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CONDITIONS FOR FINITE MOMENTS OF THE NUMBER
OF ZERO CROSSINGS FOR GAUSSIAN PROCESSES!

By Jack Cuzick

Claremont Graduate School

Let M (0, T) denote the kth (factorial) moment of the number of zero
crossings in time T by a stationary Gaussian process. We present a neces-
sary and sufficient condition for My(0, T) to be finite. This condition is
then applied to processes whose covariance functions p(f) satisfy the local

condition.
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for ¢ near zero (C > 0). In this case we show all the crossing moments
M0, T) are finite. In the course of the proof of this result, we point out an
error which vitiates the related work of Piterbarg (1968) and Mirosin (1971,
1973, 1974a, 1974b). We also find a counterexample to Piterbarg’s results.

+ olt?

1. Introduction. Let X(¢) denote a real separable continuous parameter sta-
tionary Gaussian process. Assume EX(0) = 0 and let X(f) have covariance
function p(f) = EX(0)X(¢). Then there is a (spectral) distribution function F
so that p(f) = (¢ cos wt dF(w) and the quantities 2, = {5 w" dF(w) denote the
spectral moments. We shall always assume that 4, < oo and take 4, = 4, =1
for convenience. The covariance function now takes the form

o) = 1= 2+ 900

where ¢(7) is o(¢*) for t near zero. The function ¢(f) = ¢" () will be of major
importance in our work. One can easily verify that ¢(¢) = $E(X'(f) — X(0))* is
half the increments variance for the derivative of the process.

We further assume that X(7) is nonsingular, i.e. that when X(¢) has n quad-
ratic mean derivatives, for any distinct ¢, ..., 7, the random variables
{XD(t)}ie1,... kj=0....,» are linearly independent. Cramér and Leadbetter (1967,
page 203-204) have shown that a sufficient condition for nonsingularity is that
the spectral distribution function F possess a continuous component.

In this paper, we are interested in the number of zero crossings by the process
X(7). As distributional information about zeros is difficult to obtain, we study
the moments of the number of axis crossings in some time interval, and we focus
especially on conditions that guarantee the finiteness of these moments. It0
(1964) and Ylvisaker (1965) have shown that the mean number of crossings is
finite exactly when 2, < co. More recently Geman (1972) has shown that
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{6 d(#)/t < oo is a necessary and sufficient condition for the variance of the
number of zeros to be finite. We shall study only higher moments. Some suf-
ficient conditions for these higher moments to be finite are given in Belyaev
(1966). Some interesting uses for moments are given in Longuet-Higgins (1962),
Leadbetter (1969), and Cramér, Leadbetter and Serfling (1971).

In Section 2 we define some useful concepts and develop some elementary
results about crossing moments. Section 3 contains a necessary and sufficient
condition for the moments to be finite.

One would still like simpler conditions for the moments to be finite than those
given in Theorem 3.1. In Section 4 we obtain complete results about the finite-
ness of the moments for an important special class of processes. We also point
out an error which nullifies the results in the works of Piterbarg (1968) and
Mirosin (1971) there.

Our results can be extended in a straightforward manner to nonstationary
Gaussian processes. Simple sufficient conditions for finite moments in the case
of general (stationary) Gaussian processes require some tedious analysis. They
will be presented at a later time.

2. Preliminaries. Some care must be taken in defining crossings, since X'(¢)
may not be sample continuous (although X(7) is sample continuous). We refer
the reader to Cramér and Leadbetter (1967) for the definition of a crossing and
the relationships between crossings, upcrossings, downcrossings, and tangencies.
It can be shown that the number of zero crossings in time interval [S, T] is a
random variable. We denote this random variable by N(0, [S, T']) or when § = 0
simply N(0, T). We now attempt to determine when its moments are finite.

We note that the magnitude of T is of little importance in determining the
finiteness of the moments, for when E(N(0, T))* is finite for some T, it is finite
for all T. To see this, first observe that crossings at any fixed time occur with
probability zero, so that _

(2.1 N(0, [0, 2T]) = N(O, [0, T]) + N(O, [T, 2T1) w.p. 1.
Now for any random variables X and Y with the same distribution, we use the
Holder inequality to obtain
E(X 4+ Y)e = Yk (HE(XTY* )
< Tboo (DEQXR)RE(YH)= ik = 2HE(XY)

Applying this to (2.1) we see that
E(N(0, 2T)* < 2¥E(N(0, T))* .

Since N(0, T) is an increasing function of 7', the result follows. Thus it is clear
that the conditions governing finite crossing moments must be local ones.

Factorial moments arise naturally in studying crossing moments. The kth
factorial moment of a random variable N is defined as

M, =EN®N —1) -« (N —k + 1)).
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We denote the kth factorial moment of N(0, T) by M,(0, T). Clearly the kth
factorial moment is finite exactly when the kth moment is.

In their book, Cramér and Leadbetter (1967) have given a formula for the
factorial moments of the number of zero crossings, viz.

(2:2) M0, T) = \[dt, - \} dty E(T[5us |X'(8)] | X(t) = 0, f = 1, -, k)
x p(0, - -+, 0)

where p(x,, - - -, x;) is the joint density of the random variables X(t,), - - -, X(,).
Here and throughout, when no confusion arises we will suppress the explicit
dependence of various quantities on the times (1, - - -, #;).

This formula, whether it gives finite or infinite values, holds for all processes
X(f) described above. It has served as a foundation for all further work on
higher moments.

3. A necessary and sufficient condition. Using this formula (2.2), Belyaev
(1966) obtained a sufficient condition for the kth moment to be finite. He showed
that M,(0, T) < oo if

kg2
(3.1 wg(,Tartl... gdtk[_{i%] < oo.
Here det R, = det Cov (X(t,), - -+, X(#,)) is the determinant of the covariance

matrix of the random vector (X(1,), - - -, X(%;)), and ¢? = Var (X'(t,)| X(,),j =
1, ..., k) is the variance of X’(¢,) conditioned by X(¢;), j =1, ---, k. Belyaev
went on to show that M,(0, T) is finite when X(#) has k mean continuous
derivatives.

We can simplify (3.1) by first noting that the integrand is a symmetric function
of its arguments. Thus we need only integrate over the region {0 < £, < -+ <
t, < T}. The change of variables

A=t —t, i=1,..., k-1
z=1
has a bounded nonzero Jacobian. The terms in (3.1) are functions of the A,
only, and since the finiteness of (3.1) is independent of T, a sufficient condition
for M,(0, T) < oo is that the integral
(3.2) {sdd, -+ §5dA [H%‘:l af]*

¢ 0 3 0 k-1 W
be finite for some ¢ > 0. Notice that‘the multiple integral (3.2) is of one less
dimension than (3.1).

With the help of the following lemma, we will show that this condition is
also necessary for M, (0, T) < co.

LemMma 3.1. Let {X,},_, ..., have a multivariate normal distribution-and let ¢,;* =
Var (X;). Then
E|llt, Xi| > a, [1i-0;
where a,, > (n + 1)=+b,
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Proor. Without loss of generality assume ¢, = 1 for all i. Define
P*(u) = P(min, g, |X;| < #)
(3:3) =PUL{IX] = 1) = Zia P(Xi = )

=" ((22::)%> <

Then for any v = 0, we have
ET[i= Xi| 2 v"P(ming, [Xi| > v) = v*(1 — P*(v))
= v*(l — nmv) by (3.3).

Letting v = (n 4 1)7%, the result follows.
We can now prove

THEOREM 3.1. A necessary and sufficient condition for M,(0, T) < oo is that for
some ¢ > 0

k 2713
3.4 cdA. ... EdA_l:ﬂ_ﬂ]
(3.4) {5 dA, §6dl, ., (det Ry) < oo

PrOOF. Belyaev (1966) has shown that (3.4) is a sufficient condition. We now
prove necessity. Recall that M,(0, T) is given by (2.2). For zero crossings,

p0, -+, 0) = (2r)kdet R,)%.
From Lemma 3.1 we have that
E(TI X)X (1)) = 0, = 1, -+, k) > a; T[im 04 -

These two estimates show that (2.2) is larger than a constant times

& 274
3.5 Tt . \T dt [lILI"J_]
(3.9) §o dn, 0 9| “Get R,

The proof is completed by applying the steps which lead to (3.2).
4. A special class of processes. In this section we study the class of processes
X(f) with covariance functions of the form

4.1) o(ty =1 — t_22 + -C%s- + o() for ¢ near zero (C > 0).

These processes have received considerable attention, especially in applications.
(See Slepian (1962), Longuet-Higgins (1962a).) The special case in which (X(7),
X'(#)) is a vector Markov process is included among them. (See Wong (1966)).
We will prove the following theorem which is implicitly stated in Longuet—
Higgins (1962b).

Tueorem 4.1. If X(f) has a covariance function of the form (4.1), then
M0, T) < oo forall k.

REMARK 4.1. If any of the derivatives X (r) have a covariance function of
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the form (4.1), then again for X(r) we have M, (0, T) < oo for all k. To see
this, let N, (0, T) be the number of zero crossings by some process Y() in time
T. Then, when X’(f) is sample continuous we have

N40,T) < N0, T) + 1.
Clearly there is at least one zero of X’ between every adjacent pair of zeros of
X. Iterating we find when X‘)(¢) is sample continuous that
NX(O, T) é NX(n)(O, T) —|— n.
so that the kth moment of N,(0, T) is finite when the same is true for N (0, T).
REMARK 4.2. In the course of the proof of this result, we will point out the
error made by both Piterbarg (1968) and Mirosin (1971). We also note that

Theorem 4.1 contradicts the result (Theorem 2) of Piterbarg. More will be said
at the completion of our proof.

Before proceeding, it is useful to introduce the notion of divided differences.

DEFINITION 4.1. The nth divided difference of a function X(¢) at the distinct
points t, < ... < t,,,, denoted X[z,,,, - - -, #;], is defined iteratively by

X[tn+1, ...’tl] :th.,.l, -.-,1‘2] — X[t”, ""t1]

t'n+l - tl

with
X(t) — X(t) |
12 - t1
When X'(#) exists we define X[¢,, ;] = X'(1,).
We further define the nth extended divided difference by

X[tz, tl] =

X[ty -5 1] = X[tpsrs ';b’(:il——_)fl[)tm e
for functions ¢(¢) which are strictly. increasing on [0, #,,, — #,] with ¢(0) = 0.
Note that
X¢[tn+1’ R tl] = ?E;ii‘l:__‘tz—) X[t'n+1’ ) t1] .
Consider the determinant of the covariance matrix of the random vector
(X(#), - - -, X(1,)), denoted det Cov (X(t,), - - -, X(1,)). We shall make consider-
able use of equalities of the form

@.2)  det Cov (X(t,), - - -, X(1,)) = Az det Cov (X[t, 1,], X(t,), - - -, X(1,))
and A
(4.3)  det Cov (X(1y), - -+, X(1,)) = $(A,) det Cov (X[, 1], X(15), - -, X(1,))

where A, = #,,, — t,.
These equations are obtained by subtracting the second column of the co-
variance matrix from the first and then dividing the first column by A, (or ¢*(4,));
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and then doing the same to the first row. These manipulations can be iterated
to generate higher divided differences of the X’s. When X(7) is nonsingular,
this procedure will be used to generate random variables which remain linearly

independent as 1, — t,.
The following lemma is crucial to the proof of Theorem 4.1, and is of interest

in its own right.

LEMMA 4.1. Let X(f) have covariance function
2 3
4.4) o) =1— 12_ + —C|6i for |t| < e, forsome >0

so that ¢(t) = Clt|, |t| < e. Then, when 0 < t, < --- < t, < ¢ and for 3 < i,
j < n, we have

E(X¢é[fi, 11, ti—z]qué[tj’ Ligs tj—z])

=3 i=j
(45) = CAi‘l i :] —1
3¢%(Ai—1 + Ai—2)¢é(Ai + Ai—l)
CA,_, .
= J 1 = —|— 1
3918, + A, 09", + B, !

Proor. The proof follows by direct calculation.

REMARK 4.3. This lemma shows that the random variables Y, = X[z,, #,_,] —
X[t;_1, 1;_5] are independent when their defining intervals [7,_,, #,] do not overlap.
Dividing Y, by (#; — t,_,)* normalizes its variance, and the degree of correlation
between Y,’s depends linearly on the percentage of overlap of the defining
intervals.

REMARK 4.4. The existence of a process satisfying (4.4) is demonstrated as
follows. Let X(¢) have the triangular covariance function

px()=1—1]1 |4 <1
=0 7= 1.

Then Y(f) = {{+1X(s) ds has covariance function
t2 |t|3
PY(’)=Z7§——2—+—3— for |1 <4%.

Finally Z(f) = (48)Y((J%)¥) has covariance function

S T\t |2
e =1=2+(5) L o 1=y

Other values of C in (4.4) can be obtained by a variation of the parameters
defining X(7) and Y(7).
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The following lemma for the case ¢(f) = r* was given by Mirosin (1971,
Lemmas 6-7).

LEMMA 4.2. Suppose ¢(t)[t* is monotonically increasing on (0, 2¢] for some e > 0
and 8 > 0 (4(0) = 0). Then all the integrals

4.6 I(¢) = \idx, - - - \tdx, t=1 (X))
(4.6) (9) = (§ax {5 dx RIS )

are finite,

ProoF. Assume ¢(0) = ¢(0) = 0 and that both ¢(¢) and ¢(¢)/¢(r) are mono-
tonically increasing on (0, ¢]. Then

) P+ por 0<s, t<e.
@) — Ps+ 1) - B

Equivalently
o0 9
Ps+10 " s+
so that if 7,(¢) is finite, we have that I,(¢4) is also finite. Thus we need only

show that 7, = I,(¢) is finite when ¢(f) = #*, 8 > 0. The proof in this case is
sketched in Mirosin (1971) and expanded in Cuzick (1974).

Proor oF THEOREM 4.1. We know that ¢(f) = C|t| 4 o(r). Since ¢(¢) is used
only as a divisor in the proof below, we may assume for convenience that ¢() =
Clt|]. We begin by estimating the terms in the sufficient condition (3.4) for
M0, T) < oo.

We shall use the divided difference manipulations (4.2) and (4.3) to simplify
the determinant

det R, = det Cov (X(t,), -- -, X(1,)) .
Applying (4.2) to the last two entries yields
det R, = A%_, det Cov (X(1,), - -+, X(ty—r)s X[thss ]) -
Repeating this all other adjacent pairs shows that
det R, = [J%z} (A,)* det Cov (X(1), X[ty ts], -+ s X[tios» 1,]) -

Now repeat this entire operation on all but the first two entries except that we
use the extended divided difference manipulation (4.3) to obtain

(4.7) det R, = [Tz (A.) T1422 ¢(A, + A,.,) det Cov (2)
where
(4.8) Z = (X(1,), X[t 5], Xpalts o 15)s + - o5 Xy thmas timrs 14]) -

When (7, — #,) is small, we see from Lemma 4.1 that all the diagonal terms in
the lower (k — 2) X (k — 2) submatrix of Cov (Z) approach 2. Terms one away
from the diagonal are less than }, and all other terms go to zero. In row and
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column one and two of Cov (Z) the diagonal elements approach unity, while
the nondiagonal elements approach zero. Hence, for (7, — #,) small enough, the
matrix Cov (Z) is diagonally dominant and using Ostrowski’s (1952) estimate,
the determinant is greater than 3*-*. Since det Cov Z also remains bounded as
I, approaches 1, we see that (4.7) gives us an asymptotic estimate for det R,.

We now estimate the terms in the numerator of (3.4). From the underlying
multivariate normal distribution, one can verify that the conditional variances
in (3.4) are given by (see Belyaev (1966))

_ det Cov (X"(t,), X(1), - - -, X(1;))
det Cov (X(1,), - -+, X(1,))
Let X = (X(1,), - -+, X(#;)). In the numerator, form the vector E(X[, t,,,]X)
from columns (i 4 1) and (i + 2) and subtract it from column 1. Divide column
1 by ¢#(A,). Do the same to the first row. We obtain for i < k — 1
det Cov (X[t 1,, 1,_,], X)
det Cov (X) '

2
ai

o} = ¢(Az)

Now operate on the vector X in both the numerator and denominator as at (4.7)
to see that

det Cov (X1, 115 1], Z)]

2 — (A,
o = #(8) [ det Cov Z

where Z is the vector (4.8). As before the denominator of the last term is
bounded and stays away from zero. The numerator is also bounded and thus
we obtain for some constant K that for #, — 7, small enough

(4.9) o} < Kp(d,) isk-1
gl 1.

The last estimate is weaker than the others, but suffices for our purposes.
Now apply the estimates (4.8) and (4.9) to (3.4). We see that M,(0, T) < oo

when
k-1 A‘) 3
cdA, ... sdA_[ ]___[1,—1 ¢(1, :|
bl S | e e, T Ay <

The truth of this statement for all k follows from Lemma 4.2 with g < 1.

REMARK 4.5. Both Piterbarg and Mirosin assume that all off diagonal terms
in Cov Z asymptotically approach zero. Lemma 4.1 exhibits a case in which
this is not so. With other more general covariance functions the situation is
worse, since for covariance functions of the form (4.1) entries two or more
from the diagonal go to zero, which is not generally true. This is crucial in the
estimate of the determinant in (4.7).

More recent work by Mirosin (1973, 1974a, 1974b) has presented further re-
sults on moments. Here he claims that all off-diagonal of Cov (Z) are negative.
This is again untrue as demonstrated by Lemma 4.1. In fact for any covariance
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function for which ¢(7) is continuous at zero, we can pick increments A,_;, A,
A,,, so that some element one from the diagonal remains nonnegative as 7, — t,
goes to zero. The problem has root in the falacious attempt to treat the divided
differences X[#,, t,], - - -, X[#,_,, t,] asif they are the derivatives X'(t),- - -, X'(t,_,).

REMARK 4.6. Theorem 4.1 still holds when studying the crossings of curves.
This is treated in Cuzick (1974) where it is required that the curve a € C,_,[0, T
to assure that My(a, T) < co.
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