,} of random varlables mdexed by
K,, with mean zero and Var (X,) = ¢, for each k; let S, = 3}, X

We will impose two conditions on the X,, which stop short of requlring their
mutual independence.

(1.2) E{X, |o[(X));i<k]} =0 for each keKk, .

(1.3) If &, =0{(X;);j <k}, and m A n denotes the coordinatewise infi-
mum, then E{. | & | F .} = E[+ | F nna}-

Conditions (1.2) and (1.3) guarantee in particular that the partial sums form a
martingale on K,. Clearly mutual independence of the X, will imply both
conditions.

For an array of constants {b,; k € K,} we define Ab, to be the rth-order finite
difference of the b’s at the point k. Thus for example if r = 2, Ab, ,, = b, ,,
bysm — bpms + by m_y (Where b; = 0 if i or j = 0).

THEOREM 1.1 Let {X,; k € K.} satisfy (1.2) and (1.3), with E(X,) = 0 and 0, <
oo for each ke K,. Let {b;keK,} be an array of positive constants such that
Ab, = 0 for each k € K,. Then

Plmax, g, [Si/b| = ¢} < (#77¢*) Disa 07[bi7 -

REMARK. We note that for » = 1 the theorem gives the usual Hajek-Rényi
inequality with a factor of 4. This loss is due to the fact that our proof does
not reduce to the direct proof of Hajek and Rényi for the case » = 1, but rather
proceeds through a submartingale inequality of Doob, a detour necessitated by
the lack of linear ordering when r > 2.

We begin with a lemma which improves slightly some known martingale
inequalities of the Kolmogorov type (cf. [1], [11], [12]).

Lemma 1.1. Let {M,, 5.} be a martingale or a positive submartingale such that

the & satisfy condition (1.3). Then
P{max, ., |[M,| = ¢} < (4"7'/c®) max, ., E{M,’}.

Proof. (r=2). Letn = (n, n,). Following Zimmerman ([12]), set Z,(w) =
max, g;<,, |[M;j(@)|, l(0) = inf{i: Zi(w) = c} (or oo if no such i exists), J(w) =
inf {j: |M};| = c}. Let A = {max,;|M,;| = c}; then

A=Un U B; where B;; = {l(w) = i, J(0) =j}.

Then
SB” my = Vo My + [M,; — Mu]}2 Z §5,; Mi;
since B{M;(M,; — Myj)1,,;} = E{M; 1, E[M, ; — M;;|.%,]} 2 0 by (1.3).
Thus ’
E[ J] = SA nlJ h Zil SB“ nlJ = ZJ SB MZZJ = 2P(A)
and since {M, ;; &, ;} is a martingale (or positive submartmgale):

E[M?,] < Efmax,;,, M} < 4E
by an inequality of Doob ([2] page 319).

M.}
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The extension to r > 2 is as follows: we define I, I, ..., I, as I, J are
defined above; we define

A= Uzl—l ce Uin,f'=1 Bilu-i,.
where B‘l"“'r = {Il(a)) = ’v ey, ]r(w) = i,.}.

We therefore have

2 2
SBil"‘i, MnliT..ir = SBil"'i,- Mil"'ir
as above. Thus

E{M nII I,} = ’P(A)
and we have

2 2
E{M; ;,....} = E{max,; ., - S MAX g My )

Using (1.3) above, max,, gsng * 0 MAX g o MO, is a positive submartingale
indexed by i, (with respect to the fields . nyigng--n,)- Using Doob’s inequality
again, we have by induction that
P(A) < (4Y/*)E[M, ingom,} = (4771 max, o, E{M*}. O
ProoF oF THEOREM 1.1. Let T, = 3}, X;/b;. Then

S = Zisu X = Zysu 5(AT)) = X,1<u(AT)) Dliss (Bby)
= Zisk (80)) Zisis (AT)) = Yz (B0)) 2isisk X,/b; -
Since 31, (A0,)/b, = 1 we have {|S,/b,| = ¢} C {max, | X,z X;/8| = ¢}. Thus
{max, |S,/b,] = ¢} C {max, max, | }} << (X;/b;)| = c}. Now the sum in the right-
hand side above is equal to the rth dimensional difference of the partial sums

2is; (Xi/b,) taken over the 27 vertices of the “rectangle” i < j < k; thus we
have that

{max, , | Zigisu (X,/8))/] = ¢} < {max; | X, (Xi/b)| = ¢/27}.

It therefore follows by Lemma 1.1, since (3, (X,/b,), &) is a martingale,
that
Plmax,, |S./b| = ¢} < (477)E(Lisa (Xi/b)F -

But (1.2) and (1.3) imply that the random variables {X,/5,} are orthogonal; thus
E{Ziza (Xi[b)Y = Xica 0*(X)[b1

and the theorem is established.

2. Alaw of large numbers. The inequality of Theorem 1.1 can be used to
prove a strong law of large numbers for integer lattices—in fact for partially
ordered sets somewhat more general than the lattices K,.

Let (%, <) be a denumerably infinite, partially ordered set. We define, for
ae Y, |la| =card{ge . % |p < a}. We want to define a class of sets which
look, locally, like the lattices K, with missing points.

DEerINITION 2.1. .7 will be called a local lattice if

(i) {a: |a| = j}is finite for each j;
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(ii) for each a e %7, there exists a one-to-one function ¢,: {fe ¥ |f <
a} — K, for some r = 1 which preserves the order relation (we require that
r be the same for each a, but not that the ¢, be consistent);

(iii) &7 is filtering to the right.

ExampLE 2.1. Trivially, K, itself and any infinite subset of K, which filters
to the right are local lattices.

ExAMPLE 2.2. The partially ordered subset of R* defined by UJs_, U=, (n/2%,
k) is a local lattice (for » = 2). On the other hand, the set |Jy., Uy, (/2% k)
satisfies (ii) and (iii) of the definition but violates (i).

Let %7 be a local lattice. Let {X,: @ € %7} be a collection of independent
random variables with mean zero, and define S, = ],., X, We wish to study
the a.s. convergence of Z, = §,/|8| when |8] — oo.

DEFINITION 2.2.
(a) d(j) = card{ae 7 ||a| = j} j= 1,2, -+
(b) M(x) = X, d(j) x =213 Mx)=10=x< 1.
LEMMA 2.1. For any random variable X,
E{M(|X])} < o0 & 1 7.,d(j) P{|X] 2 j} < oo
PRrOOF.
M(x) = 27.4()) 1ij,e(X) + 1p(x)  so that  E{M(]X])}
= limy_., 217, d(j) P{|X| 2 j} + P{0 < |X] < 1}
= N7d() P{|X] = j} + PO = |X] < 1}
by monotone convergence.

From this point on we will assume that the X, are identically distributed. Let

Y/)=X, if |X|<|q

a

=0 if X, > |af
and define Y, = Y,’ — E(Y,”). Then
Za PX, # Y.} = Lo P{IXa| > lal} = Z7. d()) P{IX] > Jj} -

Set T,) = Ylas; Yo'- Then if EM(]X]) < oo, it follows from Lemma 2.1 and the
remark above that };, P{X, + Y,'} < oo; thus by the Borel-Cantelli lemma, the
convergence of 7'//|8] will imply the corresponding convergence for Z,.

In order to prove our main result some constraints on the growth of M(x)
will be needed. We recall a concept due to Feller, that of dominated variation
[5] A non-decreasing function U varies dominatedly (at infinity) if there exist
constants C, r, and f, such that

2.1) U(tx)|U(f) < Cx7 for x> 1,t>1¢,.

Feller shows in [5] Theorem 1 that, whenever };7., d(j)//* < oo, our function
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M(x) varies dominatedly with index y < 2 if and only if
(2.2) lim sup,_, [/ M(1)] 255, d(x)/x* < oo .
This turns out to be precisely the class of M-functions for which we can prove

a strong law of large numbers. (Clearly dominated variation is a weaker con-
dition than its more familiar parent, regular variation ([5] page 107).)

LEMMA 2.2. Let the X, be identically distributed as X. Suppose that

(1) X dDIP < o0
(ii) M varies dominatedly with index < 2.
(iii) EM{|X|} < oo.
Then 3}, 0%(Y,))/|a|* < oo.
Proof. Let F be the common distribution function of the X,. We have
Za (Y ) laf = 2o d(n)/n? § 50 x* dF(x)
= Y dm)[n* Lns Smor<inism X' dF(X)
= D dm)[n* Tinr Ymacimsm M(IXDIXM(|X])] dF(x)
< Ziadn)mt Do [m[M(m — 1)] § s cism M(|X]) dF(x)
= 2=t morcimsm M(X)) dE()[m? [ M(m — 1)] 233, d(m)/n* .
But by hypotheses (i) and (ii), [m*/M(m — 1)] >}7_,, d(n)/n* is bounded uniformly
in m. Therefore ), o*(Y,)/|a|* < K Yin1 Smo1<izism M(|X]) dF(x) < oo. [J

THEOREM 2.1. Let &7 be a local lattice satisfying conditions (i), (ii), and (iii)
of Lemma 2.2. Then given any ¢ > 0,

P{|Z,| > ¢ finitely often} = 1.

ProorF. We know from Lemma 2.2 that under the hypotheses of Theorem
2.1, 31, E(Y /|al* < oco; thus in particular ;.5 E(Y,)/|a|* >yt 0, and by
Kronecker’s lemma, 1/N* 3, <v E(Y,’) —51. 0. Let ¢ > 0 be fixed and let r be
the “dimension” of the local lattice . Given ¢ > 0, let N be chosen so large
that
(2:3) @) {1N* Taisy E(YS) + Ziasw E(XS)/ |} < e
Let B be such that |8| > N; let E, = {a € % |a < B}. By means of ¢, we map
E, into a portion k < n of K7, where ¢,(8) = n. Define, for k < n,

W, =7, T (1) =1 for some y < 8
=0 otherwise.

T, = 2is Wi, Tp = Zaéﬁ Y,.

Define now for j < n,

Let

B, = card {i < j|ie o (E))}

i.e., b, is the number of i < j which are image points under ¢, of some y < 8.
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One verifies without difficulty that Ab; > 0 for j < n, and that if j = 24(1)s
then bj = lrl

We are almost ready to apply Theorem 1.1; but first we need to modify the
b,. We define

(2.4) by=b,+ N for j<nm.

It is clear that Ab; > 0, and that for a < 8, |a| > N implies b, < 2|a| (here
b,=0b,,,). We thus have

Ppla)
P{max, g, 5 x [Tel/|a| = 2¢}
< Pmax, gy, 05w [Tel/be = €} < P(max,, |T,|/b, = c}
= Plmaxg, [Ti|/b; = ¢} < (#77/¢%) Tags E(Y.1)/b,F
= (7NN Daspiasn BV + Laspiasn EX) |},
the fourth inequality being a consequence of Theorem 1.1. Since .o is filter-
ing to the right we deduce that
P{sup,y s |Tel/ || = 2¢}
= (@7 1N Dy E(Yo)) + Ziasw B |af} < e
Since ¢ > 0 is arbitrary, it follows by a routine application of the Borel-Cantelli

lemma that
P{|T,|/|a| = 2¢ finitely often} = 1.

But since E(Y,’) —,_.. 0, one checks easily that
1|a| | X ssa E(Y,)| = ¢ finitely often forany ¢ > 0;
thus we conclude that
P{l/|a| | 2,5 Y,/| = ¢ finitely often} = 1.
By Lemma 2.1 it follows that given any ¢ > 0,
P{|Z,| = ¢ finitely often} = 1. ’ 0
ExaMPLE 2.3. For the complete lattice K, one verifies that M(j) ~ j(log j)
for large j. Since d(j) = o(j’) for any 6 > 0 one has }3;_, d(j)/j* < oo; thus if

E{|X|(1og* | X])"} one recovers the result of Dunford and Zygmund ([3], [13];
see also [9]), that P{|Z,| > e finitely often} = 1 for any ¢ > 0.

ExaMPLE 2.4. Consider the “half-lattice” on K2, i.e., {(n, m)|n = m}. One
checks that M(j) = O(j log j) for this set also; thus E{|X| log* |X|} < oo implies
Z;—0a.s.

ExAMPLE 2.5. Let <7 be the sector of K* contained between the lines y = cx
and y = (1/c)x for ¢ > 0. At first glance one might expect this to behave like
Example 2.4; but the presence of the boundary (the x-axis) in Example 2.4
makes a considerable difference. In fact, for <z one has M(j) ~ O(j); thus for
any sector whatever of this form, existence of the expectation guarantees
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convergence of Z, to zero a.s., whereas for the limiting case of the sectors (K®
itself), an X'log X moment is required. In light of the relation between martin-
gale convergence and derivation, this behavior appears to be analogous to that
observed by Jessen, Marcinkiewicz, and Zygmund [7] concerning the differ-
entiability of multiple integrals, i.e. that the first moment is sufficient if one
restricts the ratios of the sides in the rectangles over which the limit is taken.

Conspicuous by its absence in these examples is Example 2.2. For this one
has M(j) ~ O(j*), which implies that 37, d(j)/j* is not convergent; Theorem
2.2 thus has nothing to say about this case. This is a rather annoying limi-
tation; however, we shall see in Section 4 that weaker results for arrays of this
type can be obtained by a different method.

3. Necessity of the condition E{M(|X|)} < co. For certain of the local lattices
discussed in Section 2, and some other partially ordered sets as well, a converse
to Theorem 2.2 can be obtained. Let (%, <) be a denumerable, partially
ordered set, such that

(@) E, = {Be ¥ B < a}is finite for each a € 7.
(b) {a: |a| = j}is finite for each j.
DerinNITION 3.1. %7 will be called n-differentiable if there exists a positive

integer n such that for each @, € %" we can find a,, - - -, a; (j < n) with a;, <
a, for i = 2, ..., jand with the properties that

(i) |as| = K(a,) fori =2, -..,j where K(a;) oy e OO
(ll) Eazm C Eal _ E‘az2 + ° + Eagm m é []/2]; Ea
—E,l=¢ m<[j—1/2]
(iii) {a,} = E, — E,+ E,,—E,, --- —Eaj .

N [E, —E, + -

-1 2m—1

(The operations + and — above are to be performed sequentially from left to
right, e.g., E, — E, + E,=[E, nE,UE,.)
All of the examples in Section 2 are differentiable; so, for example, is any tree.

THEOREM 3.1. Let {X,} be identically distributed as X. Let .87 satisfy conditions
(a) and (b) above, and suppose that .97 is n-differentiable for some n. Then

E{M(|X|)} = oo — P{|Z,| = 1/n infinitely often} = 1.
Proor. By Lemma 2.1, E{M(|X])} = co implies }}, P{|X,| > |a|} = co which

in turn implies by Borel-Cantelli that P{|X,| > || infinitely often} = 1. By the
definition of n-differentiability, we have

Xa1= Sal - Sa2 +_Sa3_ cer Sa.

J
so that P{|S,| = |a|/n infinitely often} = 1. []

It should be noted at this point that, in contrast with the linear case, P{|Z,| >
¢ infinitely often} = 1 is, a priori, compatible with the existence, for each w in
a set of full probability, of a 8 such that |Z,| < e for all y = 8. Thus for a
local lattice, for example, convergence of Z, to zero in the usual sense of net
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convergence is weaker than the condition P{|Z,| > ¢ finitely often} = 1 for
every ¢ > 0. The following proposition indicates that the two notions are
equivalent when % is an integer lattice, i.e., a subset of K* for some r, when-
ever the first moment of the X, is finite. It is easy to construct examples to
show that the two notions are not equivalent when the expectation does not
exist.

ProrosITION 3.1. Let 7 be a subset of K” for.some r. Then the statements
“P{|Z,| > e finitely often} = 1 for eache > 0” and “With probability 1, givene > 0,
there exists y such that y < B implies |Z,| < ¢ are equivalent.

Proor. It is clear that the first statement implies the second. Suppose the
second true; we prove the case r = 2, leaving the more or less straightforward
extension to r > 2 to the reader.

For a given o, and a given ¢ > 0, fix y = (m, n) such that y < 8 implies
|Z,| < ¢. Fix j < m and consider the Z, on the column of X* with first coordi-
nate equal to j. Since we can obviously do for rows anything that we can do
for columns, it will suffice to show that on a set of full probability, |Z,| > ¢
only finitely often on this column.

To do this we enumerate the points (k, /) of % with k < j as follows: Start-
ing with the first point (if any) on the first row, count left to right until j is
reached, then move to (0, 2) and count along the second row up to j, etc. Let
N, be the number given to the point « in this ordering, and note that on the
line k = j one has N, = |a|. Since E{|X|} < co we have Sy /N, — ;.0 a.s.;
it follows that on the line k = j we can have |Z,| > ¢ only finitely often a.s. []

We will say “lim, sup |Z,| = oo a.s.” if with probability 1, given M > 0 and
7 € 7, there exists 8 > y with |Z,| > M.

CoROLLARY TO THEOREM 3.1 AND ProposITION 3.1. Let % be a subset of K"
for some r. Suppose that .o is differentiable and that E{M(|X])} = co. Then
if M(x) varies dominatedly at infinity, lim sup, |Z,| = co a.s.

REMARK. Theorem 3.1 and Proposition 3.1 illustrate clearly the difficulty of
proving any general a.s. convergence theorems for martingales on directed sets,
even very regular ones (at least for reversed martingales, the case which one
would expect to be, if anything, easier). In particular one can easily construct
a reversed martingale on a subset of K* which has bounded moments of order
1 + 4 for 6 > 0 but which does not converge a.s.

4. An analogue of a theorem of Hsu and Robbins. A theorem of Hsu and
Robbins (Erdos [4]) states that for i.i.d. random variables with zero means,

E{X*} < oo = X 2., P{|S,]| > ne} < o0 forany ¢<0.

The converse is also true, a result due to Erdds. It is evident that the Hsu~
Robbins theorem and the Borel-Cantelli lemma give the strong law of large
numbers in the case when the second moment is finite.
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We now derive an analogue of this result for partially ordered sets.
THEOREM 4.1 Let {X,} be identically distributed as X. Let (%, <) be a de-
numerable partially ordered set satisfying conditions (a) and (b) of Section 3. If
M(x) varies regularly at infinity, then
E{|XIM(|X])} < o0 t— X, P{|S.| > ¢lal} < oo Ve>0.
Proor. The proof is modeled on that of Erdos [4] for the linearly ordered
case. (For simplicity we take ¢ = 1.)
Suppose 2! < |a] < 27+ We set
R} = (0| max, ., |X,| > 27}
R} = {o]||X, | > la]*, |X, | > |a|* for at least two 7, < a, 75 = a}
where g is a number to be determined, between 4 and 1.

R = {o]]S*] > 27}

S* = Zréa,erlélaI” X -
Since {|S,| > |e|} € R, U R U R,? it will suffice to prove that 3}, P(R,’) < oo
fori =1,2,3.
Letting a, = P{|X| > 2'}, if E{|X|M(]X])} < co we must have
(4.1) e, M(29)2a,_, — a)) < oo .
But P(R,}) < |ala;_, < 2**'a;_, so that
2ia P(Ral) = Z?:o Zzi§|a|<zi+1 P(Ral) = Z?:o 2i+lai—z[M(2i+1) - M(2l)]
and we need only show the convergence of the last series. But from (4.1) we
easily deduce

(42) Lo @ 2[M2) — M(29)] < oo

and since M varies regularly at infinity this implies the desired convergence.
Now consider R,2. We have

P(R) £ Tyyryse LPLIX] > ||} < |aPClla(M(|a))}™
by Chebyshev’s inequality. Let M(x) = x°L(x), where L(x) is slowly varying
at infinity; clearly p > 1. We have
P(R;) < |l [|afe(L(jal)P]™ = lal**[[L(|a|)]

T PR = B d() S [ILGMT -
But one verifies easily by partial summation that the convergence of 33;_, d(j)//’
is equivalent to that of 3};_, M(j)/j***; since L is slowly varying the convergence
of 3, P(R,?) will thus be assured provided that 37, {L(j)/[L(j*)I'} JeriTieter L
oo. Hence if p is chosen such that
(4.3) p+2<2pmp+1)
we will have 3, P(R.?) < oo (since L(j)/j¢ and 1/L(j)j*+> O for any ¢ > 0).

where

so that
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Finally we come to R,>. We define
Y, =X, | X, < |a]
=0 |X,| < |a|*
« = Ya, - E(Ya')
(note that E(Y,”) — 0 as |a| > oo).
Let k be the smallest integer > p + 1. Let ¢ > 0 be chosen small enough that
no integer lies between p + 1 — ¢ and p 4 1. Then by definition of R, we

have
P(RS) = P{|S.*| > |al/16} < E{|S,*["**}[16/|a|+*
< C[16/|a| ™ <0 E(Y ) + -
+ Lrisaimae e E(Y7) <o+ E(Y7 )
where C depends only on k (by the independence of the Y,, we need only con-
sider sums in which each Y, appears to at least the second power). Using the
fact that E{|X|**'~*} < oo and the assumption that § < ¢ < 1, it is a straightfor-

ward verification (which we defer until the end of the proof as Lemma 5.1)
that each of the above sums of the form

. ZP1+p2+---+p,‘=2k+2;Tiéa;i=l,2,-“,j E(Y'r’{) e E(Y’;;)
is bounded by

la|k+1- o> 1

|a|k+1+3p5 o=

Cillarr=teri=9la| + C,

where C, and C, are constants depending only on k.
Hence P(R,®) is dominated by

C{|a|(2k+l—p+s)p—2k—l + |a|3ye—(k+l)};
thus the convergence of 3, P(R,?) will follow from that of
Z;‘o=1 d(j){j(2k+1'—p+e)p—2k—1 + j3ps—(k+l)}
or, (by the remark above), what is the same thing, the convergence of
Z;;l L(j){j(2k+1—p+e)p—2k—2+p + j3[u—(k+1)+p—l} .

The sum of the second terms is obviously convergent; the first series will con-
verge provided that

(4.4) @k+1—ptep—2k—24p< —1
i.e., if (since ¢ can be taken arbitrarily small)
(4.5) p< 1.

Hence from (4.3) and (4.5), the theorem will be proven if we choose p to

satisfy

(4.6) (+220p+ D) <p<l. S
ReEMARK. Under more restrictive conditions on M(x), the converse of Theo-

rem 4.1 is true as well. For example, L(x) monotonically increasing will suffice.
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Thus for the lattice K" the convergence of 3, P{|S,| > ¢|a|} is equivalent to the
condition
E{X*(log* | X))} < oo .
Here is the result which completes the proof of Theorem 5.1.

LeMMA 4.1. Under the hypotheses of Theorem 5.1, each sum

Z’)1+p2+n..+pj=2k—2,ri§a;i=l,2,-..'j E(Y’;i) . F(Y;,’g)
is bounded by
||+ p>1

|a|3p5+k+1 o=1.

Cyl|a|Pre*=e+i=9a] 4 C,

Proor. We may suppose that p, = p, = p; = --- = p;; since each p, = 2,
j < k + 1. There are three cases to be considered (when p = 1 the lemma is
easy, so we will assume p > 1):

Case 1. All the p, are < p + 1. In this case E(Y?) < E{|X|?i} < co so that
the sum is < C,|a|**.

Case2. py=p+1,p,<p+1fori=2. Inthis case p, > k and we thus
have j < [2k + 2 — p,/2] + 1. Then

E(Yy) < BYgi=r¥gmetion) < Cllapypstet=s

so the sum in question is bounded by (|a|¢)P1i=‘e*1-9)|q|F+1=7121+1 which is
< C(jalry++-@+=0)|a| since 4 > .

Case3. p,=p + 1, p, = p + 1. Here we distinguish two subcases:
(@) p; + p» = 2k + 2. Then, reasoning as in Case 2, the sum is bounded by

Cilaf(laf#)ri=te =0 ((alry=teti= = C,faf¥(alry+-2er=o
which is
g Cl(lalp)2k+2—(p+1—s)lal

provided that # > 1/(p 4+ 1 — ¢), i.e., provided that x > 3.
(b) p; + p, = 2k. In this case the sum is

< Cylaf(|ayrr et=o(|ary et
which is
< Cy(lafy#=et=0]al

whenever ¢ = 2/(p 4 3 — ¢);i.e., wheqever ¢ > %. This completes the lemma. []

According to Theorem 4.1, E{|X}*} is sufficient to guarantee P{|Z,| > ¢ finitely
often} = 1 in Example 2.2, whereas by Theorem 3.1 the condition E(X?) < oo
is necessary. (As far as ordinary net convergence is concerned, it is easy to
show that E{|X]log* |X]} < co is sufficient to give Z, — 0 a.s.)

Theorem 4.1 has the virtue of considerable generality, but since it takes no
account of the order properties of the set (beyond conditions (a) and (b)) one
cannot expect it to yield sharp results in any particular case.
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Note added in proof. The result of the special case in Example 2.5 has also
been obtained (in a different way) by P. Gabriel (note to appear in C.R. Acad.
Sci. Paris). Gabriel also shows that for more general martingales in the “wedge”
of Example 2.5, the condition of X log X integrability is necessary for a.s. con-
vergence; the putative analogy with the results on differentiability of multiple
integrals thus appears suspect.



