ON STOPPING RULES AND THE EXPECTED SUPREMUM OF S_n/a_n AND $|S_n|/a_n^{-1}$ ## BY MICHAEL J. KLASS California Institute of Technology Let $\{X_n\}$ be a sequence of i.i.d. mean zero random variables. Let $S_n = X_1 + \ldots + X_n$. This paper is devoted to determining the conditions whereby $E\sup_{n\geq 1} S_n/a_n < \infty$ and $E\sup_{n\geq 1} |S_n|/a_n < \infty$ for quite general sequences of increasing constants $\{a_n\}$. For the sequences $\{a_n\}$ considered, we find it sufficient to examine whether or not $\lim_{n\to\infty} E(\sum_{k=1}^n X_k/a_k)^+ < \infty$. The existence of optimal extended-valued stopping rules with finite expected reward for sequences $\{S_n/a_n\}$ or $\{|S_n|/a_n\}$ is a by-product of our results. This generalizes results of D. L. Burkholder, Burgess Davis, R. F. Gundy, B. J. McCabe and L. A. Shepp, who treat the case $a_n = n$. Given i.i.d. mean zero random variables X_1, X_2, \cdots and a sequence of positive constants a_1, a_2, \cdots , one may be interested in identifying the conditions under which an extended-valued stopping rule τ exists such that (1) $$E\frac{S_{r}^{+}}{a_{r}} = \sup_{t \in T_{\infty}} E\frac{S_{t}^{+}}{a_{t}} < \infty$$ or (2) $$E\frac{|S_{r}|}{a_{r}} = \sup_{t \in T_{\infty}} E\frac{|S_{t}|}{a_{t}} < \infty$$ where T_{∞} is the class of randomized extended-valued stopping rules based on $\{X_1, \dots, X_n\}$ and $S_n = X_1 + \dots + X_n$. Works by D. L. Burkholder [1], B. Davis [4], R. F. Gundy [5], B. J. McCabe and L. A. Shepp [7], provide solutions to such problems for $a_n = n$. Namely, (1) is satisfied iff $EX_1 + \log^+ X_1 < \infty$ and so (2) is satisfied iff $E|X_1| \log |X_1| < \infty$. Due to Theorem 4 of D. Siegmund [8] or Theorem 1 of M. Klass [6], for any sequence of returns $V_1, V_2, \dots, V_{\infty}$ based on random variables X_1, X_2, \dots (i.e., $V_n(\omega) = V_n(X_1(\omega), \dots, X_n(\omega))$ for $\omega \in \Omega$), there exists $\tau \in T_{\infty}$ such that (3) $$EV_{\tau} = \sup_{t \in T_{\infty}} EV_{t} < \infty \qquad \text{whenever}$$ $$E \sup_{1 \le n \le \infty} V_n < \infty \qquad \text{and}$$ $$\lim \sup_{n\to\infty} V_n \leq V_{\infty}.$$ For the problems treated, (4) is also necessary to ensure the existence of $\tau \in T_{\infty}$ satisfying (3); and (4) implies that $\lim_{n\to\infty} V_n = 0$ a.s. Hence we define $V_{\infty} = 0$ Key words and phrases. S_n/a_n , stopping rule, supremum, expected value, a.s. convergence. The Annals of Probability. STOR www.jstor.org Received May 4, 1973; revised October 20, 1973. ¹ The preparation of this paper was sponsored in part by the U. S. Air Force Research Office under Grant AF-AFOSR-69-1781. Reproduction in whole or in part is permitted for any purpose of the United States Government. AMS 1970 subject classifications. Primary 60G40; Secondary 60G50. so that $(4) \Rightarrow (5)$. (Note: $V_n = S_n^+/a_n$ or $V_n = |S_n|/a_n$.) Throughout the entire paper we will regard V_{∞} as zero, regardless of $\{V_n\}$ or $\limsup_{n\to\infty} V_n$. The problem of bounding $E\max_{1\leq k\leq n}(|S_k|)/a_k$ above can be reduced by means of the proof of Kronecker's lemma to that of upper bounding $E\max_{1\leq k\leq n}|\sum_{j=1}^k X_j/a_j|$. Thanks to the fact that for independent mean zero random variables Y_1, Y_2, \dots, Y_n , $$E \max_{1 \le k \le n} (\sum_{j=1}^k Y_j)^+ \le 8E(\sum_{j=1}^n Y_j)^+,$$ the complexity of the problem at hand is considerably reduced, sufficiently so as to enable the derivation of a solution in a quite general setting. Our primary results are twofold: Let $a(\cdot)$ be a nonnegative continuous function such that for some $\alpha > \frac{1}{2}$, $a(y)/y^{\alpha} \nearrow \infty$. Then (6) $$E|X_1| \int_1^{a^{-1}|X_1| \vee 1} (1/a(y)) dy < \infty \qquad \text{iff (2) holds.}$$ If, in addition, $\lim \inf_{y\to\infty} (a(y)/y) > 0$, then (7) $$E(X_1 + \int_1^{a-1} X_1 + \sqrt{1} (1/a(y)) dy) < \infty \Leftrightarrow (1).$$ As a result, (2) holds with $a_n = n^{1/\alpha}$ for some $1 < \alpha < 2$ iff $E|X_1|^{\alpha} < \infty$. Assuming $a_n = (n \log n) \vee 1$, (1) is equivalent to the requirement that $EX_1^+ \log^+ (\log X_1) < \infty$. For $a_n = (n \log \log n) \vee 1$, (1) is equivalent to the condition $EX_1^+ \log^+ (\log \log X_1) < \infty$, and so forth. Other results relate to such quantities as $E \sup_{n\geq 1} (X_n/a_n)$ and the a.s. convergence of $\sum_{k=1}^{\infty} (X_k/a_k)$. THEOREM 1. Let Y_1, Y_2, \cdots be independent mean zero random variables. Let $T_n = Y_1 + \cdots + Y_n$. Then $$ET_n^+ \leq E \max_{1 \leq k \leq n} T_k^+ \leq 8ET_n^+$$. PROOF. The left side is obvious. We first prove what is essentially Ottaviani's inequality (Chung [3] page 114). Fix $u \ge 0$ and $n \ge 1$. Let $$au = 1$$ st $k \le n$: $T_k \ge 2u$ if such k exists $= \infty$ otherwise. Since $$\{\tau = k, T_n - T_k \ge -u\} \subseteq \{\tau = k, T_n \ge u\},$$ therefore $$\textstyle \sum_{k=1}^n P\{\tau=k, T_n-T_k \geq -u\} \leq \textstyle \sum_{k=1}^n P(\tau=k, T_n \geq u) \leq P(T_n \geq u).$$ Also $$1_{\{\tau=k\}}$$ and $1_{\{T_n-T_k\geq -u\}}$ are independent. Hence $$P(T_n \ge u) \ge \sum_{k=1}^n P(\tau = k) P(T_n - T_k \ge -u)$$ and therefore (8) $$P(T_n \ge u) \ge \min_{1 \le k \le n} P(T_n - T_k \ge -u) P(\max_{1 \le k \le n} T_k \ge 2u).$$ $$\begin{aligned} \min_{1 \le k \le n} P(T_n - T_k \ge -u) \\ &= 1 - \max_{1 \le k \le n} P(T_n - T_k < -u) \\ &= 1 - \max_{1 \le k \le n} P(T_k - T_n > u) \\ &\ge 1 - \max_{1 \le k \le n} \frac{E(T_k - T_n)^+}{u} \\ &= 1 - \max_{1 \le k \le n} \frac{E(T_n - T_k)^+}{u} = 1 - \frac{E(T_n - T_1)^+}{u} \\ &\ge 1 - \frac{ET_n^+}{u}. \end{aligned}$$ Thus $u \ge 2ET_n^+$ implies $$P(\max_{1 \le k \le n} T_k \ge 2u) \le \frac{P(T_n \ge u)}{1 - ET_n + u} \le 2P(T_n \ge u).$$ Estimating $E \max_{1 \le k \le n} T_k^+$, we have $$\begin{split} E \max_{1 \leq k \leq n} T_k^+ &= 2 \int_0^\infty P(\max_{1 \leq k \leq n} T_k^+ \geq 2u) \, du \\ &\leq 4ET_n^+ + 2 \int_{2ET_n^+}^\infty P(\max_{1 \leq k \leq n} T_k^+ \geq 2u) \, du \\ &\leq 4ET_n^+ + 4 \int_{2ET_n^+}^\infty P(T_n \geq u) \, du \\ &\leq 8ET_n^+ \, . \end{split}$$ REMARK. Since $ET_n^- = ET_n^+$, any condition on $\{Y_n^+\}$ which is necessary to ensure that $\lim_{n\to\infty} E \max_{1\le k\le n} T_k^+ < \infty$ is a condition on $\{|Y_n|\}$. LEMMA 1. Let $\{X_n\}$ be a sequence of independent identically distributed random variables with common distribution function F. Let a(y) be a nonnegative strictly increasing continuous function defined for $y \ge 0$. Write $a_j = a(j)$. Then $$-\frac{1}{a_1}EX_1^+ + \int_{a_1}^{\infty} (x \int_1^{a^{-1}(x)} (1/a(y)) dy) dF(x)$$ $$\leq \sum_{n=1}^{\infty} \int_{a_n}^{\infty} \frac{x dF(x)}{a_n} \leq \frac{1}{a_1}EX_1^+ + \int_{a_1}^{\infty} (x \int_1^{a^{-1}(x)} (1/a(y)) dy) dF(x).$$ PROOF. Let $A_j = \{a_j < x \le a_{j+1}\}.$ $$\sum_{n=1}^{\infty} \int_{a_n}^{\infty} \frac{x \, dF(x)}{a_n} = \sum_{n=1}^{\infty} \sum_{j=n}^{\infty} \int_{A_j} \frac{x \, dF(x)}{a_n}$$ $$= \sum_{j=1}^{\infty} \int_0^{\infty} \left(\sum_{n=1}^j \frac{1}{a_n} \right) x \, 1_{A_j} \, dF(x) .$$ The right-hand inequality is easy because $$\sum_{n=1}^{j} \frac{1}{a_n} 1_{A_j} \le \frac{1}{a_1} + \int_1^{a^{-1}(x)} (1/a(y)) \, dy \, 1_{A_j}.$$ As for the left-hand side, $$\begin{split} \left(\sum_{n=1}^{j} \frac{1}{a_n}\right) 1_{A_j} & \geq \left(\int_1^{j} \frac{1}{a(y)} \, dy\right) 1_{A_j} \\ & = \left(\int_1^{a^{-1}(x)} \left(1/a(y)\right) \, dy\right) 1_{A_j} - \left(\int_j^{a^{-1}(x)} \left(1/a(y)\right) \, dy\right) 1_{A_j} \\ & \geq \left(\int_1^{a^{-1}(x)} \left(1/a(y)\right) \, dy - \frac{1}{a_j}\right) 1_{A_j} \\ & \geq \left(\int_1^{a^{-1}(x)} \left(1/a(y)\right) \, dy - \frac{1}{a_j}\right) 1_{A_j}. \end{split}$$ Corollary 1. With $\{X_n\}$ and a(y) as above, $$-\frac{E|X_1|}{a_1} + \int_{\{|x| > a_1\}} (|x| \int_1^{a^{-1}(|x|)} (1/a(y)) dy) dF(x)$$ $$\leq \sum_{n=1}^{\infty} \int_{\{|x| > a_n\}} \frac{|x| dF(x)}{a_n} \leq \frac{E|X_1|}{a_1} + \int_{\{|x| > a_1\}} (|x| \int_1^{a^{-1}(|x|)} (1/a(y)) dy) dF(x).$$ LEMMA 2. Let $\{X_n\}$ be a sequence of i.i.d. mean zero random variables. Let $\{a_n\}$ be a sequence of positive numbers such that for some $\varepsilon > 0$, $a_n/n^{\varepsilon} \nearrow$. Then for each M > 0, $P(X_n \ge a_n \text{ i.o.}) = P(X_n \ge Ma_n \text{ i.o.})$. Proof. Suppose $N^{1/\epsilon}$ is a positive integer. If $P(X_n \ge a_n \text{ i.o.}) = 1$, then $$\begin{split} \infty &= \sum_{n=N^{1/\varepsilon}}^{\infty} P(X_n \geq a_n) \\ &= \sum_{n=1}^{\infty} \sum_{k=0}^{N^{1/\varepsilon}-1} P(X_1 \geq a(nN^{1/\varepsilon} + k)) \\ &\leq N^{1/\varepsilon} \sum_{n=1}^{\infty} P(X_1 \geq a(nN^{1/\varepsilon})) \\ &\leq N^{1/\varepsilon} \sum_{n=1}^{\infty} P(X_1 \geq Na_n) , \end{split}$$ so that $P(X_n \ge Na_n \text{ i.o.}) = 1$. For any $M \ge 1 \ \exists N \ge M$ such that $N^{1/\epsilon}$ is a positive integer. Now $$\begin{split} P(X_n \geqq a_n \text{ i.o.}) & \geqq P(X_n \geqq Ma_n \text{ i.o.}) \\ & \geqq P(X_n \geqq Na_n \text{ i.o.}) \;. \end{split}$$ The extreme terms are equal regardless of whether $P(X_n \ge a_n \text{ i.o.})$ is zero or one. Hence $$P(X_n \ge a_n \text{ i.o.}) = P(X_n \ge Ma_n \text{ i.o.}).$$ The case in which 0 < M < 1 can be reduced to the previous situation by letting b(y) = Ma(y) and observing that $b(y)/y^e \nearrow$ so that $P(X_n \ge b(n) \text{ i.o.}) = P(X_n \ge M^{-1}b(n) \text{ i.o.})$. THEOREM 2. Let $\{X_n\}$ be a sequence of i.i.d. mean zero random variables with common distribution function F. Let a(y) be a nonnegative continuous function defined for $y \ge 0$. Suppose (9) for some $$\varepsilon > 0$$, $\frac{a(y)}{v^{\varepsilon}} \nearrow \infty$ (10) $$\int_{a_1}^{\infty} x \int_{1}^{a^{-1}(x)} (1/a(y)) dy dF(x) = \infty .$$ Then $\lim_{n\to\infty} E(\sum_{k=1}^n (X_k)/a_k)^+ = \infty$, $E\sup_{n\geq 1} (S_n^+)/a_n = \infty$, and $E\sup_{n\geq 1} (X_n^+)/a_n = \infty$. (Note that $S_n = X_1 + \cdots + X_n$.) PROOF. Assume that $P(X_n \ge a_n \text{ i.o.}) = 1$. Fix M large. For each $n \ge 1$, let $$t_n = \text{last}$$ $k \le n : X_k \ge Ma_k$ if such k exists $= \infty$ otherwise. Observe that $P(t_n \neq \infty) = P(\bigcup_{k=1}^n \{X_k \geq Ma_k\}) \to 1$ as $n \to \infty$ by Lemma 2. From Theorem 1, $$\begin{split} E\left(\sum_{k=1}^{n}\frac{X_{k}}{a_{k}}\right)^{+} & \geq \frac{1}{8} E \max_{1 \leq j \leq n} \left(\sum_{k=1}^{j}\frac{X_{k}}{a_{k}}\right)^{+} \\ & \geq \frac{1}{8} \sum_{l=1}^{n} E \max_{1 \leq j \leq n} \left(\sum_{k=1}^{j}\frac{X_{k}}{a_{k}}\right)^{+} 1_{\{t_{n}=l\}} \\ & \geq \frac{1}{8} \sum_{l=1}^{n} E\left(\sum_{k=1}^{l}\frac{X_{k}}{a_{k}}\right) 1_{\{t_{n}=l\}} \end{split}$$ $\{t_n = l\} \subseteq B(X_l, X_{l+1}, \dots, X_n)$. Hence for k < l, $(X_k)/a_k$ and $1_{\{t_n = l\}}$ are independent. Therefore $$E\left(\sum_{k=1}^{n} \frac{X_{k}}{a_{k}}\right)^{+} \geq \frac{1}{8} \sum_{l=1}^{n} \frac{EX_{l} 1_{\{t_{n}=l\}}}{a_{l}}.$$ Clearly, $$E\sup_{k\leq n}\frac{X_k^+}{a_k}\geq \sum_{l=1}^n\frac{EX_l\,\mathbf{1}_{\{t_n=l\}}}{a_l}.$$ Similarly, $$E \max_{1 \le k \le n} \frac{S_k^+}{a_k} \ge \sum_{l=1}^n E \frac{S_l 1_{\{t_n = l\}}}{a_l} = \sum_{l=1}^n \frac{EX_l 1_{\{t_n = l\}}}{a_l} \cdot$$ The three quantities of interest are each bounded below by $$\frac{1}{8} \sum_{l=1}^{n} \frac{EX_{l} 1_{\{t_{n}=l\}}}{a_{l}} \ge \frac{1}{8} \sum_{l=1}^{n} EM1_{\{t_{n}=l\}} = \frac{MP(t_{n} \neq \infty)}{8} \to \frac{M}{8} \quad \text{as } n \to \infty ,$$ which completes the proof when $P(X_n \ge a_n \text{ i.o.}) = 1$. Now assume $P(X_n \ge a_n \text{ i.o.}) = 0$. For each $n \ge 1$, let $$t_n = \text{last} \quad k \le n \colon X_k \ge a_k$$ if such k exists $= \infty$ otherwise. $$P(t_n = \infty) \ge P(\bigcap_{k=1}^{\infty} \{X_k < a_k\})$$ = $\prod_{k=1}^{\infty} P(X_k < a_k) = \prod_{k=1}^{\infty} (1 - P(X_1 \ge a_k)) > 0$ since $\sum_{k=1}^{\infty} P(X_1 \ge a_k) < \infty$ and $P(X_1 \ge a_1) < 1$. Let $c = \frac{1}{8} \prod_{k=1}^{\infty} P(X_1 < a_k)$. Again we obtain $$\begin{split} \lim_{n \to \infty} & \min \left(E\left(\sum_{k=1}^{n} \frac{X_{k}}{a_{k}} \right)^{+}, \ E \max_{1 \le k \le n} \frac{S_{k}^{+}}{a_{k}}, \ E \max_{1 \le k \le n} \frac{X_{k}^{+}}{a_{k}} \right) \\ & \ge \frac{1}{8} \lim_{n \to \infty} \sum_{k=1}^{n} \frac{EX_{k} 1_{\{t_{n} = k\}}}{a_{k}} \\ & = \frac{1}{8} \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\left(\int_{a_{k}}^{\infty} x \ dF(x) \right)}{a_{k}} \left(\prod_{j=k+1}^{n} P(X_{j} < a_{j}) \right) \\ & \ge c \sum_{k=1}^{\infty} \frac{\int_{a_{k}}^{\infty} x \ dF(x)}{a_{k}} \end{split}$$ which by Lemma 1 is at least $$c\left(-\frac{EX_1^+}{a_1}+\int_{a_1}^{\infty}(x\int_1^{a^{-1}(x)}(1-a(y))\,dy)\,dF(x)\right)$$ and is consequently infinite. LEMMA 3. Let $\{X_n\}$ be a sequence of i.i.d. random variables with common distribution function F. Let a(y) be a strictly increasing continuous function defined for $y \ge 0$. Assume a(0) = 0 and $a(\infty) = \infty$. Set $Y_n = X_n \mathbf{1}_{\{0 \le X_n \le a_n\}}$. Then $$\begin{split} -P(X_1 > 0) + \int_0^\infty \left(x^2 \int_{a^{-1}(x)}^\infty \frac{1}{a^2(y)} dy \right) dF(x) \\ & \leq \sum_{n=1}^\infty \frac{EY_n^2}{a_n^2} \leq P(X_1 > 0) + \int_0^\infty \left(x^2 \int_{a^{-1}(x)}^\infty \frac{1}{a^2(y)} dy \right) dF(x) \,. \end{split}$$ Proof. Let $A_j = \{a_{j-1} < x \le a_j\}$ for $j \ge 1$. $$\begin{split} \sum_{n=1}^{\infty} \frac{EY_n^2}{a_n^2} &= \sum_{n=1}^{\infty} \sum_{j=1}^n \int_0^{\infty} \frac{x^2 1_{A_j} dF(x)}{a_n^2} \\ &= \sum_{j=1}^{\infty} \int_0^{\infty} x^2 \left(\sum_{n=j}^{\infty} \frac{1}{a_n^2} \right) 1_{A_j} dF(x) \; . \end{split}$$ We deduce the inequality on the right by noting that $$x^{2} \left(\sum_{n=j}^{\infty} \frac{1}{a_{n}^{2}} \right) 1_{A_{j}} \leq x^{2} \left(\frac{1}{a_{j}^{2}} + \int_{a-1(x)}^{\infty} \frac{1}{a^{2}(y)} dy \right) 1_{A_{j}}$$ $$\leq \left(1 + x^{2} \int_{a-1(x)}^{\infty} \frac{1}{a^{2}(y)} dy \right) 1_{A_{j}}.$$ To produce the left side: $$\begin{split} x^2 \left(\sum_{n=j}^{\infty} \frac{1}{a_n^2} \right) \mathbf{1}_{A_j} & \geq x^2 \left(\int_j^{\infty} \frac{1}{a^2(y)} \, dy \right) \mathbf{1}_{A_j} \\ & = x^2 \left(\int_{a^{-1}(x)}^{\infty} \frac{1}{a^2(y)} \, dy - \int_{a^{-1}(x)}^{j} \frac{1}{a^2(y)} \, dy \right) \mathbf{1}_{A_j} \\ & \geq x^2 \left(\int_{a^{-1}(x)}^{\infty} \frac{1}{a^2(y)} \, dy - \frac{j - a^{-1}(x)}{x^2} \right) \mathbf{1}_{A_j} \\ & \geq x^2 \left(\int_{a^{-1}(x)}^{\infty} \frac{1}{a^2(y)} \, dy - 1 \right) \mathbf{1}_{A_j} \, . \end{split}$$ LEMMA 4. $$\int_0^\infty \left(x^2 \int_{a^{-1}(x)}^\infty \frac{1}{a^2(y)} dy \right) dF(x) \leq \int_{a_1}^\infty \left(x^2 \int_{a^{-1}(x)}^\infty \frac{1}{a^2(y)} dy \right) dF(x) + P(X_1 > 0) + a_1^2 \int_1^\infty \frac{1}{a^2(y)} dy.$$ PROOF. This follows from the fact that $$\int_{0}^{a_{1}} \left(x^{2} \int_{a^{-1}(x)}^{\infty} \frac{1}{a^{2}(y)} dy \right) dF(x) = \int_{0}^{a_{1}} x^{2} \int_{a^{-1}(x)}^{1} \frac{1}{a^{2}(y)} dy + \int_{0}^{a_{1}} \left(x^{2} \int_{1}^{\infty} \frac{1}{a^{2}(y)} dy \right) dF(x) \leq \int_{0}^{a_{1}} (1 - a^{-1}(x)) dF(x) + a_{1}^{2} \left(\int_{1}^{\infty} \frac{1}{a^{2}(y)} dy \right) \leq P(X_{1} > 0) + a_{1}^{2} \int_{1}^{\infty} \frac{1}{a^{2}(y)} dy.$$ COROLLARY 2. Let $\{X_n\}$ be a sequence of i.i.d. random variables with common distribution function F. Let a(y) be a strictly increasing continuous function defined for $y \ge 0$. Assume a(0) = 0 and $a(\infty) = \infty$. Let $Y_n = X_n 1_{\{|X_m| \leq a_n\}}$. Then $$\begin{aligned} -1 + \int_{-\infty}^{\infty} \left(x^{2} \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^{2}(y)} dy \right) dF(x) \\ &\leq \sum_{n=1}^{\infty} \frac{EY_{n}^{2}}{a_{n}^{2}} \leq 1 + \int_{-\infty}^{\infty} \left(x^{2} \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^{2}(y)} dy \right) dF(x) \\ &\leq 2 + a_{1}^{2} \int_{1}^{\infty} \frac{1}{a^{2}(y)} dy + \int_{\{a_{1} \leq |x|\}} \left(x^{2} \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^{2}(y)} dy \right) dF(x) . \end{aligned}$$ THEOREM 3. Let $\{X_n\}$ be a sequence of i.i.d. non-degenerate mean zero random variables with common distribution function F. Let $a(\cdot)$ be a nonnegative continuous function defined for $y \ge 0$ such that for some $\varepsilon > 0$, $a(y)/y^{\varepsilon} \nearrow \infty$. Then the following are equivalent: (11) $$\lim_{n\to\infty} E\left|\sum_{k=1}^n \frac{X_k}{a_k}\right| < \infty$$ (12) $$\lim_{n\to\infty} E \max_{k\leq n} \left| \sum_{j=1}^k \frac{X_j}{a_j} \right| < \infty$$ (13) (i) $$\int_{\{|x| \ge a_1\}} (|x| \int_1^{a^{-1}(|x|)} (1/a(y)) dy) dF(x) < \infty$$ and (ii) $\int_{-\infty}^{\infty} \left(x^2 \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^2(y)} dy \right) dF(x) < \infty$. REMARK. (ii) may be replaced by the two conditions $$\int_1^\infty \frac{1}{a^2(y)} \, dy < \infty$$ and $$\int_{\{|x| \ge a_1\}} \left(x^2 \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^2(y)} dy \right) dF(x) < \infty.$$ PROOF. According to Theorem 1, $(11) \Rightarrow (12)$. We next establish that $(12) \Rightarrow (13)$. By the contrapositive of Theorem 2 applied to $E(\sum_{k=1}^{n} (X_k)/a_k)^+$ and $E(\sum_{k=1}^{n} (X_k)/a_k)^-$, (12) \Longrightarrow (13) (i). When (12) holds we may invoke the Martingale Convergence Theorem to conclude that $\sum_{k=1}^{\infty} (X_k)/a_k$ converges a.s. Let $Y_n = X_n 1_{\{|X_n| \leq a_n\}}$ and $Z_n = X_n - Y_n$. By the Three Series Theorem (Chung [3] page 112), $$\sum_{n=1}^{\infty} \frac{EY_n^2 - (EY_n)^2}{a_n^2} < \infty.$$ Since $$\frac{|EY_n|}{a_n} \le 1$$, $\left(\frac{EY_n}{a_n}\right)^2 \le \frac{|EY_n|}{a_n} = \frac{|EZ_n|}{a_n}$ and so $$\textstyle \sum_{n=1}^{\infty} \left(\frac{EY_n}{a_n}\right)^2 \leq \sum_{n=1}^{\infty} \frac{E|Z_n|}{a_n}$$ which, by Corollary 1 is $$\leq \frac{E|X_1|}{a_1} + \int_{\{|x| > a_1\}} (|x| \int_1^{a-1(|x|)} (1/a(y)) dy) dF(x) < \infty$$ by (13)(i) and the fact that X_1 has finite mean. Thus $$\infty > \sum_{n=1}^{\infty} \frac{EY_n^2}{a_n^2} \ge -1 + \int_{-\infty}^{\infty} \left(x^2 \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^2(y)} dy \right) dF(x)$$ (see Corollary 2). Hence (12) also implies (13)(ii). We next assert that $(13) \Rightarrow (11)$. $$\begin{split} E \left| \sum_{k=1}^{n} \frac{X_{k}}{a_{k}} \right| &= E \left| \sum_{k=1}^{n} \frac{Y_{k} + Z_{k}}{a_{k}} \right| \leq E \left| \sum_{k=1}^{n} \frac{Y_{k}}{a_{k}} \right| + E \sum_{k=1}^{n} \frac{|Z_{k}|}{a_{k}} \\ &\leq \left(E \left(\sum_{k=1}^{n} \frac{Y_{k}}{a_{k}} \right)^{2} \right)^{\frac{1}{2}} + \sum_{k=1}^{\infty} \frac{E|Z_{k}|}{a_{k}} \\ &= \left(\operatorname{Var} \left(\sum_{k=1}^{n} \frac{Y_{k}}{a_{k}} \right) + \left(E \sum_{k=1}^{n} \frac{Y_{k}}{a_{k}} \right)^{2} \right)^{\frac{1}{2}} + \sum_{k=1}^{\infty} \frac{E|Z_{k}|}{a_{k}} \\ &\leq \left(\sum_{k=1}^{\infty} \frac{EY_{k}^{2}}{a_{k}^{2}} + \left(\sum_{k=1}^{\infty} \frac{E|Z_{k}|}{a_{k}} \right)^{2} \right)^{\frac{1}{2}} + \sum_{k=1}^{\infty} \frac{E|Z_{k}|}{a_{k}} \,. \end{split}$$ As has been previously shown, (13)(i) implies $$\sum_{k=1}^{\infty} \frac{E|Z_k|}{a_k} < \infty$$ (Corollary 1) and (13)(ii) implies $$\sum_{k=1}^{\infty} \frac{EY_k^2}{a_k^2} < \infty \qquad (Corollary 2).$$ Consequently $$\lim_{n\to\infty} E\left|\sum_{k=1}^n \frac{X_k}{a_k}\right| < \infty.$$ It is of interest and importance to know when (ii) implies (i) and vice versa. Lemmas 5 and 6 deal with this subject. LEMMA 5. Let a(y) be a nonnegative strictly increasing continuous function defined for $y \ge 0$ such that for some $\frac{1}{2} < \alpha < 1$, $a(y)/y^{\alpha} \setminus$. Then $$|x| \, \int_1^{a^{-1}(|x|)} (1/a(y)) \, dy \leq \frac{a^{-1}(|x|)}{1-\alpha} \leq \left(\frac{2\alpha-1}{1-\alpha}\right) x^2 \, \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^2(y)} \, dy \, .$$ Proof. $$|x| \int_{1}^{a^{-1}(|x|)} (1/a(y)) dy = |x| \int_{1}^{a^{-1}(|x|)} (y^{\alpha}/a(y))(1/y^{\alpha}) dy$$ $$\leq |x| \frac{[a^{-1}(|x|)]^{\alpha}}{|x|} \int_{1}^{a^{-1}(|x|)} (1/y^{\alpha}) dy$$ $$\leq [a^{-1}(|x|)]^{\alpha} \frac{[a^{-1}(|x|)]^{1-\alpha}}{1-\alpha} = \frac{[a^{-1}(|x|)]}{1-\alpha}$$ $$x^{2} \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^{2}(y)} dy = x^{2} \int_{a^{-1}(|x|)}^{\infty} \left(\frac{y^{2\alpha}}{a^{2}(y)}\right) \left(\frac{1}{y^{2\alpha}}\right) dy$$ $$\geq x^{2} \frac{[a^{-1}(|x|)]^{2\alpha}}{x^{2}} \int_{a^{-1}(|x|)}^{\infty} \frac{1}{y^{2\alpha}} dy$$ $$= [a^{-1}(|x|)]^{2\alpha} \frac{[a^{-1}(|x|)]^{1-2\alpha}}{2\alpha - 1} = \frac{a^{-1}(|x|)}{2\alpha - 1},$$ which proves the lemma. THEOREM 4. Let $\{X_n\}$ and a be as in Theorem 3. Assume further that for some $\frac{1}{2} < \alpha < 1$, $a(y)/y^{\alpha} \searrow$. Then (11), (12), and (13) (ii) are also each equivalent to (14) $$\sum_{k=1}^{\infty} \frac{X_k}{a_k} \quad converges \quad a.s.$$ PROOF. From the proof of Theorem 3, $(12) \Rightarrow (14)$ and $(14) \Rightarrow$ $$\sum_{n=1}^{\infty} \frac{EY_n^2 - (EY_n)^2}{a_n^2} < \infty$$ where $Y_n = X_n 1_{\{|X_n| \le a_n\}}$. The proof of Theorem 3 also gives $$\sum_{n=1}^{\infty} \left(\frac{EY_n}{a_n}\right)^2 \leq \frac{E|X_1|}{a_1} + \int_{\{|x| > a_1\}} |x| \int_1^{a^{-1}(|x|)} (1/a(y)) \ dy \ dF(x)$$ $$\leq \frac{E|X_1|}{a_1} + \int_{\{|x| > a_1\}} \frac{a^{-1}(|x|)}{1 - \alpha} dF(x) \qquad \text{(by Lemma 5)}$$ $$< \infty \Leftrightarrow \sum_{n=1}^{\infty} P(a^{-1}(|X_n|) > n) < \infty$$ $$\Leftrightarrow \sum_{n=1}^{\infty} P(|X_n| \geq a_n) < \infty \Leftrightarrow \sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty.$$ Referring once again to the Three Series Theorem, $\sum_{k=1}^{\infty} (X_k)/a_k$ converges a.s. $\Rightarrow \sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty$. Hence $\infty > \sum_{n=1}^{\infty} (EY_n^2)/a_n^2$ and so (13)(ii) holds (see Corollary 2). By virtue of Lemma 5, (13)(ii) \Rightarrow (13)(i). Therefore (14) \Rightarrow (13) \Rightarrow (12). Consequently, (11), (12), (13)(ii) and (14) are equivalent. An example will illustrate that if $a(y)/y^{\alpha}$ is not decreasing for some $\alpha < 1$ then (14) may not imply (11), (12) or (13). Example 1. •Let $\{X_n\}$ be a sequence of i.i.d. symmetric random variables with mean zero and common distribution function F. Assume $E|X_1|\log^+|X_1|=\infty$. Let a(y)=y and $Y_n=X_n1_{\{|X_n|\leq n\}}$. $\sum_{n=1}^{\infty} (X_n)/n$ converges a.s. iff - (a) $\sum_{n} P(X_n \neq Y_n) < \infty$, - (b) $\left|\sum_{n} E(Y_{n})/n\right| < \infty$, and - (c) $\sum_{n} (EY_{n}^{2} (EY_{n})^{2})/n^{2} < \infty$ (Three Series Term) $$E|X_1| < \infty$$ so $\sum_n P(|X_n| > n) < \infty$. Thus (a) holds. $EY_n = 0$ so (b) holds. $$\sum_{n=1}^{\infty} \int_{\{|x| \le n\}} \frac{x^2 dF(x)}{n^2} \le 1 + \int_{-\infty}^{\infty} \left(x^2 \int_{|x|}^{\infty} \frac{1}{y^2} dy \right) dF(x) \qquad \text{(by Lemma 3)}$$ $$= 1 + \int_{-\infty}^{\infty} |x| dF(x) < \infty.$$ So (c) holds and hence $\sum_{n=1}^{\infty} (X_n)/n$ converges. However, $$\int_{1}^{\infty} |x| \int_{1}^{|x|} \frac{1}{y} dy dF(x) = \int_{1}^{\infty} |x| \log |x| dF(x)$$ $$= E|X_{1}| \log^{+} |X_{1}| = \infty$$ so that (13)(i) fails to hold. Whenever $\sum_{k=1}^{\infty} (X_k)/a_k$ converges, Kronecker's lemma can be utilized to give $(S_n)/a_n \to 0$ a.s. What follows is another condition sufficient to guarantee that $S_n/a_n \to 0$ a.s. This will be useful when attempting to establish the existence of optimal extended-valued stopping rules. THEOREM 5. Let $\{X_n\}$ be a sequence of i.i.d. mean zero random variables. Let a(y) be a nonnegative strictly increasing continuous function defined for $y \ge 0$ such that $a(y)/y \setminus 1$. Let $S_n = X_1 + \cdots + X_n$. Assume $$\int_{-\infty}^{\infty} \left(x^2 \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^2(y)} dy \right) dF(x) < \infty.$$ Then $S_n/a_n \to 0$ a.s. PROOF. Let $Y_n = X_n 1_{\{|X_n| \le a_n\}}$. We claim that $\sum_{n=1}^{\infty} (Y_n - EY_n)/a_n$ converges a.s. $$\sum_{n=1}^{\infty} \frac{\sigma^2(Y_n)}{a_n^2} \le \sum_{n=1}^{\infty} \frac{EY_n^2}{a_n^2} < \infty$$ (Corollary 2). $((Y_n - EY_n)/a_n)$ is bounded and each term has mean zero. Applying the Three Series Theorem, $\sum_{n=1}^{\infty} (Y_n - EY_n)/a_n$ converges a.s. By Kronecker's lemma, $$\frac{1}{a_n} \sum_{k=1}^n (Y_k - EY_k) \to 0 \quad \text{a.s.}$$ Referring to the proof of Lemma 5, $$x^2 \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^2(y)} dy \ge \frac{a^{-1}(|x|)}{2\alpha - 1}.$$ Therefore $Ea^{-1}(|X_1|) < \infty$ implies $P(|X_n| > a_n \text{ i.o.}) = 0 \Rightarrow P(X_n \neq Y_n \text{ i.o.}) = 0$ and therefore $$\sum_{k=1}^{n} \frac{X_k - EY_k}{a_k} \to 0 \quad \text{a.s.}$$ $$\begin{split} \left| \sum_{k=1}^{n} \frac{EY_{k}}{a_{n}} \right| &\leq \sum_{k=1}^{n} \int_{\{|x| > a_{k}\}} \frac{|x|}{a_{n}} dF(x) \\ &= \frac{1}{a_{n}} \sum_{k=1}^{n-1} k \int_{\{a_{k} < |x| \leq a_{k+1}\}} |x| dF(x) + \frac{n}{a_{n}} \int_{\{|x| > a_{n}\}} |x| dF(x) \\ &\leq \frac{1}{a_{n}} \int_{-a_{n}}^{a_{n}} |x| a^{-1}(|x|) dF(x) + \int_{\{|x| > a_{n}\}} \left(\frac{a^{-1}(|x|)}{|x|} \right) |x| dF(x) \\ &\leq \frac{1}{\sqrt{a_{n}}} \int_{-\sqrt{a_{n}}}^{\sqrt{a_{n}}} a^{-1}(|x|) dF(x) + \int_{\{\sqrt{a_{n}} < |x| \leq a_{n}\}} a^{-1}(|x|) \\ &+ \int_{\{|x| > a_{n}\}} a^{-1}(|x|) dF(x) \to 0 \quad \text{as } n \to \infty \end{split}$$ since $Ea^{-1}(|X_1|) < \infty$ and $a_n \to \infty$, therefore $$\frac{S_n}{a_n} \to 0$$ a.s. LEMMA 6. Let a(y) be a nonnegative continuous function such that for some $\alpha > \frac{1}{2}$, $a(y)/y^{\alpha} \nearrow \infty$. Then $$x^{2} \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^{2}(y)} dy \leq \frac{a^{-1}(|x|)}{2\alpha - 1} \leq \frac{|x|}{2\alpha - 1} \int_{1}^{(a^{-1}(|x|)) \vee 1} (1/a(y)) dy + \frac{1}{2\alpha - 1}.$$ PROOF. $$x^{2} \int_{a^{-1}(|x|)}^{\infty} \left(\frac{y^{2\alpha}}{a^{2}(y)}\right) \left(\frac{1}{y^{2\alpha}}\right) dy \leq x^{2} \frac{\left[a^{-1}(|x|)\right]^{2\alpha}}{x^{2}} \int_{a^{-1}(|x|)}^{\infty} \frac{1}{y^{2\alpha}} dy$$ $$= (a^{-1}(|x|))^{2\alpha} \frac{\left[a^{-1}(|x|)\right]^{1-2\alpha}}{2\alpha - 1}$$ $$= \frac{(a^{-1}(|x|))}{2\alpha - 1} = \frac{1}{2\alpha - 1} \int_{0}^{a^{-1}(|x|)} dy$$ $$\leq \frac{1}{2\alpha - 1} + \left(\int_{1}^{a^{-1}(|x|)} (|x|/a(y)) dy\right)/2\alpha - 1.$$ THEOREM 6. Let $\{X_n\}$ and a(y) be as in Theorem 3. Assume also that for some $\alpha > \frac{1}{2}$, $a(y)/y^{\alpha} \nearrow \infty$. The following are equivalent: (15) $$\int_{\{|x|>a_1\}} (|x| \int_1^{a^{-1}(|x|)} (1/a(y)) dy) dF(x) = \infty$$ (16) $$\lim_{n\to\infty} E\left(\sum_{k=1}^n \frac{X_k}{a_k}\right)^+ = \infty$$ $$(17) E\sup_{n\geq 1}\frac{|S_n|}{a_n}=\infty$$ (18) $$\exists t \in T_{\infty} \ni E \frac{|S_t|}{a_t} = \infty$$ (19) $$E \sup_{n \ge 1} \frac{|X_n|}{a_n} = \infty$$ (20) $$\exists t \in T_{\infty} \ni E \frac{|X_t|}{a_t} = \infty.$$ Proof. By Theorem 2, when (15) holds, we have (16), (17), and (19). Conversely, if (15) is false then we appeal to Lemma 6, obtaining $$\int_{-\infty}^{\infty} x^2 \int_{a^{-1}(|x|)}^{\infty} \frac{1}{a^2(y)} dy \leq \frac{1}{2\alpha - 1} + \frac{1}{2\alpha - 1} \int_{\{|x| > a_1\}} (|x| \int_{1}^{a^{-1}(|x|)} (1/a(y)) dy) dF(x).$$ Now by Theorem 3, $\lim_{n\to\infty} E \max_{1\le k\le n} |\sum_{j=1}^k (X_j)/a_j| < \infty$. Hence (16) is false. As in Kronecker's lemma, let $b_0=0$ and $b_n=\sum_{k=1}^n (X_k)/a_k$. $X_n=a_n(b_n-b_{n-1})$ so $$\begin{split} \frac{S_n}{a_n} &= \sum_{k=1}^n \frac{a_k(b_k - b_{k-1})}{a_n} = \sum_{k=1}^n \frac{a_k b_k}{a_n} - \sum_{k=1}^{n-1} \frac{a_{k+1} b_k}{a_n} \\ &= b_n - \sum_{k=1}^{n-1} \frac{(a_{k+1} - a_k) b_k}{a_n} \;. \end{split}$$ Hence $\max_{1 \le k \le n} |S_k|/a_k \le 2 \max_{1 \le k \le n} |b_k|$, therefore $$E\sup\nolimits_{n\geq 1}\frac{|S_n|}{a_n}=\lim\nolimits_{n\to\infty}E\max\nolimits_{1\leq k\leq n}\frac{|S_k|}{a_k}\leq \lim\nolimits_{n\to\infty}2E\max\nolimits_{1\leq k\leq n}|b_k|<\infty$$ so (17) fails and thus also (18). $$\frac{|X_n|}{a_n} \le \frac{|S_n|}{a_n} + \frac{|S_{n-1}|}{a_{n-1}}.$$ Hence (19) and (20) are also invalid. To complete the proof it suffices to verify that $(17) \Rightarrow (18)$ and $(19) \Rightarrow (20)$. Suppose (17) holds. $\exists c_n \ni (c_n)/a_n \nearrow \infty$ and $E \sup_{n \ge 1} |S_n|/c_n = \infty$. (Take $c_n = a_n(E \max_{1 \le k \le n} |S_k|/a_k)^{\frac{1}{2}}$.) Since (15) \Leftrightarrow (17), extending c_n to a continuous function such that $c(y)/y^{\alpha} \nearrow$ we have $$\int_{\{|x|>c_1\}} (|x| \int_1^{c^{-1}(|x|)} (1/c(y)) dy) dF(x) = \infty.$$ Assume that $P(|S_n| \ge c_n \text{ i.o.}) = 1$. Choose integers $0 < k_1 < k_2 < \cdots$ such that $c_{k_n}/a_{k_n} \ge n^2$. Let $t_1 = 1$ st $j \ge k_1$: $|S_j|/c_j \ge 1$. Having defined t_1, \dots, t_{n-1} , let $t_n = 1$ st $j \ge k_n + t_{n-1}$: $|S_j|/c_j \ge 1$. Each t_n is defined a.s. Now introduce random variables Y_1, Y_2, \dots such that $X_1, Y_1, X_2, Y_2 \dots$ are independent and $$Y_n = 1$$ wp $1/2n^2$ = 0 otherwise. Let $$\tau = 1$$ st t_n : $Y_n = 1$ if such an n exists $= \infty$ otherwise. τ is a (randomized) extended-valued stopping rule. $$\begin{split} E \, \frac{S_{\mathrm{r}}}{a_{\mathrm{r}}} &= \, \sum_{n=1}^{\infty} E \left| \frac{S_{t_{n}}}{a_{t_{n}}} \, \mathbf{1}_{\{Y_{n}=1,Y_{1}=\cdots=Y_{n-1}=0\}} \right| \\ &= \, \sum_{n=1}^{\infty} E \, \frac{|S_{t_{n}}|}{a_{t_{n}}} \, P(Y_{n}=1) (\prod_{j=1}^{n-1} P(Y_{j}=0)) \\ &\geq \, \prod_{j=1}^{\infty} \left(1 \, - \, \frac{1}{2 \, j^{2}} \right) \, \sum_{n=1}^{\infty} E \, \frac{c_{t_{n}}}{a_{t_{n}}} \left(\frac{1}{2 \, n^{2}} \right) \\ &\geq \, \prod_{j=1}^{\infty} \left(1 \, - \, \frac{1}{2 \, j^{2}} \right) \, \sum_{n=1}^{\infty} \frac{c_{k_{n}}}{(a_{k_{n}})} \left(\frac{1}{2 \, n^{2}} \right) \\ &\geq \, \prod_{j=1}^{\infty} \left(1 \, - \, \frac{1}{2 \, j^{2}} \right) \, \sum_{n=1}^{\infty} \frac{n^{2}}{2 \, n^{2}} = \infty \; . \end{split}$$ Now assume $P(|S_n| \ge c_n \text{ i.o.}) = 0$. Then $P(|X_n| \ge 2c_n \text{ i.o.}) = 0$. $c_n/n^{\alpha} \nearrow \infty$ so $P(|X_n| \ge c_n \text{ i.o.}) = 0$ (Lemma 2). Choose N such that $$\inf_{n \ge N} P(|S_{n-1}| < c_n \bigcap_{j=N}^{\infty} \{|X_j| < c_j\}) > \frac{1}{2}$$. if such n exists Let $$= \infty \qquad \text{otherwise.}$$ $$E \frac{|S_t|}{c_t} \ge E \frac{|X_t|}{c_t} - 1$$ $$= \sum_{n=N}^{\infty} \frac{\int_{\{t \ge n, |S_{n-1}| < c_n\}\{|X_n| \ge c_n\}} |X_n| dP}{c_n} - 1$$ $$= \sum_{n=N}^{\infty} \frac{P\{t \ge n, |S_{n-1}| < c_n\} \int_{\{|x| \ge c_n\}} |x| dF(x)}{c_n} - 1$$ $$\geq \sum_{n=N}^{\infty} \frac{P\{\bigcap_{j=N}^{\infty} \{|X_j| < c_j\}, |S_{n-1}| < c_n\}}{c_n} \int_{\{|x| \geq c_n\}} |x| dF(x) - 1$$ $$\geq \frac{1}{2} \sum_{n=N}^{\infty} \frac{\int_{\{|x| > c_n\}} |x| dF(x)}{c_n} - 1$$ $= \infty$ by Corollary 1. t = 1st $n \ge N$: $|X_n| \ge c_n$ and $|S_{n-1}| \le c_n$ Therefore $(17) \Rightarrow (18)$. Lastly, assume (19) is true. Again $\exists c_n \ni c_n/a_n \nearrow \infty$ and $E \sup_{n \ge 1} |X_n|/c_n = \infty$. (Take $c_n = a_n (E \max_{1 \le k \le n} |X_k|/a_k)^{\frac{1}{2}}$.) Extending c_n to a continuous function in the appropriate manner we have that $$\int_{\{|x|>c_1\}} (|x| \int_1^{c^{-1}(|x|)} (1/c(y)) \, dy) \, dF(x) = \infty.$$ If $P(|X_n| \ge c_n \text{ i.o.}) = 1$, we proceed as in the S_τ/a_τ case, so suppose $P(|X_n| \ge c_n \text{ i.o.}) = 0$. Choose $N \ni P(\bigcap_{n=N}^\infty \{|X_n| < c_n\}) > \frac{1}{2}$. Let $$t = 1$$ st $n \ge N$: $|X_n| \ge c_n$ if such an n exists $= \infty$ otherwise. $$\begin{split} E\,\frac{|X_t|}{c_t} &= \sum_{n=N}^\infty \frac{\int_{\{t\geq n,|X_n|\geq c_n\}} |X_n|\,dP}{c_n} \\ &= \sum_{n=N}^\infty \frac{P(t\geq n)\int_{\{|x|\geq c_n\}} |x|\,dF(x)}{c_n} \\ &\geq \frac{1}{2}\left(\sum_{n=1}^\infty \frac{\int_{\{|x|\geq c_n\}} |x|\,dF(x)}{c_n}\right) - \sum_{n=1}^{N-1} \frac{E|X_1|}{c_n} \\ &= \infty \quad \text{by Corollary 1,} \end{split}$$ completing the entire theorem. THEOREM 7. Let $\{X_n\}$ be a sequence of i.i.d. mean zero random variables. Let a(y) be a nonnegative continuous function such that for some $\alpha > \frac{1}{2}$, $a(y)/y^{\alpha} \nearrow$. Assume also that $\limsup_{y\to\infty} (a(y))/y > 0$. Then (21)—(25) are equivalent. (21) $$\int_{a_1}^{\infty} x \int_{1}^{a^{-1}(x)} (1/a(y)) dy dF(x) = \infty$$ $$(22) E\sup_{n\geq 1}\frac{S_n^+}{a_n}=\infty$$ $$\exists t \in T_{\infty} \ni E \frac{S_t}{a_t} = \infty$$ $$(24) E\sup_{n\geq 1}\frac{X_n^+}{a_n}=\infty$$ $$\exists t \in T_{\infty} \ni E \frac{X_t^+}{a_t} = \infty.$$ Proof. Assume (21). Let $$t = 1$$ st $k : X_k \ge a_k$ if such k exists $= \infty$ otherwise. $$E \frac{X_t}{a_t} = \sum_{n=1}^{\infty} \frac{\int_{\{t=n\}} X_n dP}{a_n}$$ $$= \sum_{n=1}^{\infty} \frac{\int_{\{t\geq n, X_n \geq a_n\}} X_n dP}{a_n} = \sum_{n=1}^{\infty} \frac{P(t \geq n) \int_{a_n}^{\infty} x dF(x)}{a_n}$$ $$\geq P(t = \infty) \sum_{n=1}^{\infty} \frac{\int_{a_n}^{\infty} x dF(x)}{a_n}$$ $$\geq P(t = \infty) \left(-\frac{EX_1^+}{a_1} + \int_{a_1}^{\infty} (x \int_{1}^{\alpha^{-1}(x)} (1/a(y)) dy \right) dF(x) \right)$$ (by Lemma 1) $$= \infty.$$ Therefore $(21) \Rightarrow (25) \Rightarrow (24)$. For j < n, $$\int_{\{t=n\}} X_j dP = \frac{P(t=n)}{P(X_j < a_j)} \int_{-\infty}^{a_j} x dF(x) = P(t=n)E(X_j | X_j < a_j) \ge P(t=n)E(X_1 | X_1 < a_j).$$ As in McCabe and Shepp [7] and Klass [6], $$E \frac{S_{t-1}}{a_t} = \sum_{n=1}^{\infty} \frac{\sum_{j=1}^{n-1} \int_{\{t=n\}} X_j dP}{a_n} \ge \sum_{n=1}^{\infty} \frac{P(t=n)E(X_1 | X_1 < a_1)(n-1)}{a_n}$$ $$\ge E(X_1 | X_1 < a_1) \sup_{n \ge 1} \frac{n}{a} > -\infty.$$ Therefore $E(S_t/a_t) = \infty$ and $(21) \Rightarrow (23) \Rightarrow (22)$. Conversely, we verify that if (21) fails, then (22)—(25) are also false. Let $Y_n = X_n^+ - EX_n^+$. $\{Y_n\}$ is a sequence of i.i.d. mean zero random variables which is bounded below. Hence $$EX_1^+ \int_1^{a^{-1}(X_1^+) \vee 1} (1/a(y)) \, dy < \infty \Rightarrow E[Y_1] \int_1^{a^{-1}(|Y_1|) \vee 1} (1/a(y)) \, dy < \infty.$$ Let $T_n = Y_1 + \cdots + Y_n$. Invoking Theorem 6, $E \sup_{n\geq 1} |T_n|/a_n < \infty$ and $E \sup_{n\geq 1} |Y_n|/a_n < \infty$. $$E \sup_{n \ge 1} \frac{S_n^+}{a_n} \le E \sup_{n \ge 1} \frac{\sum_{j=1}^n X_j^+}{a_n} \le E \sup_{n \ge 1} \frac{\sum_{j=1}^n Y_j}{a_n} + E \sup_{n \ge 1} \frac{\sum_{j=1}^n E X_j^+}{a_n}$$ $$= E \sup_{n \ge 1} \frac{T_n}{a_n} + \sup_{n \ge 1} \frac{n E X_1^+}{a_n} < \infty ,$$ so (22) and (23) fail. $$E \sup_{n\geq 1} \frac{X_n^+}{a_n^+} \leq E \sup_{n\geq 1} \frac{Y_n^- + EX_n^+}{a_n^-} \leq E \sup_{n\geq 1} \frac{Y_n^-}{a_n^-} + \sup_{n\geq 1} \frac{EX_1^+}{a_n^-} < \infty.$$ Hence (24) and (25) are also invalid, thereby completing the entire proof. A couple of examples are in order to illustrate some of the results. Example 2. Let $a_n = n^{1/\alpha}$ for some $1 < \alpha < 2$. $$\int_{\{|x|>1\}} |x| \int_{1}^{|x|\alpha} \frac{1}{y^{1/\alpha}} dy dF(x) = \int_{\{|x|>1\}} |x| \frac{y^{1-1/\alpha}}{1-1/\alpha} \Big|_{1}^{|x|\alpha} dF(x) = \frac{\alpha}{\alpha-1} \int_{\{|x|>1\}} (|x|^{\alpha} - |x|) dF(x).$$ Hence $E|X|^{\alpha} < \infty \Leftrightarrow E \sup_{n \ge 1} |S_n|/n^{1/\alpha} < \infty$. Also, $$E|X|^{\alpha} < \infty \Rightarrow \lim_{n \to \infty} E \left| \sum_{k=1}^{n} \frac{X_{k}}{k^{1/\alpha}} \right| < \infty$$ $$\Rightarrow \sum_{k=1}^{\infty} \frac{X_{k}}{k^{1/\alpha}} \quad \text{converges a.s.}$$ $$\Rightarrow \frac{S_{n}}{n^{1/\alpha}} \to 0 \quad \text{a.s.}$$ Whenever $E|X|^{\alpha} < \infty \exists \tau \in T_{\infty} \ni$ (26) $$E\frac{S_{\tau}}{\tau^{1/\alpha}} = \sup_{t \in T_{\infty}} E\frac{S_{t}}{t^{1/\alpha}} < \infty.$$ Theorem 6 also shows that $E|X|^{\alpha} < \infty$ is necessary for (26). EXAMPLE 3. Let $a_n = (n \log n)$ for $n \ge 3$ and extend it appropriately for n = 1 and 2. $$\begin{aligned} a^{-1}(y) &> \frac{y}{\log y} & \text{for } y \ge e \\ \lim_{x \to \infty} \frac{\int_{e}^{a^{-1}(x)} \left(\frac{1}{a(y)}\right) dy}{\int_{x}^{x} \log_{x} \left(\frac{1}{y \log y}\right) dy} \\ &= \lim_{x \to \infty} \frac{\log \log \frac{x}{\log x}}{\log \log x - \log \log \frac{x}{\log x}} \\ &= \lim_{x \to \infty} \frac{\log \log x}{(\log \log x) \log x} = \infty & \text{therefore,} \\ \int_{a_{1}}^{\infty} x \int_{1}^{a^{-1}(x)} (1/a(y)) dy dF(x) &< \infty \\ &= \int_{e}^{\infty} x \log \log x dF(x) &< \infty . \end{aligned}$$ Recalling the appropriate theorems, it is apparent that $EX_1^+ \log^+ \log X_1 < \infty$ is necessary and sufficient for there to exist $\tau \in T_\infty \ni$ $$E\frac{S_{\tau}}{(\tau \log \tau) \vee 1} = \sup_{t \in T_{\infty}} E\frac{S_{t}}{(t \log t) \vee 1} < \infty.$$ More generally, let $\log_{(0)} x = x$ and $\log_{(n)} x = \log(\log_{(n-1)} x)$. It is easy to verify that $\exists \tau \in T_m \ni$ $$E \frac{S_{\tau}}{(\log_{(0)} \tau \log_{(1)} \tau \cdots \log_{(n)} \tau) \vee 1}$$ $$= \sup_{t \in T_{\infty}} E \frac{S_{t}}{(\log_{(0)} \tau \log_{(1)} t \cdots \log_{(n)} t) \vee 1} < \infty$$ iff $EX_1^+ \log_{(n+1)}^+ X_1^+ < \infty$. ## REFERENCES - [1] Burkholder, D. L. (1962). Successive conditional expectation of an integrable function. Ann. Math. Statist. 33 887-893. - [2] CHOW, Y. S., ROBBINS, H. and SIEGMUND, D. (1971). Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin, New York. - [3] CHUNG, KAI LAI (1968). A Course in Probability Theory. Harcourt, Brace, and World, New York. - [4] DAVIS, BURGESS (1971). Stopping rules for S_n/n and the class $L \log L$. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 147-150. - [5] GUNDY, R. F. (1969). On the class L log L martingales and singular integrals, Studia Math. 33 109-118. - [6] Klass, M. (1973). Properties of optimal extended-valued stopping rules for S_n/n . Ann. Probability 1 719-757. - [7] McCabe, B. J. and Shepp, L. A. (1970). On the supremum of S_n/n . Ann. Math. Statist. 41 2166-2168. - [8] Siegmund, D. O. (1967). Some problems in the theory of optimal stopping rules. Ann. Math. Statist. 38 1627-1640. DEPARTMENT OF MATHEMATICS CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA 91109