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ON THE RATE OF CONVERGENCE IN THE CENTRAL LIMIT
THEOREM IN TWO DIMENSIONS AND ITS APPLICATION

By M. H. AFGHAHI
Pahlavi University

This paper provides a generalization of the classical Berry-Esseen
theorem in two dimensions. For i.i.d. random variables »1, 9z, -+, s, * -
and real numbers ay, az, -+, @r, - -+ and by, by, -+, by, --- With E(y,) =0,
En2) =1, lasl <1 and |by| £ 1, let An2 = 3 7_ a2, B2 = Y7_, b2 and

Sn = (Z’r‘:l ar7}'r/Ana Z:-b=1 b, 7]7‘/B'n)'

The main result concerus the rate of convergence of the distribution
function of S, to the corresponding normal distribution function without
assuming the existence of third moments. As an application of this result
a theorem of P. Erdds and A. C. Offord is generalized.

1. Introduction. W. Feller [6] by using the Berry-Esseen inequality proved
a theorem concerning the rate of convergence in the central limit theorem in
one dimension in the absence of third moments. In this paper we use Sadikova’s
inequality to obtain similar results for certain random vectors in two dimensions.

2. Let 5, 7y - -5 7, - - - be a sequence of independent identically distributed
random variables with E(y,) = 0, and E(y,) = 1. Let a,, a,, ---,a,, --- and
by by, -+, b,, ... be real numbers such that |a,| < 1 and |6, | < 1. Also let
AF=Yr,a2 BP=3i,b% C, = Niaa,b, and Z,, = (X, ,, Y,,) where
X,,=a,n/A,and Y, K =b./B, Then2Z .2, ---,2Z,,, - isasequence
of independent random vectors in two dimensions with zero first order moments,
E(X?,) = a4, E(Y?,) = bBand E(X, ,, Y, ) = a,b,/A,B,. Now consider
the normalized sum ‘

S — <Z’r‘=l 4 2ir=1 br%)
" A'n Bn
and let F, denote the distribution function of S, and G denote the normal dis-
tribution function having the same first and second moments as F,. In this

section we prove the following theorem.
THEOREM 2.1. Let D, = min {A,, B,} and 0 < ¢ < 1. Then
Supx,u IF”(X, y) - G(X, y)l

_ 1 [ d, Ao dy L did, 28]
=D, LD, A — o ' [A( — 2 Al —¢) D,

where A = }(1 — C,*A,?B,?), d,, d,, d, are functions of ¢ only, d, is a constant, and
0, is as in Lemma 2.2.
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To prove Theorem 2.1 we need some notation. Let f,(s, f) be the characteristic
function of (,, n,). Then the characteristic function of Z, is f,(a,s/A4,, b, t/B,)
and hence the characteristic function of Y*_, Z, is

i (52.5)

n n

Let also g,(s, t) = exp[—%(s + 7)*]. Now to each Z, , = (X, ,, Y, ) let us cor-
respond the interval —oo < —T', < 0 < T', < oo and define the truncated ran-
dom variables X, , and ¥, , as follows.

X'r,n =X, . if X, 'nl < Fnla |

=0 otherwise,
and

Y‘I‘,'Ib

=Y,

. b |A
if |Y T |f_n
r,n | 'r,nl < n B

n

=0 otherwise.

Then {0 |X, ,(0)] < T,/a,[} = {01 Y, ()] < [5,IT, 4,/B,} = { [7,(0)] <4,T,}.
Hence we define
Do = 7r if || <4,T,
=0 otherwise.
Then we have

X — Q. Ny n and ‘ Yr,n — br;]r,'n .

Also define X,' . Y/, and y, , by the following equations: X, , =X, + X!,

=Y,,+ Y, and 5 =74, ,+ »., Finally let Z ,6 = ( s ¥,.,) and

= (X},. Y;,4). ForK, g positive integers we set E(7%,) = 7x ., (/%) = rk.n»
E(Im,,,l") = by and E(|7 ,|) = 3,,. Then we have

EXE,7,,) = 20 EX5 Y = 2ol
ry L r,m A,,,KB,,bq k+q,n n ,,, K+q,n
(1) E(XX,Y]%) =0, E(|X, |X|Y] .7 = 0 )
E(X, J5|Y, ) = &0 and

AKBq K+qn

E(XL<|Y2 o) = 101" 5

AKBq K+qn‘

Befare proving Theorem 2.1, we state and prove some lemmas. The proofs
of Lemmas 2.1, 2.4 and 2.5 were suggested by the referee.

LEMMA 2.1. For fixed nand 1 < r < n, we have
a,s b.t\ _ <a,s b,t>
f'(A’B) 9 A, B

" (5259

1 bt 1
_8“<,,+B)+F 3

IA
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ProoF. Note that the characteristic function fo(u, v) of (ex,,dy,) evaluated
at (u, v) is the same as the characteristic function of 7, evaluated at cu + dv.
Therefore if we substitute §/s = a,s|A, + b,t/B, in the inequality (3.3) of [6],
the lemma follows.

LeMMA 2.2. For fixed n, 1 < r =n|s8|<T, |t|<T,andT, large enough we
have |f,(a,s/A,, b,t/B,)| < exp{—4(a,s/A4,+b,t/B,)*}, where T, = min {4,,B,}/45,
and §, = max{l, §, }.

ProoF. Because of (1) we have the following identity:

a.s bt 1 fa,s | b.t\?
A A N T Sl Bt LA IR LI
f'(A,, B> +2(An+Bn> 71

n

2 —F (4, b,z‘)~ :I_l_.(a,,s b,t)~
( ) [exp[l(An + Bn 07,” i An + Bn 7]1’,1'
a.s | b.t\* :'
+<An + B,,) o
E .(a,s b,t) , :,_ 1 — .(a,s b.t\ , ]
+ [GXP['(An + g ) e \u, T3 )’7"”

n

Now by (2) and the inequality

eir 1 _ X _ (ix)""‘glxl”
1! (n—DI™ n
which holds for n = 1,2, ... and all real x, we get
a,s bt 1 /a.s b, t\?
Sl 2y — 1 _(; f)'
f(A,, Bn> +2 A,,+ .
a,s bt <as bt)2
S—L—- r 3,n r r l“
= |7 +B 3 =+ y +B 123

n

Hence for fixed nand 1 < r < n we have

a.s bt 1 /a,s b, t\? a.s bt
S, Y < = 2 (% ')‘ ,(',’)
f(A,, Bn>|“' 2(An+Bn +/ A, B,

1 /a,s b, t\?
— 14 2 (&5 ,)
+2,(A,,+B,,
1 /a,s bt)2 1 |a,s b t|®«
<l — — (22 i | | O,
—’ 2(A,,+B,, T3 An+B,, &
b t\? ,
+("Aj“‘+B'>r2,,,-
Now if
1 /a.s b, t\?
3 1__<r ) 0,
(3) 2 A,,+B,, >
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we can take

S b,z‘)2 1
r= 2<A,,+B + 5%

n

b.t]?

+'"B—n"

b_t\?
3n+(A +é)ré,”

n

n

in the inequality 1 4 x < e* which holds for all x and we get

a,s M) { _l_(a,s b,t>2|:1_5
f'(A "B “*P172 A, ' B, 314,

n n

a.s b.t
+B

2r§,n]}

1 /a,s , b t)"‘[ 0, (|S| | |> ]}
< exp{——|( == . 1 — 2 —2 ’
== p{ 2 <An B,,, 3 A rﬁn

Now choose
(4) Tn = %{Z%ﬁ’_ﬂi where 5n = max{l, gs,n} ‘

Also we can take I, so large that 72 » < o, since 7, + 71, =71,, = 1. Thus
(T./3)(1/A, + 1/B)o; ., + 2714, < 3 + & < 4. Also (3) holds since

a,s &i) <<|a,s| |b’t|><T2< 2 )2
(A t3) =" T )= min {4,, B,}

n n n n

(= (G sy) =t

Therefore for |s| < T, and |¢] < T, we get

(o ) sl (5 ST ) )

n n " » " n

1 /a,s | b t)z}
< expi—— (= r .
= p{ 4 (A,, * B,
LEMMA 2.3. Let fi(s, 1) = [[7cofo(@, 5/ A, 0,1/B,), §.(5, ) = T1%2: 9.(a, 5/ A4,
b,t/B,), and V, = fn(s, t) — 9,(s, t). Then with the same hypotheses as in Lemma
2.2 and T', large enough we have

V.| < 8—2—; {CXP[—:‘LGz + 8+ acn,;;:ﬂ}

IA

x [ SO g e B, + 240 + 97

n

Proor. Consider the identity

(5) Uplly = Uy — V1 Vy v s Uy = D10 Uylly o v v Uy (U, — V)V, g o0 0,
which holds for any u,, v,, with i =1, ..., n. Letting u, = f,(a,s/A,, b,t/B,)
and v, = g,(a,s/4,, b,t/B,) withy = 1,2, ..., nin (5) we get
b,s a,s byt a,_,s b,_t
Vn": :—- (als, 1 ) ( 2 s 2 >_.. v—<y—1 R y—l)
_lﬁ A Bn f2 An B f 1 A B

” n n n

a,s b,t)__ <a,s b,,t)) (a,,Hs b,,Ht).” (ans bnt>
<f”<A’B I\ a8, )04, B 9\4, " B,/

n n n n
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Now Lemma 2.1 gives us a bound for |f,(a,s/4,, b,t/B,) — 9,(a,s/4,, b,t/B,)|
and Lemma 2.2 gives us a bound for |f,(a,s/4,, b,t/B,)|-

Furthermore
a,s {),_t_>_ [_i(a,s b,t)2}< [_1 <a,s b,t)’]
g’(A,,’ B, =P 73 A,,+B,, =P 77 A,,+B,,

forr=1,...,n. Thus

[Vl < Xt {exp[ E i (%8
1

) s s

b,t
0 .
3 A Bn 3n+< )TZn]

Now by (3) we have exp[i(a,s/4, + b t/Bn)Z] < e < 3. Also,

" a;s bt) <a,,s byt>2
z=1,1.*u<A + B> Zz 1<A B A + B .

n n n n

n

n

Hence we have

a
exp[ 4 St

S bit)z:l
4, + B,
a, b, t\? 1 b, t\?
= e[ 3z (40 + 50 Je [ (57 + 5]
1 2C
3 P24 ” tﬂ
< exp[ (s + 4B, S
Therefore
2C, at)st | (Xraila’b,))|s
Vs (o]~ (4 o 25 [ 5
IVl xp s 4B, 8A ot 24,7B,
' 4+ 3(Ziaa) b5t | (Ll la,b.[)Istf (X104
44,%B,* 24,B,} 8B,*
v la PSP (Ziaaa b)) | (Zh-lau]b?)ls|e
+ |: 64} T 24,B, t 24,B,*
n 3 3 .
L D5, (o 4 | 2 ) )

Now we may increase I', beyond what was needed in Lemma 2.2 if necessary,
to get

(6) Ton = — where D, = min(4,, B,}.

Hence we get

s b foel (e 25 )

nn

3(sl + [1D* : :
x [ LDy 4y 4 a3, + 2465 + 17

n
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since |a,| < land |6,| < 1. Now for 1 < r < n, let f,*(s, t) = f,(s, 0)f,(0, ¢) and
9,%(s, t) = 9,(s, 0)g,(0, t). Then f,*(s, f) is the characteristic function of a ran-
dom vector (7,*, {,*) where »,* and {,* are independent and the distributions
of »,* and {,* are the same as the marginal distributions of (z,, 7,). Let X*, =
a,n.*l4,, Y, =b6,(*B, and Z}, = (X},, Y*,). Then f,*(a,s/A,, b,t/B,) is
the characteristic function of Z¥,, E(X*Y) = a,}A,’, E(Y¥%) = b,%/B,?, and

E(X},Yr,) = 0. Now we truncate 7,*, {,*, X*, and Y*, as follows: define
e =10 if [p¥ < T, 4,

=0 otherwise,
a=08x  if 0¥ <T,4,
=0 otherwise,
Xr,=Xr, if |X7,| <T,al
=0 otherwise

and

vi,=v:, i |vz,)<T, L4

. B,
=0 otherwise

where T, is as before.
Then we have X, = a,7},/4, and Y, = b6,(*,/B,. Also define 7%, {'*,, X7*,
and Y%, by the following equations 7,* = 7}, + 9%, X¥, = X*, + X1*,(* =
Cr, + % and Y, = P¥, + Y75, Notice that E[(7/%)] = E[(C5)] = 7hm
E(nkaf) = B(CE) = 8 and E(75,15) = E(CE) = fo e

LEMMA 2.4. For fixed n, and 1 < r < n we have

f*<ars brf)_g*@ﬁ z>|

4, B, 4, B,
1 /asts bttt 1 /|a,sP | |6t s sfal. %%\,
= ?( K + B! > +?< A} + Bn3>53’” + ( A, + B,f)r""'

Proor. Note that
[ Q.S brt>_ *<a,s b,t)\
fr (A B, 9"\ 4 B

a.s bt b t a.s
r = ’0> r 0’ - )_ ,,.(0, r) r( ~ ’O>
f y / 3 f )9
b

(7) =

n

The lemma follows from (7) and Lemma 2.1.
LEMMA 2.5. With the same assumptions as in Lemma 2.2 we have
« [a,S ﬁ_t_) < ex [_J_(arzsz br2t2>]
f’(A’B =P 77 A,,z+B,,2

n n
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Proor. The lemma follows by applying Lemma 2.2 to each term on the right
of |f,*(a,s/A,, b,t/B,)| = |f.(a,s]A4,, 0)||f.(0, b,t/B,)| separately.

LEMMA 2.6. Let f,*(s, )= [1%2.f.*(@, 5/ Ans b, 2/B,), §,%(s, 1) = [1%210,%(a, 5/ Ans
b,t/B,)andV * = f”*(s, 1)y — §,*(s,t). Then with the same assumption as in Lemma
2.3 we have

1
8D,

9,41 S o (expl 3 + o 2E D a5, o+ ) + 240 4+ 1) |

kg

Proor. Similar to Lemma 2.3.
Now let Q,(s, ) =V, — V,*. Then we have
Q.(s, )] = [Va| + [V,*]

LT 3dsl 412Dt 4 35 4 2]
< g (P 4 40+ s + 24051+ 1)

X exp[—%(s“‘ + 2+ jcl‘;‘ st)]

n-n

4 4 =
[ 2D a8, o 1) + 2408 + 1

x exp[— (" + 1]}

By Holder’s inequality for sums, |C,| < 4,B,. Furthermore, we assume that
|C,| < 4,B,sothat0 < A = (1 — C,}/4,’B,}) < 1. If|C,| = A4,B,,then A =0
and in this case Theorem 2.1 is not interesting. Now s? 4 2 ++ (2C,/4, B,)st =
A(s* 4 %) since the quadratic form (1 — A)s® + (1 — A)2 + (2C, /A, B,)st is
positive definite. Hence

exp[—% (s2 + 2+ %%: st)j' < exp[—TA (s* + tz):l .
Therefore we have

12,05, 0] = g fexp[ - Z 7+ ) |}

n

®) y [3(23‘ + 26 + 4|s%t] + 65 + 4|st¥))

D

+ 40, ,(2s]® 4+ 2|¢ + 3|t|s* + 3|s|e?) + 48(s* + £ + |st|):] .
LEMMA 2.7. For all s, t and for fixed n we have
) (s, )] = |V — V. ¥| < 4lst] -
Proor. This lemma follows from Lemma 1 in [8].

Now let ¢ be any number satisfying 0 < ¢ < 1. We can write |Q,(s, 7)| =
1Q,.(s, D)||Q.(s, 1)|*~¢. Hence by (8) and (9) with the assumptions of Lemma 2.3
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we have
Q”(S, t). — Qn(s’ t)le Qn(s’ t) 1=e
st st St
(10) <. M |:6s4 + 61 4 2P + 1852 + 2|st]°
= D D,|st|
453 3 3 2 2
o st o 20 351 4 3(sl)

+ __Ef_l(s‘z _|_ t2 + |St|)j|l—e exp {—A(t“'— 5) (sz _l_ 12)}

where N, = 4¢/8'—.

Finally we use Sadikova’s inequality [8] to prove Theorem 2.1. Let (g, »)
and ({', ») be two-dimensional random vectors. Let F (respectively H) be dis-
tribution functions, f (respectively %) the characteristic functions of the first and
(respectively second) vectors. H is assumed to be differentiable as a function
of two variables. Let also

f(s, 1) = f(s, 1) — f(s, 0)f(0, 1), h(s, 1) = h(s, t) — h(s, 0)h(0, ) ,
dH(x, y) 0H(x, y)
0x y

THEOREM 2.2. (Sadikova’s inequality). For any T > 0 and all x and y we
have

|F(x, y) — H(x, y)|

< 2 qrqr, [f00 =BG D) gegr 12 sup, |F(x, 00) — H(x, o)

= (2x) ! st

M, = sup,,,

and M, = sup, ,

+ 2:sup, [F(e0, y) — H(eo, )| + 2[32!) -+ 4(3) Mot M)

In our application of Sadikova’s inequality we will take F(x, y) = F,(x, y) and
H(x, y) = G(x,y), where F,(x,y) and G(x,y) are as in Section 2. In this case
we have M, = M, = (2r)~%. Next we use Feller’s one-dimensional bound [6],
to establish a bound for the second and third terms on the right hand side of
Sadikova’s inequality. From Theorem 1 in [6] and (6) it follows that

(1) 2sup, |F,(x, ) — G(x, o0)| < 12(53,»(21141‘? @) ré,n(aﬁjl aﬂ))

0 05, + 1
12 (%sn 'n>312<m____>,
(D T )= D

n n

1A

and similarly
(12) 2 sup,|F,(c0,y) — G(o0, )|

S 12 (53,1»(22:1 |br|3) _|_ T;,n(Z:‘t:l b'r2)> é 12 (53,7» + 1) .
= B} B} D

n
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Also by (4) we have

(13) 2 (l)* C[3@2H +43YH] _ g (i)* [32H +439] 5
T T, T D,
Therefore by (10) and the inequality
(14) | (D x)* = Dt x°
which holds for 0 < a < 1 and x;, = 0 we get
l Ty T,,i Qﬂ 8,
5 §21, §2%, __‘t" dsdt

e N e [6s4 + 61 - 125% - 18s%2 4 12512
= T2 1-¢ 35 §5
7D, D, st
+ 4% (25° + 26° + 3s* + 3st%) & 4_§ (s* + 1 + st):ll_s
N N
X exp[ —Ad —46)(‘92 + tz)]ds dt
(15) = nzg — { Dll_e [(6s%1)=¢ 4 (6r3s5~1)1—¢

+ (1287 4 (18s)= 4 (126%)¢]
+ (45n)1—e[(2s2t—1)1—5 + (2t2s—1)1—5 + (3s)1—5 + (3t)l—e]

o+ (A8 o (s 1)
X exp [ —Ad —46)(52 * tz)]dsdt .

Now letting # = 4(1 — ¢)s* and v = (1 — &), we get

§ §5 (s71)=* exp [;A(i_—_s_) (s* + tz)] ds dt
= —22__25___ (Sw U2—1p—u du)(Soo pl-3e/2p—v d’l)) .
A =P " °
Similarly,
o (o —e — A1l — _ ri22—-¢) © pi—co—u du
i 15 (7)™ exp [% (s + tﬂ ds dt = [A((lso_ OF ),

9

§o §o (st)t~cexp [ — A — 45)(52 + 1) ] dsdt = 22“‘[51’{(S§° zr‘;;;:: du)?
(0§50 (st ) exp [:_Aiélt—_e) (s* + tz):i ds dt
_ 21—5
C[AQ =g
A= ey ) s de =

(§6 w*~te=* du)({5 vi—e~* dv) ,

wi2l-e

[A(I = - (55 u-+%e=* du

§5 G5 s exp|
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[ 12 (srm2) exp [:i‘%_"_el (s + tz)] dsdt
= ——A(l l_ 3 (S ur—e= du)(\y v=+"e"" dv) ,
and finally,
i 1 exp [i(‘l‘;s_) (s + ﬁ)] dsdt = K(Tﬂi?) .

Notice that {§* e-“x?~1 dx converges if p > 0. Hence the above integrals con-
verge and by (15) we have

1

(16) L7 7 |20 asar
T St
- M ( N, Ny~ N, )
= 2D, \D, Al — &) [A(l — )2 Al —e)/’
where
N, = 61<227%[(2 (& u>le~" du)(\ 5 u*=*/*e=" du)
+ 2emd(( o uti—ce=v du) + 3'({5 umce~* du)?] ,
Ny = 243[(§5 ue*te~* du)(\5 ut=e " du) + 3'~°rt (& u=*e=* du]
and

N, = (48 [2(\5 u/* e~ du)(\y u=**¢=* du) + =] .

Now let d, = N,N,/2,d, = N,N,/2,d; = N,N,/2, and d, = 24 + 8(2/r)}[3(2%) 4
4(3%)]. Then Theorem 2.1 follows from (11), (12), (13) and (16).

3. Some remarks.

REMARK 1. Theorem 2.1 gives us a useful result when either a) lim, ., d, < oo
or b) lim,_,d,/D, = 0. If E(|5,|*) < co: then a) holds and even in this case
Theorem 2.1 generalizes Sadikova and Dunnage’s results. But if E(|,|°) = oo,
then Theorem 2.1 gives a result when b) holds. If lim,_,, d,/D, # 0 then Theo-
rem 2.1 doesn’t say anything about the speed of convergence of F,(x, y) to G(x, y).
We now give examples where (b) holds and where (b) does not hold.

ExampLE 1. Let 7, 7, - -+, 7,, -+ - be a sequence of independent identically
distributed random variables with density
8 oo —1
)= —— — if — - <
f(x) 3(x + 30y =x< o
=0 otherwise.

Then it is easy to see that E(y,) = 0 and E(»,’) = 1. Let also
a, =1 if r+2 and =1 if r=2

Then 4, = B, = D, = (n — 3)}%. In this example we can see that (6) holds and



812 M. H. AFGHAHI

71w < g with ', = 192. Furthermore lim,_ d,/D, = 0. Hence Theorem 2.1
is applicable.

ExaMpLE 2. Consider Example 1 with ¢, =1 and b, = 1/rt, r =1,2, ...,
then D, = (1 + £ + ... + 1/n)t. In this example (6) holds aad r;, < ; with
r, = 192, but lim,_,, 4,/D, # 0. Hence Theorem 2.1 is not applicable.

REMARK 2. The d,, d,, d; of Theorem 2.1 are functions of ¢ and although are
finite for every 0 < ¢ < 1, lim,_,d, = oo fori = 1,2 and 3.

4. Application of Theorem 2.1. In this section we apply Theorem 2.1 to
generalize the following theorem due to P. Erdos and A. C. Offord [5]. Let
1> Ma» =+ 5 Ny - - - be @ sequence of independent random variables which take
the values +1 and —1 each with probability 1. Letalsoa,, a,, ---,a,, --- and
by, by, -+, b,, - - - be real numbers satisfying 0 <a, < 1,0 < b, < 1 and let

—_ 2 2 2
- 2:1 ar > Bn - :'b=1 b'r ’ Cn = 2:1 arbr a'nd

Az
A=L (1 G ) .
2 A B}

Then Erdds and Offord proved ([5], Lemma 2) that if 1 < 4, < B,, then the
probability that the two sums };7_, a,7, and Y 7_, b,7, differ in sign is
1. s (log 4,)} ) .
7sm A} + O<W , i.e.
Plo: 3 a,7,(w) and 37 b,y (v) differ in sign]
1.

— 1 gn— 3 (log 4,)t .
= —sin (2A)+0(A5Aﬂ§ ).

J. E. A. Dunnage [3] generalized this theorem in the following way.

THEORY 4.1. Let 7,7y -+, 7,, - -+ be a sequence of independent, identically
distributed random variables such that E(y,) = 0, E(3,?) = 1, E(|7,[®) = m and let
Ay, Qg - Qpy -+ and by, by, - - -, b, - - be real numbers such that |a,| <1 and
b, <1, r=1,2,.--. Then

P[w: Z?:l a.n, and Z:=1 br’]r dl:ﬁ‘er in Sign]

1 . [ m ( log n ]
= Lnt@Ay 4+ 0 1
R Py +4w>

where A, A,, B, and C, have the same meaning as before and it is assumed that
A, < B,.

Now we generalize this theorem in the following way.

THEOREM 4.2. Let 5, 9y, -+ +» 1,, - - - be a sequence of independent identically
distributed random variables with E(y,) = 0 and E(,’) = 1. Leta,,a; ---,a,, - -+
and by, b,y -+, b,, -+, b,, - be real numbers such that |a,| < 1 and |b,| < 1 for
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r=1,2,.... Then
Py=Plo: $1.,a,9,(0) and X2.,b.9,(w) differ in sign]

1 1 4
< L sin-1 20 :
= A 4 [Dnl-é[A(l T

d,,1-¢ d, d,é, + 28:|
A —aF = Ri-9 by )

where d,, d,, d,, dy, d,, A, and D, are as in Theorem 2.1 and 0 < ¢ < 1.

_I..

REMARK. Theorem 4.2 is a generalization of Theorem 4.1, because we do not
require the existence of third moments. Further even if the third moments
exist, Theorem 4.2 gives a better bound for P, than Theorem 4.1.

PROOF OF THEOREM 4.2. As in Theorem 2.1, let F,(x,y) be the distribution
function of S, = (X7, a,9,/4,, Y-, b,7,/B,) and let G(x, y) be the correspond-
ing normal distribution function, i.e. G(x, y) is the distribution function of the
sum (237, a,7,/A,, 27, b,7,/B,) assuming that 5,’s have the standard normal
distribution function. Then by Theorem 2.1 for every x and y we have

1 d d,8,1
b | Y iaa

(A7) |F.(x,y) — G(x,y)| < Dnl-é[A(ll Z o T [AQ = 9"

d, d,o, + 28]
+ Al —¢) + X '

Dunnage [1] has shown that
P, = Plo: 37 ,a,7,(0) and 37, b,7, differ in sign when 7,’s
are normally distributed] = % sin~!'(2A)% .
Therefore by (17) we have
Py = |(Py = P)) + P < |P, — P + P, S sup,,, |F,(x, y) — G(x,))| + P,

L 1 d dy0,'¢
S 1 . 2A ; |: 1 2Yn
= sin™! (2A)% 4- D¢ Dnl‘e[A(l — + [A(l — e)]%—e/z
d, d,0, + 28] d the theorem is pr
taiogt o A corem 1s proven.
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