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ON STOPPING RULES AND THE EXPECTED SUPREMUM
' OF S,/a, AND |S,|/a,’

By MicHAEL J. KLASS

California Institute of Technology

Let {X,} be a sequence of i.i.d. mean zero random variables. Let S», =

X1+ ... + Xa. This paper is devoted to determining the conditions where-

by ESupnz18s/an < co and Esupnz1|Sa|/as < oo for quite general sequences

of increasing constants {a.}. For the sequences {a.} considered, we find it

sufficient to examine whether or not limy—.. E(X -, Xx/ax)* < co. The

existence of optimal extended-valued stopping rules with finite expected

reward for sequences {Sa/as} or {|S.|/a.} is a by-product of our results.

* This generalizes results of D. L. Burkholder, Burgess Davis, R. F. Gundy,
B. J. McCabe and L. A. Shepp, who treat the case a, = n.

Given i.i.d. mean zero random variables X;, X;, - - - and a sequence of positive
constants a,, a,, - - -, one may be interested in identifying the conditions under
which an extended-valued stopping rule 7 exists such that

(1) EST+ = suPtETmEEt: < [%)
af at

or

(2) El;s—rl‘zsupcermEm< S
ar at

where T, is the class of randomized extended-valued stopping rules based on
{X., e X)and S, =X, + ... 4 X,

Works by D. L. Burkholder [1], B. Davis [4], R. F. Gundy [5], B. J. McCabe
and L. A. Shepp [7], provide solutions to such problems for a, = n. Namely,
(1) is satisfied iff EX,* log* X, < oo and so (2) is satisfied iff E|X,|log|X,| < oo.

Due to Theorem 4 of D. Siegmund [8] or Theorem 1 of M. Klass [6], for any
sequence of returns V,, V,, - - -, V,, based on random variables X, X,, - -- (i.e.,
Vu(0) =V (X(o), - - -, X, (0)) for w € Q), there exists 7 € T,, such that

3) EV, =sup,e, EV, < o0 whenever
(4) Esuplgnseo Vn < o and
&) limsup, ., V, < V., .

For the problems treated, (4) is also necessary to ensure the existence of r ¢ T,,
satisfying (3); and (4) implies that lim,_, ¥, = 0 a.s. Hence we define V', = 0
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890 MICHAEL J. KLASS

so that (4) = (5). (Note: V, = S,*/a, or V, = |S,|/a,.) Throughout the entire
paper we will regard V., as zero, regardless of {V',} or lim sup,_., V,.

The problem of bounding E max,,., (|S;])/a, above can be reduced by
means of the proof of Kronecker’s lemma to that of upper bounding
Emax, ., |2 %, X;/a;|. Thanks to the fact that for independent mean zero
random variables Y,, Y,, ..., Y,,

E max, ., (Z?:l Yt S 8E(X3. Y)Y,

the complexity of the problem at hand is considerably reduced, sufficiently so
as to enable the derivation of a solution in a quite general setting.

Our primary results are twofold: Let a(-) be a nonnegative continuous func-
tion such that for some a > }, a(y)/y* /" oo.

Then

() E|X,| §2711 (1/a(y)) dy < oo iff (2) holds.
If, in addition, lim inf,_, (a(y)/y) > 0, then

) E(X,* §5750 (1a(y)) dy) < o0 = (1)

As a result, (2) holds with a, = n¥/* for some 1 < a <2 iff E|X)|* < oo.
Assuming a, = (nlogn) v 1, (1) is equivalent to the requirement that
EX,*log* (log X,) < co. For a, = (nloglogn) Vv 1, (1) is equivalent to the con-
dition EX;* log* (log log X;) < oo, and so forth.

Other results relate to such quantities as Esup,., (X,/a,) and the a.s. con-
vergence of Y7, (X,/a,).

THEOREM 1. Let Y,,Y,, - .. be independent mean zero random variables. Let
T,=Y,+ .- +Y,. Then

ET,* < Emax,,., T,* < 8ET,*.

Proor. The left side is obvious. We first prove what is essentially Ottaviani’s

inequality (Chung [3] page 114). Fixu = 0andn > 1. Let
t=1st k<n:T,=2u if such k exists

= o0 otherwise.
Since

{c=kT,—T, =2 —uy<{r=k,T, = u}, therefore

St Ple=kT,—T, = —u}< Y Pc=kT,=u) < PT, =u).
Also {
1wy and 14 _;.._, areindependent.

Hence

PT,zu)= i Pc=kPT, —T,= —u)
and therefore

(8) P(T, = u) = min,_, ., (T, — T, = —u)P(max,g,, T, = 2u).
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min, g, ., P(T, — T, = —u)
=1—max,;, (T, — T, < —u)
1 — max,_,, P(T, — T, > u)

Il

— +
>1-— maxlsk;nu
u
+
1 man, BT =T BT =T
u u
> - ELY
- u
Thus u = 2ET,* implies
P(T, = u)
P(max T, 22y yr="7 J2P(T,=u
( 1gksn * bk = )_I_ET+/ ( )
Estimating E max,_,, T,*, we have
Emax, ., Tt = 2\ P(max,g,, T, = 2u)du

< 4ET,* + 2 \5pp + P(max, g, T)," = 2u) du
< 4ET,* + 4 5 + (T, = u) du
< 8ET,*.

REMARK. Since ET,~ = ET,*, any condition on {Y,*} which is necessary to
ensure that lim,_,, E max, .., T,* < oo is a condition on {|Y,[}.

LeMMA 1. Let {X,} be a sequence of independent identically distributed random
variables with common distribution function F. Let a(y) be a nonnegative strictly
increasing continuous function defined for y > 0. Write a; = a(j). Then

— D EX7 4 55 (x 57 (1/a() dy) dF(9)
< 25 15 200 < L Ex 4 5z (5 (1a() d) 4.

Proor. Let 4; = {a; < x < a;,,}.

xdF(x) _ x dF(x)

Z”ISw anZJnSA

1& "

= 2557 ( Tt ;}—) x1,, dF(x).

The right-hand inequality is easy because

i il Sl UL
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As for the left-hand side,

( w —> < a( y) )
= (157 (1aQ) dp)L, — (157 (1/a(y)) d)1,,
z (557 (1a(y)) dy — ai) L,

3

z (17 (o) dy - L)1,

1

CoRrOLLARY 1. With {X,} and a(y) as above,

—% + Suarsay (%] §57290 (1/a(y)) dy) dF (x)

1

< D5 Qe L) < B g 570 (1) ) dF )

LeMMA 2. Let {X,} be a sequence of i.i.d. mean zero random variables. Let {a,}
be a sequence of positive numbers such that for some ¢ > 0, a,/n* /. Then for each
M>0, (X, = a,i0.) =PX, = Ma,i.o.).

PROOF. Suppose N is a positive integer. If P(X, > a, i.0.) = 1, then

oo = }»_ye P(X, = a,)
= Yo SN P(X, 2 a(iN - k)
< N Sz, P(X, 2 a(nN))
< N %5, P(X, 2 Na,) ,
so that P(X, = Na, i.0.) = 1.
For any M = 1 3N = M such that N¢ is a positive integer. Now
P(X, = a, i.0.) 2 P(X, = Ma, i.0.)
= P(X, = Na, i.0.).
The extreme terms are equal regardless of whether P(X, = a, i.0.) is zero or
one. Hence
P(X, = a, i.0.) = P(X, = Ma, i.0.).
The case in which 0 < M < 1 can be reduced to the previous situation by

letting b(y) = Ma(y) and observing that b( Yyt /" so that P(X, = b(n) i.0.) =
P(X, = M™'b(n) i.o.).

THEOREM 2. Let {X,} be a sequence of i.i.d. mean zero random variables with
common distribution function F. Let a(y) be a nonnegative continuous function de-
fined for y = 0. Suppose

) for some ¢>0, a;—{)/'oo

(10) 2% 7 (1/a(y)) dy dF(x) = oo .
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Thenlim,_, E(X 7., (X,)/a,)t = 00, ESup,;,(S,*)/a, = oo, and Esup,,;, (X, H)/a, =
co. (Note that S, = X; + -+ + X,.)

ProoF. Assume that P(X, = a,i.0.) = 1. Fix M large. For each n > 1,
~let
t,=last k< n:X = Ma, if such k& exists
= o otherwise.

Observe that P(f, # o) = P(Ui= {X, = Ma}) — 1 as n— o by Lemma 2.
From Theorem 1,

X
a;

E<Z7§=1 >+ > 4 Emax, g, (Zi:n %k)*

n 7 Xk *
= § Xia Emaxg;g, Zk=1a— L =n)

k
X,
2 4 20 B (i 2F) Ly
k

{t. = I} € B(X;, X, -+ +» X,). Hence for k <1, (X)/a, and 1, _, are inde-
pendent. Therefore

X \+ EX 1, _
L G e
a; 1
Clearly,
+
Fsuposs 5= pp, Piluaen
a, a
Similarly,
St S 1, _ EX, 1, _
E max, gg, 5 = Z?:lE——-——l U=l = Tips B2 U oL
a, a, a,

The three quantities of interest are each bounded below by

1 .
_l':_'lﬁfs_”_g§z;;»=lEM1””=“=Mf(’_»£ﬁ)__,% as n— oo,

1 n
8 Zl:l a, 8

which completes the proof when P(X, = 4, i.0.) = 1. Now assume P(X, = a,
i.o.) = 0. For eachn =1, let

t, =last k<n:X,=a, if such k exists

n

= oo otherwise.
P(t, = ) = P(Ni-1 (X < a})
= ra PX < @) = e (1 — P(X, = a)) >0

since Y15, P(X; = a,) < oo and P(X; = a) < 1. Let ¢ = I P(X, < @;).
Again we obtain
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. . X + S + X +
lim,_. min <E <Zz=la_’° , Emax ., 7’2 , Emax, .., =& )

& k a
EX, 1(,n=,‘,

k

Z %limn—peo Z;’::l

. * xdF(x
= 4 lim,_, X1, (S—ka-ﬁ (13- P(X; < a3))
! k
» xdF(x
2 ¢ g, S22 46
k

which by Lemma 1 is at least

c ( ~EAD e (1 — a) dy) aF (")>

a,

and is consequently infinite.

LemMA 3. Let {X,} be a sequence of i.i.d. random variables with common distri-
bution function F. Let a(y) be a strictly increasing continuous function defined for
y = 0. Assume a(0) = 0 and a(c0) = co. Set Y, = X, 1oy <, ). Then

1
—P(X, > 0) + §& (** {1y ——dy ) dF
(6> 0) 4 7 (5§10 55 ) dF0)
< 25 2 2 PG> 0) 4 55 (% §ima i dy ) dF()
a, a(y)
Proor. Let 4; = {a;, < x < a;} forj = 1.
EY? x*1, dF(x
Dra = N D s:r—‘—’—;Q
an an
- 1
=y, g;oxz<z,,=,- p 2) 1,, dF(x) .

n

We deduce the inequality on the right by noting that

1 1 1
x2<Z:z°=j ;—2) I, =x (— + §et1a Wy—)d}’> 1,

aj
" 1
= (1 + X {1, 'az(—y—)d}’> lAj .
To produce the left side:

w 1 w 1
x2<2n=j a—j) 1, =2 x*(§3 dy)lAj

: 1
’__dy - Si-l(z) Zz*’_(}—)dy> lAj

) 1 ] - a-—l(x)
$o-10 “az—(y—)dy - *—xz—~> lAj '
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LEMMA 4.

55 (3 $2-um 5 ) P9

= 55, (¥ S0 g dy) dF() + P(X, > 0) + a5

a(y) a”( )
Proor. This follows from the fact that
o (x (=, 1 a))ar
5 (3§21 55 42) P9
= (& x? x2\* —_dy) dF|
§01 X* $om10 5 — 2( ) dy + {1 < 1} 207 )’) (*)

< §o (1 — a™'(x)) dF(x) + a? <s?5{:7)dy>

< P(X; > 0) + a7 2( )
CoroLLARY 2. Let {X,} be a sequence of i.i.d. random variables with common
distribution function F. Let a(y) be a strictly increasing continuous function
defined for y > 0. Assume ¢(0) = 0 and a(c0) = co.
Let Y, = X, 14, z0,)- Then

—1 4+ =, <x2 o 1(1ai a_z%};dy> dF(x)
S iS4 <x2 g;:l(,,,,,ag:y) dy) dF(x)
=2+a’f7 ’7(—) dy + §ia,511 (x $o1an 20 )dy) dF(x) .

THEOREM 3. Let {X,} be a sequence of i.i.d. non-degenerate mean zero random
variables with common distribution function F. Let a(+) be a nonnegative continuous
function defined for y > O such that for some ¢ > 0, a(y)[y* /" co. Then the fol-
lowing are equivalent:

(11) lim ME|Zk -1
(12) lim, .. £ max,s, | 25 ‘—l < o
(13) () §1z1zay (1] §71=0 (1/a(y)) dy) dF(x) < oo and

i) 2 (57§ a0 o dy ) dF
(i) §% (3§50 5y @) 4FG) < o
REMARK. (ii) may be replaced by the two conditions

o

dy < oo
a(y) Y
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and

1
§ 2120y (xz § o100 20 d}’) dF(x) < oo .

Proor. According to Theorem 1, (11) = (12). We next establish that
(12) = (13).

By the contrapositive of Theorem 2 applied to E(} 7., (X,)/a,)* and
E(X -1 (X)/ar)™ (12) = (13) (i). When (12) holds we may invoke the Martingale
Convergence Theorem to conclude that Y53, (X,)/a, converges a.s. Let Y, =
X.1x, 54, and Z, =X, — Y, By the Three Series Theorem (Chung [3]
page 112),

2
To, B B ¢ oo

a'IL
Since
|EY,| <1, <EY,,>2§ |EY,| _ |EZ,|
an a'lb an a'n,
and so
EY, . EZ,
Zn 1< > Zn=l I—I
an an

which, by Corollary 1 is

E X, _

BIEL e § e (131 5570 (1/a(3) ) dF(3) < o0
by (13)(i) and the fact that X, has finite mean. Thus
EY - - 1

_1 + S‘—eo (x2 Stz‘l(lxl) ;(-.;’5

(see Corollary 2). Hence (12) also implies (13) (ii).
We next assert that (13) = (11).

0 > N, dy> dF(x)

_ 1z

ak

=E Y, 2——F < }Zn
a

< (5 (22 7)) + Zea E‘aZ"'

k

= (Var (28 1) + (P20 1)) 4 ., 2L

& a

EY,? E|Z, | \?\? E\Z
< (ze LLCES (,27::1 %)) + oy, BAd

A & a

As has been previously shown, (13) (i) implies

2 Elz] < (Corollary 1)
a
and (13) (ii) implies
. EY;?
e —, (Corollary 2).
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Consequently
< oo,

lim, E ] sz, X
a

k

It is of interest and importance to know when (ii) implies (i) and vice versa.
Lemmas 5 and 6 deal with this subject.

LEMMA 5. Let a(y) be a nonnegative strictly increasing continuous function defined
fory = 0 such that for some < a < 1, a(y)[y*\,. Then

a=10z) a (|x|) 2a — 1 X2 (>
5170 (1) dy 5 T < (FEZ) 2 S s &

PRrROOF.
x| §7200 (1/a(y)) dy = |x] §57°0" (y</a(y))(1]y*) dy

< |« [a-1|(|T|)]a §e10= (1/y%) dy

P GG Gl

l -«
2 coo y2a 1
X § e 1gen —5— 2( ) = X" o0 (WQ (W) dy
S ) G I
x? Y
— [a(|xppe [ADIT _ a7i(x])
= [a7X(|x])] e T = a1

which proves the lemma.

THEOREM 4. Let {X,} and a be as in Theorem 3. Assume further that for some
3 <a < 1,a(y)ly*\, Then (11), (12), and (13)(ii) are also each equivalent to

(14) p X, converges a.s.
a,

Proor. From the proof of Theorem 3, (12) = (14) and (14) =

s, B = BV
a

n

where Y, = X, 1,4 o, ;. The proof of Theorem 3 also gives

T (BXe) g BAL g 1 55700 (1/a(y) dy dF()

'n, 1

ELXJ + Snz1>a1) a- (lxl) dF(x) (by Lemma 5)

< o0 Xt P(a"l(anl) >n) < oo
= L]z a,) <o B PX, #Y,) < oco.
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Referring once again to the Three Series Theorem, Y5, (X,)/a, converges a.s.
= 2 P(X, #Y,) < co. Hence co > 3172, (EY,?)/a,? and so (13)(ii) holds
(see Corollary 2). By virtue of Lemma 5, (13)(ii) = (13) (i). Therefore (14) =
(13) = (12). Consequently, (11), (12), (13)(ii) and (14) are equivalent.

An example will illustrate that if a(y)/y* is not decreasing for some a < 1
then (14) may not imply (11), (12) or (13).

ExAMpLE 1. -Let {X,} be a sequence of i.i.d. symmetric random variables with
mean zero and common distribution function F. Assume E|X|| log* | X)| = oo.
Leta(y) =yand Y, = X, 1,y <. o, (X,)/n converges a.s. iff

(a’) Z‘n P(Xn +* Yn) < o0,
(b) |XZ. E(Y,)/n| < oo, and
(c) 2. (EY,!— (EY,)")/n* < oo (Three Series Term)

EX| < oo 50 3, P(X,]>n) < oo.
Thus (a) holds. EY, = 0 so (b) holds.

- x?dF(x
Zn=1 S(msm 2( )

<145 <x“’ i _lz_dy> dF(x)  (by Lemma 3)

=14+ §>, |x|dF(x) < oo .

So (c) holds and hence ¥z, (X,)/n converges. However,
§ x| S'”' dy dF(x) = {7 |x| log |x| dF(x)

= E|X;| log* |X;| = oo
so that (13) (i) fails to hold.

Whenever 37, (X,)/a, converges, Kronecker’s lemma can be utilized to give
(S.)/a, — 0 a.s. What follows is another condition sufficient to guarantee that
S,/a, — 0 a.s. This will be useful when attempting to establish the existence
of optimal extended-valued stopping rules.

THEOREM 5. Let {X,} be a sequence of i.i.d. mean zero random variables. Let
a(y) be a nonnegative strictly increasing continuous function defined for y > 0 such
that a(y)/y \,. Let S, = X, + -+ + X,. Assume

Zo (x §a=10a) @y )d}’> dF(x) < oo
Then S,/a, — 0 a.s.

Proor. LetY, = X,1,; ., ,- We claim that =, (Y, — EY,)/a, converges
a.s.

( ) < Z”_l Y y < oo (Corollary 2).

((Y, — EY,)/a,) is bounded and each term has mean zero. Applying the Three
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Series Theorem, };%_, (Y, — EY,)/a, converges a.s. By Kronecker’s lemma,

L s (¥, —EY,)—0 as.
a

n

Referring to the proof of Lemma 5,

X § o101 ,2 ) }’._ 2:(E‘|)1

Therefore Ea~'(|X,|) < oo implies P(|X,| > a, i.0.) = 0 = P(X, # Y, i.0.) = 0
and therefore

s X = EYy o g

a’n
EY,
a

IZLI

n X
= 2k S(le>ak) l—z—l dF(x)

1
= k21K § 0y <inisag 4y X1 4F() + — Suxl>a,,» x| dF(x)

n

n

= ai,, §2n, |xla™}(Ix]) dF(x) + §(u1>a,) <a—|)(c@> |x| dF(x)

1 —
\/a— ,/_n" _l(lxl) dF(X) + S(Ju_’;<|z]§u,n) a—l(lxl)

+ Sia>a, a7(|X]) dF(x) — 0 as n— oo

IA

since Ea~'(|X;]) < oo and a, — oo, therefore

ﬂ-—-)() a.s.

a

n

LEMMA 6. Let a(y) be a nonnegative continuous function such that for some
a >4, a(y)/y" /" oo. Then

x2 s 1 (/al) 2( )a’ < a- (l’_cli < 2a|_|1 S(a l"““’“(l/a(y)) a’y +

Proor.
- 1 a (XD ¢o 1
x* SG“l(IxI) < 2(y)> ( ) d.y =x [_’—(L—l)’]'_ SG‘l(IzI) yza

= (@ (| L (DI

—1"

_ (a7 '(|x])) _ 1 a=1(al) g

T 2a—1 2a — 1 ¥ !

=< yi—* + (§7 (|xlfa(y)) dy)f2a — 1.
a— 1

THEOREM 6. Let {X,} and a(y) be as in Theorem 3. Assume also that for some

a > 4§, a(y)y* / oo.
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The following are equivalent:

(15) S(1z|>a1) (|x] §3714=" (1/a(y)) dy) dF(x) = oo
X,

16 X\ =
(16) Mo B(B1a ) = o0
17) Esup,,, 1S4 — o

aﬂ
(18) areT. 5B = o
a,
(19) Esup,,, %ol = o
(20) areT, s E X =
a,

Proor. By Theorem 2, when (15) holds, we have (16), (17), and (19). Con-
versely, if ( 15) is false then we appeal to Lemma 6, obtaining

1 1
x* o=

Lzl —37—~ 2( ) dy < Y — 1 + Y — 1 §tia1>ay) (1] §710=0 (1/a(y)) dy) dF(x) .

Now by Theorem 3, lim, ., Emax,,, |2 %, (X;)/a;] < co. Hence (16) is

false. As in Kronecker’s lemma, let b, =0 and b, = > 7_, (X))/a,. X, =
a, (b, — b,_,) so

S. _ PN (b, — b)) _ — ak+1b

a, - a

n n
=m—zm@ﬂ:@ﬂ.
n

Hence max,,, |S;//a, < 2 max,,, |b,|, therefore

E sup, ., ijnl = lim, . E max,_,_, ljkl < lim, ., 2E max,,, |b,| < oo
n k

so (17) fails and thus also (18).

Hence (19) and (20) are also invalid. To complete the proof it suffices to verify
that (17) = (18) and (19) = (20).

Suppose (17) holds. 3¢, 5 (¢,)/a, / co and Esup,., |S,|/c, = o. (Takec, =
a,(E max, ., |S.|/a,).) Since (15) = (17), extending ¢, to a continuous function
such that ¢(y)/y* / we have

Stiersey (1X] §5700 (1/e(y)) dy) dF(x) = oo .
Assume that P(|S,| = ¢, i.0.) = 1. Choose integers 0 < k; < k, < --- such
that ¢, [a, > n’
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sty lett, = 1Istj =

k, + t,_,:|S;|/c; = 1. Each ¢, is defined a.s.

Now introduce random variables
independent and
Y, =1
=0
Let
= Ist tn: Yn =1

(o]
7 is a (randomized) extended-valued

ES:—s= E

T

IS.,|
= > FE kil
Z: n=1 a

tn

- 1
= [I <1 - 71—,)

l& 1
a,”

Y, Y,, --- such that X, Y,, X,,Y, ... are

wp 1/2n*
otherwise.

if suchan n exists
otherwise.

stopping rule.
(Y,,=1.Y1=--~=Y,,_1=0)l
P(Y, = 1)(II3= P(Y; = 0))

4 1
© E 'n <_>
2 B2 2

2 1154 (1 = 35) 2 %5 (3)
2[5 (1 - -ZL_]’) DI Zn_r; =

Now assume P(|S,| = ¢, i.0.) = 0. Then P(|X,| = 2¢, i.0.) = 0. ¢,/n* / oo sO
P(|X,| = ¢, i.0.) = 0 (Lemma 2). Choose N such that

inf,y P(IS,| < 6 Ny {1X] < ¢}) > % -

Let

oo

A Xl _
¢

g X
¢

E 1

v

=1stn = N: |X,| =¢, and

[Spcsl < €n if such n exists

otherwise.

. §t2m,15, _yi<en)ixyzop [ Xu| 4P 1

[4

n

P{t = n,|S,_
=Z:=N { — l ll

< €} Sijaizen 1X] 9F(x) —1

C,

n

= Din-w PGy (Il < &5} [Suma] < ) §iizize, X dF(x) — 1

=L DAY

4

n

S(le>c,,} | x| dF(x) _1

C

n

= oo by Corollary 1.
Therefore (17) = (18).
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Lastly, assume (19) is true. Again 3¢, c,/a, /" co and Esup,., |X,|/c, = oo.
(Take ¢, = a,(Emax,_,, | X,|/a,)}.)
Extending c, to a continuous function in the appropriate manner we have that

§iiei>ey (1X] §5700 (1/e(y)) dy) dF(x) = oo .

If P(|X,| = c,i.0.) = 1, we proceed as in the S,/a, case, sosuppose P(|X,| = ¢
i.0.) = 0. Choose N3 P(N=_y {|X.] < €.}) > -
Let

n

t=1stn 2 N:|X,| = ¢, ifsuchan n exists

= oo otherwise.

Eﬂ — ZOO_N S{tzn.anlzc,,) lX'nl dap
c, "= c

= Z:::N

n

P(t = n) § 2120, 1X] dF(x)
c

n

> _L(Zoo . §iiz12e, 1X] a’F(x)) _ oy E|X|
=7 n= c n=1 -

= co by Corollary 1,

n cn

completing the entire theorem.

THEOREM 7. Let {X,} be a sequence of i.i.d. mean zero random variables. Let
a(y) be a nonnegative continuous function such that for some a > %, a(y)/y* /.
Assume also that lim sup, ., (a(y))/y > 0.

Then (21)—(25) are equivalent.

(21) o X §17' (1/a(y)) dy dF(x) = oo
(22) Esup,., Sa? = oo
S
(23) IteT,3E> = o
at
(24) Esup,., X2 — oo
a,
(25) WeT,5sEX = .
a,

Proor. Assume (21). Let

t=1stk: X, = a, if such k exists

= o0 otherwise.
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E & = 2= »__S(t=n) X, dP
at an

== $ic2n, 2,20, Xn dP =y P(t = n) §7 x dF(x)
- n=1

n=1
a

n n

g P(t = OO) Z:=1M

n

B4 45 (57 (1/a0) ) dF()  (by Lemma 1)

a,

> P(t = o) <_
Therefore (21) = (25) = (24).
Forj < n,
P(I = n)
P(X; < a))
= P(t = ME(X; | X; < a;) 2 P(t = NE(X, | X, < a,).

§ioem X; dP = %, x dF(x)
As in McCabe and Shepp [7] and Klass [6],

E St _ D 2321 Sie=m X; AP > = Pt = mEX, | X, < a))(n — 1)
a, : a -0 a

n n

= E(‘X;IXI < al) Supnglzn— > —oo.
Therefore E(S,/a,) = oo and (21) = (23) = (22).
Conversely, we verify that if (21) fails, then (22)—(25) are also false.
LetY, = X,* — EX,*. {Y,}isasequence of i.i.d. mean zero random variables
which is bounded below. Hence

EX;* §§7m v (1a(y)) dy < oo = E|Y,| §770 (1a(y)) dy < oo .

Let T, =Y, + --- + Y,.
Invoking Theorem 6, E sup,., |T,|/a, < oo and E sup,..: |Y,l/a, < co.

+
n

S
E su
pngl a

n + n n +
<E supngl.ZiﬁL =< Esup,., 2iaY; + E supﬁle_
n an an an

+
nEX, < oo,

T
=F sup,,gl_a_” + sup,.s;

n n

50 (22) and (23) fail.

+ +
E sup,,, ’Xa"‘_ =< Esup,,, = Esup,,,; %‘ + sup,.,; Efl

n n n n

Y, + EX,*
B <o

Hence (24) and (25) are also invalid, thereby completing the entire proof.
A couple of examples are in order to illustrate some of the results.
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ExaMpLE 2. Let a, = n¥* for some 1 < a < 2.

—1/a |zl

Stiaisn x| §5 Y ad}’ dF(x) = § >y |X | 1/ dF(x)
= |x]) dF(x) .
Hence E|X|* < oo < Esup,s, |S,|/n"* < co. Also,
. X
BIX[* < oo =,11mME]z;;=1 Kl < oo

= T klfk converges a.s.

~ —0 a.s.
nl/a
Whenever E|X|* < c0od7e T, 3

S,

.L.l/a

=

= SUpP;cr E S, < oo

tl/a

(26) E

Theorem 6 also shows that E|X|* < oo is necessary for (26).

ExAMPLE 3. Leta, = (nlogn) for n = 3 and extend it appropriately for n = 1
and 2.

a(y) > loéy for y>e
—1(z) 1 d z/log « 1 d
lim : <a(y)) ’ = lim > <y logy> d
Z—00 1 = Z—0 1
s —L(z) <“‘—> d}’ Sx/loga: < ) d}’
a(y) ylogy
log log_
— lim,_,, log x
log 1 — loglog =
og log x og Og gx
= __loglogx therefore
™ (log log x)/log x ’
o x §i7h@ (1/a(y)) dy dF(X) < oo
= (e (x §z dy) dF(x)

= {r xlog logxdF(x) < 0.
Recalling the appropriate theorems, it is apparent that EX;* log*log X, < oo is
necessary and sufficient for there to exist re T, >
S
(tlogr) v 1

S,

T

(rlogz) v 1 <

= SUpP;cr, E
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More generally, let log,, x = x and log,,x = log (log,_, x). It is easy to verify
that 3z e T, >

S,

T

E
(log, 7 logy, 7 - - - log,,7) V 1

S

E < oo
(log, 7 logy,t - - - log,, ) v 1

= SUD;er,,

iff EX,* logt,,, X,;* < oco.

REFERENCES

[1] BURKHOLDER, D. L. (1962). Successive conditional expectation of an integrable function.
Ann. Math. Statist. 33 887-893.
[2] Cuow, Y. S., RoBBINS, H. and SieGMUND, D. (1971). Great Expectations: The Theory of
Optimal Stopping. Houghton Mifflin, New York.
[3] CHUNG, KA1 La1 (1968). A Course in Probability Theory. Harcourt, Brace, and World, New
York.
[4] Davis, BURGESss (1971). Stopping rules for Su/n and the class Llog L. Z. Wahrscheinlichkeits-
theorie und Verw. Gebiete 17 147-150.
[5] Gunpy, R. F. (1969). On the class Llog L martingales and singular integrals, Studia Math.
33 109-118.
[6] KLaAss, M. (1973). Properties of optimal extended-valued stopping rules for S./n. Ann.
Probability 1 719-757.
[7] McCaBE, B. J. and SHepP, L. A. (1970). On the supremum of Su/n. Ann. Math. Statist. 41
2166-2168.
[8] SiegMUND, D. O. (1967). Some problems in the theory of optimal stopping rules. Ann. Math.
Statist. 38 1627-1640. :
DEPARTMENT OF MATHEMATICS
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91109



