The Annals of Probability
1975, Vol. 3, No. 5, 773-779

LIMIT THEOREMS FOR EXTREME VALUES OF
CHAIN-DEPENDENT PROCESSES!

By G. E. DENzZEL AND G. L. O’BRIEN
York University

The principal results of Resnick and Neuts (1970) and Resnick (1971)
concerning limiting distributions for the maxima of a sequence of random
variables defined on a Markov chain have been extended to denumerable
Markov chains. These results apply a fortiori to Markov renewal processes.
The method of proof is to show that limit distributions are independent of
the initial distribution of the chain and then to apply known results for
stationary processes.

0. Introduction. Let (J,),s, be a time-homogeneous Markov chain with the
positive integers as state space, and transition matrix P = (P;) which is irredu-
cible, aperiodic, and ergodic. Let (X,),., be a real valued process defined on
the same probability space and linked with the chain as follows:

For ng 1, P[Jn:j,XnéxanXz, “',X—1aJoaJ1a "'aJ_1 ='i]

n n

= P[J, =], X, < le,n_l =i]= Pini(x) s

where H, is a proper right-continuous distribution function for each i.
The random variables (X,) are then conditionally independent given the values
of the chain. In fact

PIX, <x,i=1,2,--c,n|Jp,Jy, -+, Lyl = T[]0 P[X; < x| J2d]

Hence we use the name ‘“chain-dependent” process, emphasizing the fact that
this is a natural extension of an i.i.d. process. These processes have been studied
by Resnick and Neuts (1970), and Resnick (1971), who use the expression “ran-
dom variables defined on a Markov chain.” These authors investigated the
problems which we consider below, but restricted their attention to the situation
where the underlying chain had a finite state space. Our results, obtained by much
different techniques, include the principal conclusions of Neuts and Resnick,
and Resnick, for finite chains.

For n > 1 denote by M, the maximum of X, ..., X,. We have investigated
the possible limiting distributions for the sequence a,~*(M,, — b,), where a, > 0
and b, are suitable normalizing constants, as well as the question of domains of
attraction. ‘

Gnedenko’s (1943) fundamental work on the i.i.d. case has been partially
extended to other processes by Berman (1962, 1964), Loynes (1965), Welsch
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(1972) and O’Brien (1974b, 1974c). The main result of the present work is to
show (in Section 2) that the limiting behaviour of M, is not dependent on the
initial distribution of the underlying Markov chain. Thus we may start with
the stationary distribution, in which case (X,) is stationary. The results of
O’Brien and Loynes are applied to this process, which is shown in Section 1 to
satisfy sufficient mixing conditions. In Section 3, we investigate the domains
of attraction of the possible limit laws. Section 4 contains some results on the
stability of (M,,). Section 5 gives examples to show that the results for the finite
Markov chain case do not extend to the countable case without some extra
hypothesis. Finding suitable necessary and sufficient conditions for convergence
remains an open question in the denumerable case.

We wish to thank R. A. Schaufele for suggesting this problem, and for helpful
discussions concerning it.

Throughout this work, we denote by = = (x,) the unique stationary distribu-
tion for the underlying chain, and by H(x) = Z,r,H,(x) the distribution of X,
in the stationary case. Let x, = sup {x: H(x) < 1}. We write P, for the prob-
ability measure when the initial distribution of the chainis §, P = P, P,. = P, ,
where ¢, is unit mass at /, and P¥; = (P¥),;. If Bisa vector, we put ||8]| = Z,|8,|-

1. Mixing conditions. We say {X,} is strongly (or uniformly) mixing if there
is a function g on the positive integers with g(k) — 0 as kK — oo such that, if
Ae B(Xy, -+, X,) and Be B (Xpips Xminsr -+ -) for some k, m = 1, then
P[4 n B] — P[4]P[B]| < g(k). We say {X,} is p-mixing if there is a function ¢
with ¢(k) — 0 such that for 4 and B as above |P[4 N B] — P[A]P[B]| < P[A]¢(k).

LemMa 1.1. Every stationary chain-dependent process {X,} is strongly mixing with
g(k) = Z,n,||Pt. — x||. If (P,;) satisfies Doeblin’s condition ( for some k and m and
some e >0, 3™, Pt > ¢ for all i) then {X,} is p-mixing with ¢(k) = sup, ||P¥, — =||.

Proor. For the first statement, see O’Brien (1974a). The second follows from
a routine extension of the arguments on page 222 of Doob (1953) in the case of
stationary chains. []

Evidéntly, Doeblin’s condition holds if the (stationary) chain is finite. If {X,}
is the Markov chain itself, then ¢-mixing can be seen to imply Doeblin’s condi-
tion. This is not true in general (for example, if H; = H for all i).

2. Independence of starting measure. The following theorem will permit us
to assume in the sequel that the initial distribution for the chain is #. A similar
result holds for “tail-event” types of sequences—see O’Brien (1974a)—but we
were unable to obtain a common proof for the two cases.

THEOREM 2.1. Let f3 be an arbitrary initial distribution for the chain. Then, for
any sequence {c,}, P,[M, < c,] — P[M, < ¢,]— 0. :

Proor. Suppose the result fails. Then there is a subsequence n, along which
P[M, <c,]—PM, <c, ] A=0,c, —ae[—oo, 0], and ¢, < x, for
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all k. We restrict our attention to such a subsequence and write n for n,. First
suppose that ¢, — x, and that H is continuous at x,. 4 well-known result of
Orey’s (cf. Kemeny-Snell-Knapp (1966), page 153) states that ||3P" — z|| — 0.
Given ¢ > 0, take N large enough so that ||[P* — x|| < ¢/3 for all k = N. In
addition, we may take K > N such that for n > Kand ! < N we have P,[X, > ¢,] <
¢/3N and P[X, > ¢,] < ¢/3N. Then, with n, [ as above,

Pﬁ[Mn _ﬁ_ cn] = thﬁ[M =c JN = l]

=ZPXy, =S¢ X, S0, [Ty =]
X PlX, =S¢, oy Xy =S¢, Iy =]

Now it follows that

lPﬁ[Mn g cn] - P[Mn § cn]l

SEZPXyu=Zc, o X, S0, 0y =1]

X ]Pﬂ[Xl S Cpy s Xy S €, Iy =]

—PXi=c,, -, Xy =, Iy =1
= Zi]Pp[JN =LX =S¢ Xy =6,]— Pﬁ[JN =i

+ Eilpﬂ[‘lN =i] - P[Jy = ’]l

+ ZP[Jy =i] = PlJy =i, X, < ¢,, -+, Xy = ¢,]|
S =PlX ¢, -, Xy < c]) + [[(B— m)P|

+ (1 - P[Xl é cm "”XN § cn])
S DL PX > ] + (B — o)PY|| + ZiL P[X > 6] <.

If ¢, » a < x, or H is discontinuous at x, < oo and ¢, — x, from below then
it can easily be shown that P,[M, < ¢,] — 0 for any 8. []

Since the possible limit laws for a,~ (M, — b,), where a, > 0, will not depend
on the starting distribution of the chain, we may assume that (X,) is stationary.
The results of Loynes (1965) then apply, and the only nondegenerate limit laws
are the same three which can arise as limits of H"(a,x + b,) (cf. Gnedenko,
1943).

If the numbers ¢,(£), for & > 0, are chosen so that H(c,(§) —) <1 —§/n <
H(c,(£)) then, again applying Loynes’ results we have that P,[M, < ¢, (§)] can
only converge to e~*¢, where 0 < k < 1. We give examples in Section 5 show-
ing that all values of k are obtained for suitable chain-dependent processes.

Similar techniques can be used to obtain results on the possible limiting joint
distribution of a,~*(M,, — b,) and a,*(S,, — b,), where S, is the second largest of
X, -+, X,. These results rely on a theorem of Welsch (1972) for the uniformly
mixing stationary case.

3. Domains of attraction. In this section we apply the results of O’Brien
(1974c) for stationary processes to obtain general sufficient conditions for the
convergence of normalized maxima of a chain-dependent process to the various
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possible limit laws. Our first result shows that under fairly general conditions
the limiting behavior of the maxima for chain dependent processes is identical
to that for the i.i.d. process with the same marginal distributions.

THEOREM 3.1. Let {X,} be a chain-dependent process satisfying Doeblin’s condi-
tion, and such that

(1) PlX,,,>¢&|X,>¢]-0 as §—x, for i=1.
Then if {d,} is a sequence of real numbers and 0 < | < 1,
(2) PM,<d]—!<Hd,)—1.

Proor. We have that the process is ¢-mixing by Lemma 1.1, and the condi-
tion (1) guarantees that the lim, P[M, < c,(§)] = e ¢ forall ¢ > 0 (see the remark
after the proof the Theorem 1 of O’Brien (1974c)). The desired result is now
immediate from Theorem 4a of the same reference. []

REMARKS. It can be easily shown that if P[M, < d,] — [, and H"(d,) — [, as
in the above theorem, then P[X,,, > d, | X, >d,|—»0fori=1,2,...,asn— oo.
We are interested in two special sequences. The first is d, = ¢,(£), £ > 0. In
this case, under Doeblin’s condition, one can show that P[M, < c, ()] —
H*(c,(§)) > 0=P[X,; >c,(§)|X; > c,(§)] >0 for i = 1. We remark that
H™(c,(&)) converges if and only if P[X; > x|X; = x] — 1 as x — x, in which case
the limit is e=¢ (see O’Brien (1974b)). The second case of interest is d, =
a,x+b,,a, >0.

The condition P[X,,; > x| X; > x] — 0 as x — x, is not easily verified for most
chain-dependent processes. We therefore give a condition which is based on
the natural parameters of the process. For notational convenience, let F(x) =
1 — F(x) for a distribution function F.

CoroLLARY 3.2. If {X,} is a chain-dependent process satisfying Doeblin’s condi-
tion, and if ;P,; H;(x) — O uniformly in i as x — x,, then for {d,}, | as above, (2)
holds.

ProoF. For ¢ < x,, let 0,(c) = n; H(c)H(c)-'. Then

P[X,,;, > c|X, > c] = H(e)"'P[X,,, > ¢, X; > ¢]
= H(e)"Z, 5 P[X,, > e, 0, =k, X, > ¢, Jy = J]
= H(c)'Z; X,z Py H () Hic)
= 2;0,(c)Z, Pl Hy(c) -
The right hand side must go to zero as ¢ — x,. This is obvious for i = 1, and

follows for i > 1 from the fact that P{, = X Pi;* P,,. Thus the conditions of
Theorem 3.1 are satisfied. [] ‘ '

By the above corollary, a sufficient condition for (2) to hold is that (P,;) has
uniformly convergent row sums. In contrast, the next theorem gives a condition
depending only on the distribution functions H ] =1,2, ..
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THEOREM 3.3. If Z,P,H, < LH,i=1,2, ... for some L > 0 (in particular,

A

if each H;, < LH) then (2) holds.

Proor. Let #(m) be any sequence of positive integers such that m = o(t(m))
as m— oco. Writing ¢ for ¢, (§) where & > 0, it suffices by O’Brien (1974 ¢c)
to show

lim sup,,_.. P[max (X,, .-+, X)) > c|X; > ¢c] =0.

Asin the preceding proof, P[X,,; > ¢|X, > ¢] < 2,0, LH(c) < L&/t(m). Thus,
the above lim sup < L&(m — 1)/t(m) — 0 as required. []

The above results all involve some sort of uniform convergence of X, P,; H,(c)
to 0. If the Markov chain has only finitely many states, the conditions of both
Corollary 3.2 and Theorem 3.3 are satisfied trivially. Thus we have generalized

the principal results of Resnick (1971) and Neuts and Resnick (1970).

4. Stability. Known results on stability for stationary processes lead to similar
ones for chain-dependent processes. A process (Y,,) is said to satisfy the law of
large numbers relative to a sequence {4,} of real numbers if P[|Y, — 4,| > ¢] —> 0
foralle > 0. Itissaid to be stable relative to a sequence {B, > 0} if P[|B,'Y, —
1| > ¢] — 0 for all ¢ > 0. Gnedenko gave necessary and sufficient conditions
for these properties to hold for the maxima of i.i.d. processes. O’Brien (1974c)
obtained conditions under which these results hold for stationary processes.
Theorem 2.1 allows us to extend these to chain-dependent processes. The fol-
lowing theorem, which includes the results of Resnick (1972) for finite chains,
is proved by methods similar to those of Section 3.

THEOREM 4.1. If {X,} is a chain-dependent process satisfying Doeblin’s condition
orif Z;P5Hy(x) < LH(x), i = 1,2, ..., for some k and some L > 0, then M,
satisfies the law of large numbers relative to {A,} if and only if the associated inde-
pendent process does, and similarly for stability.

5. Examples. Let H be any continuous distribution, and k€ (0, 1]. We
construct a chain-dependent process such that P[M, < c,(§)] — e *, whereas
Ho(c,(§)) — e~

Letr = (1 —27%2°% — 374 ... .n7t — (n+4 1)}, ...). Lety, satisfy y, =
—oo, Hp) =m, Hy,) =7, + 7+ +++ + 7, =1 — (n+ 1)"t, Define the
matrix B to have all rows equal to =, and P = kB + (1 — k)I, where I is the
identity matrix. Then 7P = =. This Markov chain satisfies Doeblin’s condition,
in fact ||Pr. — z|| < (1 — k). If

H,(x)=0 for x<y,,
=7, (H(X) — H(pp)  for y, ., <x =y,
=1 for x>y, '

then X7, H(x) = H(x) for all x, and we have a chain-dependent process with
the given H.
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Now note that X;P,; H(x) = kH(x) 4 (1 — k)H,(x), which for k < 1 does
not converge uniformly to zero as x — x,. In fact, it is even the case that for
k <1, P[X, > c|X; > c] does not converge to zero as ¢ — x,. To see this, one

need only compute, as in the proof of Corollary 3.2 that
PLX, > c| X, > c] = kH(c) + (1 — k)Z,z (H (c))(H(c))™,

which for ¢ = y, has the value kH(y,) + (1 — k).
To show the convergence of P[M, < ¢,(¢)], fix £ > 0 and let j(n) = [n?/&?],
and d,(§) = y;,,. Then

H(d,(€) =1 — (1 +jn)* =1 — &/n = H(c,(9)) ,

and hence ¢,(§) < d,(§). Now P[M, < d,(§)] = P[max (J,, ---,J,_)) < j(n)],
but P[J, < [/, =k + - +m) + (1 — k) =1 — k(1 + DHif J,_, < L.
Thus it follows that P[max (Jy, - -, J, ;) < j(n)] = {1 — k(1 + j(n))~t}*{1 —
(1 + j(n))~*}. An easy computation shows that (1 4 j(n))~% = &/n 4+ o(1/n), and
thus we have

PIM, < ¢,(6)] < P[M, < d,(§)] - .

A similar argument, replacing j(n) with j(n) — 1 wherever it appears, shows
that lim inf, P[M, < c,(§)] = e *, and we are done.

We note that if the above H is such that H*(a, x + b,) — ®(x), then it can be
shown that P[M, < a,x + b,] — O(x)*.

Asa second example we construct a chain dependent process with the property
that P[M, < c,(§)] — 1 for § >0, i.e. k = 0. Take a chain P with P, ,,, =
Pis1 >0, Py=1—p;,, for i=0. Let §,=1, and B, = [[ic,p. If 5=
21320 B < oo, the chain is positive recurrent with stationary measure 7z given
by m, = s7'8; (cf. Kemeny, Snell, Knapp (1966, page 161).) We choose
Pe = k(k 4 2)7'so that =, = (k + 1)™' — (k + 2)7* = (k + 1)~k + 2)~%, and
2izem = (k 4 1)~*. For simplicity of computation we take H,(x) = U(x),
where

Ux)y=1, x=i
=0, x <1,

so that H(x) = ;7 H(x) = Z,_.7, = (Ix] + 2)7*. Then c,(§) = [n/¢ — 2T
([x]" = smallest integer > x). For convenience, we restrict attention to the case
§=1.

LEMMA 5.1. For the chain dependent process defined above, P[M, < c,(1)] — 1.

Proor. Let P[J, =0] = 1. LetT, =firstn > 0s.t. J, =0, and Y, = J,
Then P[Y, 2 k] = §,. Let T,, =firstj > T, s.t.J; =0,and Y,,, = J,__ _,.
Finally, define N; to be the largest ns.t. T, < j. Then

1~

P[M, <n—2|N,]=(1 — ) = (1 — 2z, )", and
P[M, <n—2]=E[P[M, <n—2|N,]] = E[(I — 2z, _)"].
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But N,/n — m, = } a.s. as n — oo by the SLLN, and =,_, = o(1/n), and so the
result follows.

We observe that the above process does not satisfy Doeblin’s condition, and
also Z,P,;Hx) has the value p,,, = (i + 1)(i + 3)"* for 0 < x < i+ 1, and
hence fails to converge to zero uniformly in i.

These two examples serve as well for insight into stongly mixing stationary
processes. Again the conclusion is the necessity of some uniformity in the
(conditional) distributions involved.
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