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A FUNCTIONAL LAW OF THE ITERATED LOGARITHM
FOR WEIGHTED EMPIRICAL DISTRIBUTIONS*

By BARRY R. JAMES

Instituto de Matematica Pura e Aplicada

Finkelstein’s (1971) functional law of the iterated logarithm for
empirical distributions is extended to cases where the empirical distribution
is multiplied by a weight function, w. We let Xi, Xz, -+ be independent
random variables each having the uniform distribution on [0, 1], with F,
the empirical df at stage n. The weight function w, defined on [0, 1], is as-
sumed to be bounded on interior intervals and to satisfy some smoothness
conditions. Then convergence of the integral {g w¥(s)/log log (#~X(1—2)"*) dt
is seen to be a necessary and sufficient condition for the sequence {Uy,: n= 3},

defined by
_ mw)(Fa(t) — 1)
Unl) = (2 log log n)}
to be uniformly compact on a set of probability one, with set of limit
points
Ky ={wf:feK}.
K is the set set of absolutely continuous functions on [0, 1] with f(0) =0 =
f(1) and

Solfrde<1.

1. Introduction. Finkelstein’s (1971) functional law of the iterated logarithm
for empirical distributions, which was inspired by Strassen’s (1964) invariance
principle, is as follows:

Suppose X, X,, ... are independent random variables having the uniform
distribution on [0, 1], with F, the empirical distribution function at stage n
(i.e., for 0 < ¢t < 1, nF,(¢) is the number of X,, X, - - -, X, which are less than
orequal tof). Forn>=3and 0 < ¢ < 1, set

6.0 = ML =1
(2 log log n)?

Let B = B[O, 1] be the space of bounded real-valued functions on [0, 1], with
the supremum norm ||f|| = sup {|f(¢)|: 0 < ¢ < 1}, and let K be the set of abso-
lutely continuous functions f in B such that f(0) = 0 = f(1) and {5[f'(1)]*dt =
1. (Note that this X is the tied-down version of Strassen’s invariance-principle
K). Then Finkelstein says that on a set of probability one, the sequence
{G,}n=s.4,... is relatively compact in B and the set of its limit points is K.
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In this paper, we will investigate sequences of the form {wG,},.,, where w is
a weight function defined on [0, 1]. It is natural to expect that if w is not “too
large,” the latter sequence will also be relatively compact, with set of limit
points equal to K, = {wf: fe K}. This is clearly the case if w is bounded. But
it should also be clear from Finkelstein’s result that such sequences can be
relatively compact only if the weight function w is bounded on interior intervals.
In fact, if sup{jw(t)]:e <t < 1 — ¢} = oo for some ¢ > 0, then on the set of
probability one given us by Finkelstein,

lim sup, ., [|WG,|| = o .

Therefore, our attention will be focussed on the behavior of the weighted
functions near 0 and 1. The main results concerning this may be found in
Section 3, where we derive some almost sure analogs of certain theorems of
Chibisov (1964, Theorems 1 and 2). These results are then used in section 4 to
prove our theorem, which states that the extension of Finkelstein’s result holds
if and only if w satisfies an integrability condition slightly weaker than square
integrability (with certain regularity assumptions on w).

Section 2 is introductory, containing the basic assumptions and notation and
some preliminary lemmas.

2. Preliminaries. Let X, X,, - .- be independent random variables defined
on a probability space (Q, &, P), each having the uniform distribution on
[0, 1]. For each positive integer n, let F, be the empirical distribution function
at stage n, and for 0 < 7 < 1 set

Sa(t) = Xia [I(Xigt) — ] = n[F,(1) — 1]

By(t) = mi[F,(1) — 1].

and
For n = 3, set
A(n) = (log log n)t .

Observe that Finkelstein’s G, is B,/[2!4(n)] in our notation.
The lemmas which follow will be referred to frequently in the proofs of

Section 3. The notation, especially the use of 1/¢ in place of w, has been chosen
to accord with that of Chibisov (1964). ‘

LemMMA 2.1. If, for some 6 > 0, f is positive and nonincreasing on (0, 6] and

0 dr < oo,

1f(1)
then .
@) limtlol%)_zo forany a >0,
(ii) lim, o ) ,

log log (1/1) -
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(iii) DS NG ——— nf(l/n) oo for some positive N(9) ,

i o . 5

@iv) DM f4(1/2”) < o0 for some positive M(9) ,
and

v) if k() = (f(t)/loglog (1/t))t then there exist t, >0 and
C > 0 such that forany 0<rt <7t,, 2/h(r2'+-") > Cnt
forall i=0,1,...,n— 1, eventually.

Proor. (i) through (iv) are straightforward. For (v), part (i) implies the
existence of 7, > 0 such that A%(r) > log (1/t)/log log (1/t) > [log (1/1)]} for t <
7, Thusift <c,andi<n—1,

2ip¥ (221 > 2 (n — i — 1)log2 — log 7]t .
Now set f,(x) = 2°[(n — x — 1)log2 — log r]t. It can easily be checked that
fJ(x) > 0for 0 < x<n—1(if r < e?), which implies 2:A*(z21+1-*) > f,(0) =
[(n — 1)log2 — log z]t > (nlog2)/2 for all i < n — 1 and all n sufficiently
large. This proves (v) with ry = min (¢, e7%). [J

LemmMma 2.2. If, for some é > 0, f is positive and nonincreasing on (0, 6] and
o =
S S
nf[1/(nlog*n)]

LEmMMA 2.3. (“Reflection” inequality.) Let ¢ be a positive function on (0, d],
for some 0 < 6 < 2, such that h(t) = t~*¢(t) is monotone decreasing on (0, 6] and

satisfies 1im, , h(t) = co. Then there exists a positive nondecreasing function t on
(0, oo) such that, fore >0, n=>1,and 0 < a < b < 7(e),

then

ann(é)

_ W BOLS ) < p 1Bu(0)] ).
2.1 P<Supast<b,n<z§2n (1) >e) = 2P(SuP,gich it (1) > e87%

ProoF. Let t(c) = L{sup{r:t < dand k(f) = 8%/c}. The conditions on & imply
that ¢ is positive (it is clearly nondecreasing). Note that = is bounded above by
6/2 and that A[z(c)] = 8%/e.

To prove (2.1), choose ¢ >0, n > 1,and 0 < a < b < 7(¢). Let {r,: k = 1}
be an ordering of the rationals in (a, ), so that

2.2) LHS 2.1) < P (sup,,21 s 53001 S en&>
(re)
Forn < j<2nand k =1 set

IS — o IS0 o
o) =" T g

A; = {Supn«'si,kk
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and

Bk = {ISa(re) — Si(r)] = @(ri)ent/2} .
The A;, are disjoint in k for fixed j, and the proof of Loéve’s “Lemma for
events” ([5], page 246), generalized for the countable index in k, yields

A ) . |S2n(rk)l _€—ni
inf P(B; ,) - RHS (2.2) < P{supkgl——¢(rk) 5 } :

The proof is completed by applying Chebyshev’s inequality to obtain P(B,; ;) = }
for all j, k. [T

LEMMA 2.4. Fore >0,n=>1,and 0 <a<b< 1,

(2.3) P(Supagtd 15:(1)] > 1 — b>

2o (=5 1+ Dee(1+ ) 1]

s2emp{-goromt

where 8 = max (b, 1 — b) and 0® = nb(1 — b).

Proofr. It is easily checked that for each n > 1, {S,(¢)/(1 — #): 0 < ¢t < 1} is
a Martingale (for the case n = 1, see Kiefer (1972), page 7). The lemma then
follows from Hoeffding’s (1963) formulae (2.12), (2.13), and (2.18), with the
factor 2 appearing upon application of the same procedure to —S, (7). We
mention here that the bounds in (2.3) are due to G. Bennett and S. N. Bernstein,
respectively. []

LEMMA 2.5. Let g(3) = (1 + 1/2)log (1 + 2) — 1 for 2 > 0. Then
(i) g is positive and strictly increasing on (0, o), and

(ii) g(A) ~ logias A — co.

Proor. Use calculus for (i), inspection for (ii). ]

3. Behavior near 0 and 1.- We shall see that convergence of a certain integral
is a necessary and sufficient condition for ¢ to belong to a type of upper class
(Lemma 3.3).

LeEMMA 3.1. Let ¢ be a positive function on (0, 9], for some 0 < 6 < 1/e, such
that h(t) = t~i¢(t) is monotone decreasing on (0, 6]. If

§§ ————di < oo,

¢*(1) log log —1—
then for any a > 0

B _,
SUPo<t<asn 2m (D 0 a.s.
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and

[B.(1 — 0] _,
supo<t<mW 0 a.s.

Proor. Fix a > 0, and set

U (t) — Bn(t)
! An)p(r) -

Let m be a positive integer, with M = 256m?, and set

a”:——_]\l____’ b,,:azn, c, = 1 5 d,‘: a .
nh*(1/n)A%(n) n2n 2nt

Note that Lemma 2.1 (i) implies b, < ¢, < d, < d for n sufficiently large.
The lemma will be proved in four stages:

(1) supocica, [Un(1)] — 0 a.s.
(ii) Let
Pn = P(SUD;  <i<a, am-1ckson |[Un(D)] > 1/m).
Then
Pn = ZP(SuPb”st,, [Unn(t)| > 1/4m)

for n sufficiently large.
(iii) If g, = P(Sup, <<, |Uan(1)] > 1/4m), then ¥ g, < co.
(iv) If r, = P(sup, <iq, |Uan(f)] > 1/4m), then 3 r, < co.

We note here that the lemma clearly follows from (i) through (iv) and Borel-

Cantelli.

PROOF OF (i). X}.5ye @, < oo (Lemma 2.1 (iii)), so that X, > a, eventually
a.s. (Borel-Cantelli). Because the a, are decreasing, it follows that, eventually
a.s., min (X, - .., X,) > a,, F,(a,) = 0, and

()} _  (nayy
Supo<g<a,” lUn(t)l - sup°<t<"'n 2( )h(t) = Z(n)h(an) '

A glance at the definition of a, now yields (i).
PROOF OF (ii). A consquence of Lemma 2.3.
PROOF OF (iii). For n large (so that ¢, < d),
|San(?)] 2722(2") )

I = P(supb,,smc,,(l

— )o(2) 4m
< p<supb e, |fz”(t)l 2”@@’23%(%)) _

By Lemma 2.4,
q,,éZexp{—r”l:(l +%>log< +—7’n(1 n)) 1]},

1}
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where
o = PRI | MPhe) o MP
4m 4mh(2—") 4dm

Since r,(1 — ¢,)27"/c, = iny, = 2n, Lemma 2.5 implies

9. = 2 exp{—4g(2n)}
= 2exp{—2log(2n)} =2 (Zlny )

eventually.
Therefore, 3 g, < oco.

PROOF OF (iv). For n large (so that ed, < 9),

oz 2an San(?)| 2”/22(2”)>
r, < Yllg? ]P<sup¢ eit<o, ol |52
= Z-o netSt<cy,ettl (1 t) S(t) 1

é Z£l=0622an] P <Supc et<t<e, ot tl lfzn(t)l > 2”/22(2”)2”§ei/2h(ed“)> .
no = n — t m

Apply Lemma 2.4 to get (for n such that ed, < 1)

r, < 2 > llogaan] exp{—ym. [(1 + 1 >log 1+ a,;) — 1:|} ,
ani
where
2222 ¢, te'*h(ed,,)
Tm: =
4m
_ A(2")e’*h(ed,) > A(2")h(ed,,)
4mn? - dmnt
and
w. — Il — ¢, e ntA(2")h(ed,)
(I 27, ettt 8meitt
Since log log 1/2aet ~ log log 1/t as tvl 0, Lemma 2.1 (i) yields
wﬂ_) > 2M*  eventually.
n

Using this and the fact that e”? < eos2em/2 — (2an)}, we see that

b
2m
and
@, = (Mn)} _ 4nt ,
= 4me(2a)!  e(2a)t
uniformly in i for large n.
Lemma 2.5 now gives 3 r, < co. []

LemMA 3.2. Let ¢ and h be as in Lemma 3.1, but this time assume ,

3.1) el = .

¢*(1) log log %
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Then for any a > 0

lim sup, ., {Sup0<t<a/n

BOLY _ o,
2(m)(1

ProoF. Fix a > 0 and let m be a positive integer. Set

U.() = —B"(L , a, =—1-— , b, = 1 ,
A(n)g(t) nlogin mnh*(a,) log log n
and Z, = min (X}, - .-, X,).
We will first show that
(3.2) a,< Z, < b, < HRED)
n

infinitely often, a.s.

Since 37 a, < co, we have eventually a.s. X, > a, (Borel-Cantelli) and Z, >

a, (the a, are decreasing). By (3.1) and Lemma 2.2,

1
x ="
nh*(a,) log log —

a

n

But loglog (1/a,) ~ loglogn, so that 3} b, = co. An application of Borel-
Cantelli yields X, < b, (and hence Z, < b,) infinitely often, a.s., proving (3.2).
Now apply some algebra. Whenever (3.2) holds,

SUPy<s<an [Un(t)] 2 Un(Z,) = Z—EEI)IA/ZnQ“;(ZZ”))
1 mt

> 000 =,
= 2(n)(nb,)'h(a,) 2
Therefore,

. m?
lim Supn—m (Sup0<t<a/'n |Un(t),) g _2‘ a.s.,

and the lemma is proved. []
LemMaA 3.3. Let ¢ be a positive function on (0, 8], for some 0 < § < /e, such
that h(t) = t~4¢(t) is monotone decreasing on (0, 5]. If

(3.3) 1 di<o,

%(7) log log %
then for each ¢ > O there exists © > O such that

SUPo<t<r |B,(0)| < ¢ eventually a.s.

Am)e(7)
Conversely, if the integral in (3.3) diverges, then

|B.(1)] } — o
A(m)(t)

lim sup, ., {supw<t

foreach 0 < v < 4.
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(And, of course, the same conclusions hold if B,(t) is replaced by B, (1 — t).)

Proor. The converse follows immediately from Lemma 3.2. So, taking
account of Lemma 3.1, we need only show that if (3.3) holds, there exists ¢ > 0
for which

1B.(1)]
su eventually a.s.
Porest< Gmpn = ¢ !

For t < z(¢) (as defined in Lemma 2.3) set a,, = r2*for i =0, 1, -- ., n.
For convenience, the dependence of the a’s on ¢ will not be expressed in the
notation. By methods similar to those used in parts (ii) and (iv) of the proof
of Lemma 3.1 (using, however, the Bernstein bound of Lemma 2.4), we obtain

(3.4) P(Supr/k§t<r,zn—l<kszn M = 5)

Ap(1)
|Bu(0)] ¢
= P<Suprz—nst<r,zn-1<k§2n 2(k)g(0) > "i‘)
= 4 ZZ:OI CXP{— 2[03,5 + (1 _Man,i+1)18ni/3] } ,

where o}, = 2"a,, ;44(1 — @, ;,,) and

Boi = 2" 212" otk (2t 140)(1 — Qpyi41) .
nl 8

Set LHS (3.4) = p,(r). To prove the lemma, Borel-Cantelli says we need only
find 0 < 7 < z(¢) such that
(3'5) anargepn(r) < o .

Observe that for a,b,¢c >0, we clearly have exp(— a/(b+ ¢) <
exp[—min (a/2b, a/2c)]. This and (3.4) imply
_ . 3, 38,
3‘6 " S4 ;r,=1 [_mn< ni , ni >:|.
(3-6) Ple) = & Zizs exp 1 40 Al — a,441)
Now do the algebra (the inequalities below are necessarily true only for large n):

3.7) ni — 8222(2”)}12(0(”,“1)(1 — ¥y i11) > el 10g nh*()
407, 512 =" 2048

forall i < n— 1, and

(3.8) 3B = 3,6'2(2")“'%2“2/’(%,t+1)
41 — ®p i11) 32
> 3e(t log n)%zi/zh(an,i+l)
= 64
. 3eC(c log nt

64

uniformly in i, where the last inequality follows from Lemma 2.1 (v) for ¢
sufficiently small.
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Now (3.6), (3.7), and (3.8) give (3.5). [

4. The theorem. Recall that B = B[O, 1] is the space of bounded real-valued
functions on [0, 1] with the supremum norm, and K is the set of absolutely
continuous f e B for which f{0) = 0 = f(1) and §{}[f"(/)]*dr < 1.

THEOREM. Let w be a positive real-valued function on [0, 1] such that for some
0 < d < %, thw(t) is monotone increasing on (0, 8], (1 — £)tw(¢) is monotone decreas-
ing on [1 — 6, 1), and w is bounded on [3,1 — 8]. For n = 3, set

_ wB,
" 24(n)
If
(4.1) 0 i< oo,
1
og log a9

then there is a set Q, of probability one, such that on Q, the sequence {U,},, is
relatively compact in B and the set of its limit points is

K, ={wf:feK}.
Conversely, if the integral in (4.1) diverges,
limsup,_. ||U,|| = oo a.s.

(We emphasize, for the sake of clarity, that the monotoneity conditions are
not required to hold at 0 and 1, making the (finite) values of w at these points
arbitrary and irrelevant.)

Proor. Let ¢,(f) = 1/w(f) and ¢,(f) = 1/w(1 — r). If LHS (4.1) = oo, then,
since the integrand is bounded on [d, 1 — 4], the integral diverges when taken
over (0, 6] U [1 — 4, 1). But this means
1

$,’(1) log log %

dt = oo

i

or
TS .
@.%(?) log log -

dt = oo,

so that the converse follows from Lemma 3.3.
So suppose (4.1) holds. Lemma 2.1 (ii) and the assumptions on w imply that

(*) [#(1 — ©)]tw(?) is bounded on [0, 1] and tends to 0 as  — 0 or 1.

Therefore, U, € B for all n, a.s. The theorem now follows from Finkelstein’s
result (quoted earlier), together with (*), Lemma 3.3 (applied to ¢, and ¢,), and
the fact that f(r) < [#(1 — #)]* for fe K and 0 < ¢ < 1 (cf. Finkelstein (1971),
inequality (3)). [
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REMARK 1. Let w be any real-valued function of [0, 1]. Then it is clear that
a sufficient condition for the existence of a set Q, of probability one, on which
{wB,[[2}A(n)]}, s, is relatively compact in B with set of limit points K,,, is that
|w| be bounded by a function satisfying the conditions of the theorem (including
4.1)).

The theorem can be easily generalized to the case of an arbitrary common
continuous distribution:

CorOLLARY 1. Let Y, Y,, --. be independent random variables with common
continuous df F, and let F, be the empirical df at stage n. Let B(R) be the space
of bounded real-valued functions on the real line, with the sup norm. Suppose w
satisfies the conditions of the theorem or of Remark 1 (including (4.1)), and for
n=3and xeR set

V() = "LE) = FOMFE]
24A(n)

Then there is a set of probability one on which the sequence {V},-, is relatively com-
pact in B(R) with set of limit points

K, r={WF)f(F):feK}.
Proor. The variables X, = F(Y,), n =1,2, ..., form a sequence of inde-
pendent random variables, each distributed uniformly on [0, 1], and the result
can be obtained by applying the theorem (or Remark 1) to the X,. []

REMARK 2. The corollary above is also valid when the Y, have any common
df F. The proof, which we omit, can be handled by the method above plus
randomization.

As an application of the theorem, we have

COROLLARY 2. Suppose w satisfies the condtions of the theorem (or Remark 1),
.including (4.1). Setr(t) = [t(1 — )]t for 0 < t < 1. Then

lim sup,_,., _wB, = ||wr|| a.s.
24 A(n)
Proor. The theorem implies that on a set of probability one,
. B
4.2 lim sup,,_,. il | :fekK}.
(4.2) SUPn-c || 3520} sup {|[wf]|: f e K}

Since | f(#)| < r(t) for fe Kand 0 < ¢ <1 (cf. Finkelstein (1971) inequality (3)),
it follows that
RHS (4.2) < ||wr]] .

For each 0 < s < 1, define the function f, by £,(0) = 0, f,(s) = r(s), f,(1) =
0, f, linear in between. It is easy to check that f, e K. Therefore,

RHS (4.2) = sup {|[wf.]|: 0 < 5 < 1}
= sup {w(s)fy(5): 0 < s < 1} = ||wr]| . 0
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REMARK 3. Lemmas 3.1 through 3.3 remain true if the assumption that 4 is
monotone decreasing on (0, d] is replaced by the slightly weaker assumption
that Al is monotone decreasing on (0, d], where

(1) = (log log %>% .

The theorem remains true if the monotonicity assumptions on riw(f) and
(1—1)tw(t)arereplaced by similar assumptions on ttw(t)/I(f) and (1 — £)tw() /I(1 —1).
The proofs will not be given here. (Actually, the proofs already given can be
followed step by step, with only minor adjustments due to the fact that 2 need
no longer be monotone. The main reason the proofs still work is that the
function [ varies little on the intervals over which the supremum is taken.
However, the definition of a, in the proof of Lemma 3.1 has to be changed
somewhat, in order to guarantee that I(c,)/l(b,) — 1. This is accomplished by,
say, letting @, = max (a,, 1/n%).)
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