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WEAK CONVERGENCE TO EXTREMAL PROCESSES

By SiDNEY I. RESNICK
Stanford University

{Xn, n = 1} are i.i.d. rv’s with df F. Set M, = max{Xi1, -+, Xu}. Asa
basic assumption, suppose normalizing constants a, > 0, b., n = 1 exist
such that lima—e P[Mn < anx + bs] = G(x), nondegenerate. Define the

random function Yu(f) = (M[nt] — bn)/an. By considering weak conver-
gence of underlying two dimensional point processes, an alternate proof of
the original Lamperti result that Y, — Y is given where Y is an extremal-
G process. From the convergence of the point processes, other weak con-
vergence results are shown. Let x(t) be nondecreasing and Nx(I) be the
number of times x jumps in time interval I. Then Y, = Y-1, NY, = NY,
NY, 1= NY-1. From these convergences emerge a variety of limit results
for record values, record value times and inter-record times.

1. Introduction and preliminaries. The well-known Donsker Theorem (cf.
[2]) states that a sequence of suitably normalized random functions based on
partial sums of independent, identically distributed (i.i.d.) random variables with
finite variances converges weakly in the uniform topology to Brownian motion.
An analogous result for maxima has long been known and was first proven by
Lamperti [10] in 1964. Until recently comparatively little attention was paid
to the structure of the converging processes or to that of the limiting extremal
process with the result that the full potential of the basic weak convergence
result was never, in our opinion, realized. In view of recent studies on the
structure of maxima of i.i.d. random variables and extremal processes, another
look at weak convergence questions seems justified.

Let {X,, n = 1} be i.i.d. random variables with common distribution function
(df) F(+) and set M, = max{X,, ---, X,}. Concepts necessary to elucidate the
structure of {M,} are the following: Say X, is a record value of the sequence
{M,} (or {X,})if X; > M;_,. The indices at which record values occur are given
by the record value times {L,, n = 0} defined by

Ly=1, Ly=min{j|j>L,_,,X;>X, ]}

and the record value sequence is {X, ,n = 0}. The inter-record times are the
random variables A, defined by A, = L, — L,_,, n = 1 and , is the number of
record values in the sequence M,, ---, M,.

For Donsker’s Theorem, the appropriate limiting process is Brownian motion.
When “sum” is replaced by “max” the right processes to consider are the extremal

processes defined as follows: For the given df F(x) define a consistent family of

Received July 5, 1973; revised May 23, 1975.

1 Prepared under the auspices of National Science Foundation Grant GP-307111X-1.

AMS 1970 subject classifications. Primary 60F05; Secondary 60J75, 60J30, 60B10.

Key words and phrases. Extreme values, maxima, record values, weak convergence, invariance
principle, Poisson process, additive process, extremal process.

951

J
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to | )z

The Annals of Probability. EIXOIY

Wwvv.jstoer\rg



952 SIDNEY I. RESNICK

finite dimensional distributions by

Ftl,t2,~~~,tk(x1’ B xk)
— F‘l(min {xl, .. .xk})F‘r‘l(min {x2, coy, xk}) e F‘k-‘k—l(xk)
for0<t < --- <t and x,, ---, x, real. There exists a process with these

finite dimensional distributions called an extremal-F process. The process is
denoted either as {Y(z), t > 0}, Y or if ambiguity must be precluded: Y,. Y is
continuous in probability and we fix a version with right continuous, nonde-
creasing sample paths. If the left and right end of F are defined respectively by
X, =inf{x| F(x) > 0}, x, = sup{x| F(x) < 1} then lim, , Y(£) = x,, lim,;,, Y(#) = x,
a.s. The random counting measure v(/) counts the number of jumps of Y in the
time interval I (/ C R*)and is a nonhomogeneous Poisson process with intensity
t~! in the case that F is continuous. See [4], [13] for details.

An underlying assumption throughout this paper will be that there exist nor-
malizing constants a, > 0, b,, n = 1 such that for some nondegenerate G(x):

(1) PIM, < a,x + b,] = F*a,x + b,) > G(x)

as n — co. When (1) holds we write F e D(G) and say F is in the domain of
attraction of G. A basic result of extreme value theory ([3], [7]) states that G
can belong to the types of one of three classes denoted by A(x), @, (x), ¥ (x).
For convenience we will here consider only the first two as the third never offers
any new challenges. Recall A(x) = exp{—e~*}, —o0 < x < o0 and P,(x) =
exp{—x~} for x = 0 and = 0 when x < 0. Here « is a positive parameter.

When (1) holds, we will be concerned with the convergence properties of the
random function Y,(+) defined by M, = x,(F) and

(2) Y. () = My — b,)/a, .

In Section 2, we consider the weak convergence of the two dimensional point
process with points {(k/n, a,”*(X, — b,)), k = 1} to a limiting Poisson random
measure and thereby obtain a proof of the Lamperti result that for any 0 < a <
b< o0 Y, =Y, ie., Y, converges weakly to the extremal-G process in D[a, b]
with respect to the usual Skorohod J; topology. Generally, weak convergence
notations and conventions are as in [2] except that “=” is used to denote weak
convergence. Since the limiting extremal processes are stochastically continuous,
weak convergence on D[a, b] for any a < b automatically extends to weak con-
vergence on D(0, o0). (cf. [11].)

We also obtain as a result of the point process convergence that Y,~' — Y-
Throughout, inverses of nondecreasing functions are taken to be right continuous.
In Section 3, we consider some implications of the basic convergences and obtain
information about the asymptotic behavior of {X }, {L,}, {4,}.

2. Basic convergences. What follows relies on an embedding technique based
on the two-dimensional Poisson process which was devised by Pickands in [12].
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We start by considering the point process 7, on R, x R with points {(k/n,
a,” (X, — b,)), k = 1} and show weak convergence to a limiting Poisson random
measure. For background on convergence of point processes, the reader may
consult Jagers [9] or Straf [19] but the situation here is quite simple and the
following notion of convergence suffices: Say that point systems s, in R, x R
converge to a point system s if card (s, N A4) — card (s n A) for all finite rectan-
gles 4 for which s n 94 = ¢. Extension of this concept to a.s. convergence of
stochastic point processes is immediate.

The weak convergence of the T,’s may now be established by showing a.s.
convergence of distributionally equivalent processes (cf. [18]).

THEOREM 1. Let {X,, k = 1} be i.i.d. rV’s for which (1) holds and suppose T, is
the point process on R, x R with points {(k[n, a,”*(X; — b,)), k = 1}. Then there
exist point processes U and U,, n = 1 such that

i T,=,U,forn=1
(ii) U is Poisson random measure whose mean measure evaluated at [0, t] x (x, c0)
is —tlog G(x)
(iii) With probability 1, U, — U in the sense described above.

Some remarks on the proof: The construction of U, and U are based on
Pickand’s embedding technique. Take a homogeneous Poisson random measure
M on R, x R, with points {(#,, y,), kK = 1}. Suppose the points of M in R, x
[0, n] are {(z\(n), §,(n)), k = 1} ordered so that 7,(n) < 7, (n) ---. Note for each
n, {§(n), k = 1} arei.i.d. rv’s uniformly distributed on [0, n]. U, is the process
with points {(k/n, F,7*((1 — &(n)/n)*)), k = 1} where F,(x) = F*a,x + b,) is
the df of a,”(M,, — b,) and U is the point process with points {(t,, G~'(e~¥)),
k = 1} so that U is M transformed. The transformation theory for Poisson ran-
dom measures assures us that U has the mean measure described in (ii) above.
Assertion (i) follows because

{07 (X — b4), k 2 1} = {F,7H((1 — &u(m)/m)"), k = 1}

To check (iii) let 0 < a< b, 0 < c<d and I, = (n(l — F(a,d + b,)), n(1 —
F(a,c + b,))] and note

card (Un n (a’ b] X (C, d]) = Za<k/n§b l[ekm)el,,] .

That card (U, n (a, b] X (¢, d]) — card (U n (a, b] X (c, d]) a.s. comes from the
following reasoning: If (¢, y) is a point of M then in order to construct U, (for
n bigger than the ordinate y) we relocate (¢, y) to the new position (n~* card [0, £) X
[0, n) N M), y). Thestronglaw of large numbers applied to homogeneous Poisson
random measure shows that the new position converges to the original.

Next we make two observations. Let g(+) be a functional from point systems
to D(0, oo) defined as follows: If the point system s has points {(z,, y,), k = 1}
define gs(f) = sup {y,|t, < t}. Then it is easy to check that as a functional from
point systems to D[a, b] 0 < a < b (endowed of course with the Skorohod J;
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topology) g is continuous. Secondly, if weapply g to the Poisson random measure
U described in Theorem 1 (ii), we obtain an extremal-G process: gU =, Y;. (In
fact, this is a general method for generating any extremal process.) (Cf.[13].)

The conclusion from these two observations is that we can deduce Lamperti’s
theorem from Theorem 1 via the continuous mapping theorem:

THEOREM 2 (Lamperti). If (1) holds and Y, is defined by (2)'then Y, = Y, in
D(0, o0).

If Y is extremal-G where G has left and right ends x,. x, respectively, we may
consider along with Y the inverse process { Y=}(x), x, < x < X} defined by Y-'(x) =
inf {z| Y(z) > x}. Y~!is an additive process and has been studied in [5], [15],
[17]. The method described between Theorems I and 2 can now be applied
(except that g must be replaced by ¢’ defined by ¢’s(x) = inf {#,|y, > x}) to yield:

THEOREM 3. If (1) holds and Y, is defined by (2), then Y, = Y;~' in D(0, o)
if G = ®, and in D(—co, c0) if G = A.
Next for x(+) € D(0, oo) let Nx(/) be the number of jumps of x(+) in the time

interval I, I < (0, co) so that NY, = NM,.,. Based on Theorem 1 and the con-
tinuous mapping theorem we can conclude

THEOREM 4. If (1) holds then
NM[”,] = NY,”=>NYG =V
and therefore in the notation of the introduction the counting functions

Hinyg — Hu= 1"(1’ *]
in D[1, c0).
Observe that Theorem 1 describes how to construct an almost surely convergent
distributionally equivalent replacement for NY,.

REMARK. Instead of (1), we may prove Theorem 4 under the condition

) lim g, (1 — F(r =))/(1 = F(n)) = 1.

This condition is satisfied certainly if F is continuous but also if F satisfies (1)
([3], [7])- To see that (3) is sufficient observe that NM,.; =, NY,([n-]) =,
NS~(Yy([n])) =4 NSz=(Yy([n+]/n) + log n) where Sy(x) = —log (—log F(x))
and also v =, NY, =, N(Y,(+) + logn). Forany 0 < a < b it is not too hard
to show that

4 N(Y,(+) + log n)(a, b] — N(Sp~X(Yx([n+]/n) + log m))(a, b] — O

a.s. as n — oo. To see this, suppose 1, - - -, t, are the jump times of a path of
Y,(f), t € (a, b]. Essentially what happens is that a nonzero difference is created
in (4) if two or more points from {Y,(#,) + logn, - - -, Y,(t,) + log n} lie in the
same interval of constancy of the function S,~'. However (3) is equivalent to

Sp(x) — Sz(x —) — 0 which says that the lengths of intervals of constancy of
S,~Y(x) for x = log n shrink to zero as n — oo.
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Theorem 4 has a companion result dealing with NY,~*. Interpret NY,~%(z,, z,]
as the number of states visited by Y, in the subset of the range given by (z,, z,].
Define a point process &(I) for intervals / relative to the original {X,} sequence
by &(I) = #{k|X,, €I} so that NY,X(I) = &(a,I + b,). :

THEOREM 5. (1) implies NY,™ = NY,~! or equivalently
{I—é&@a,l+ b,)}={I—>NYI)}.

Here NY-! is a nonhomogeneous Poisson process with mean measure Sg(I) =
—log (—log G(I))-

The last statement is Corollary 1 of [15]. The rest of the proof of Theorem 4
involves ideas already discussed in connection with the previous results.

Here is a convergence result related to Theorem 1 which could be combined
with the technique of embedding {M,} in a suitable extremal process to yield a
proof of Theorem 2 (cf. [21]). The technique of Theorem 1 could be used to
prove this result but we offer an alternate method.

THEOREM 6. If F,,n = 0 aredf’s and F,(x) — Fy(x) at all x which are continuity
points of Fy then Y, = Y, in D(0, co).

ProoF. Denoting the uniform distribution by U we have Y, =, F,™ o Yy,
n = 0 so it suffices to show F,~' o Y, — F;~' o Y, a.s. and uniformly on compact
subsets of (0, co). The hypothesis implies F,~*(x) — F,7%(x) at all x in the con-
tinuity set of F,=. From Proposition 6 of [13] we have since U is continuous:
P[Y, hits discontinuity set of F,='] = 0. Therefore for a.a.  the range of Y,
continuity set of F;~* which entails by a theorem of Dini that F,~! — F,-! uni-
formly on finite subsets of the range of Y, and finally we have F,~o Y, —
F,™'o Yy a.s. and uniformly on compact subsets of (0, co). This suffices.

A final remark: As Pickands [12] has noted, the methods employed in this
section extend without difficulty to the case where one studies weak convergence
of kth largest variables in a sample of size n.

3. Applications to records, record times. Define the jump time functional as
follows: For point process paths x(+) with a finite number of points in compact
subintervals of (0, co) jx = (j*x,j=x) = (- -+ j_yX, j_1 X, j1 X, jyX, - - +) gives the
times of jumps before r = 1 and after t = 1;i.e., fork =1,2, ...

JeX = +oo if {t>l|x(t)—x(1):k}=¢
=inf{t > 1|x(r) — x(1) = k}, otherwise
and similarly j_,x is the time of the kth jump to the left of 1 and is O if there
is no such jump. j is continuous at those x all of whose interpoint distances are
positive (cf. [8], page 57, [23]). When the conclusion of Theorem 4 holds, the
continuous mapping theorem gives jNY, = jNY = ju where v is nonhomogene-
ous Poisson with intensity #-*. A simple transformation to a homogeneous Poisson
process shows that j*v has the structure {exp{}7_, Z;}, n = 1} where {Z,, n = 1}
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are i.i.d. and P[Z;, > x] = e~*, x > 0. The times when NY, or Y, jumps past
t =1 are L/n (in the terminology of Section 1). The conclusion is (cf. [21],
pages 85-89).

CoROLLARY 1. If (3) holds, then {L,/n: L, > n} = {exp{},™, Z;}, m = 1} as
n—s oo where {Z,, n = 1} are i.i.d. exponential mean 1 random variables. Further
{Beafn: L > n} = {exp{ 174 Z,} — exp{Xim Zi}, m = 1} .

The last statement follows from the first by the continuous mapping theorem
which also permits other variations:

{L/Liyr: Ly > ny={U,,m = 1} = {e?n, m = 1}
{log (Ly/n): Ly > n} = {17, Z;; m = 1}.
Note {U,,} arei.i.d. uniform (0, 1) random variables. Similarly {A,/A,,,: L, > n}
has a weak limit.

These results may be compared with those in Section 4 of [16] and also with
the fact that there is no normalization «, > 0, 8,, n = 1 such that a,~*(L, — 8,)
has a weak limit. Cf. [1], [16], [20].

Returning again to the basic situation jNY, = ju we look at the time of the

first jump after r = 1, the time of the jump immediately preceding t = 1 and the
difference between the two jump times.

CoROLLARY 2. If (3) holds, then for x = 0:
lim, o P[(Lyny41 — n)/n < x] = x(1 4+ x)7*
lim, ., P[(n — L,,)/n < x] =x A1
lim, o, P[(L,nys1 — Lyw)/n = x] = x — log (1 + x) if x<1
=1 —log (x7(1 + x)) if x>1.
Proor. By the continuous mapping theorem the limits are respectively the
distributions of the forward and backward recurrence times of v relative to
t = 1 and the distribution of the length of the inter-point interval which covers
1. The two recurrence time distributions are easily computed and their con-

volution gives the third required limit distribution.

The techniques of Corollaries 1, 2 may be applied to Y, ~* in conjunction with
Theorem §.

CoroLLARY 3. If (1) holds, then as T — oo

(i) FeD(®,)entails (X, |T: X, > T} = {expla~ 1, Z, m = 1}}.
(i) Fe D(A)entails{(X,, — b(1/eF(T)))/a(1/F(T)): X,, > T} = {1+ X1 Z,
m = 1}

where {Z} are i.i.d. exponential mean 1 random variables and F = 1 — F.
REMARK. (i) is obtained by Shorrock in [17].

Proor. From Theorem 5 we have jNY,~' = jNY,™.
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Note that j*NY,~* = {a," (X, — b,): X, > a, + b,} so that
(5) {an-l(XLk - bn): XLk > a, + bn} =j+NYG_1
where NY;~' is a Poisson process with mean measure So(/) = —log (—log G(1))
([15]). When Fe D(®,) we may choose b, = 0, a, = F-{(1 — n™) ([3], [7])-
Putting this in (5) and changing variables gives (i). In the case F ¢ D(A) we set
b, =F*1—n"),a,=FY1—(ne)™") — F (1 —n%)([3], [7]) so thata, + b, =
F~(1 — (ne)~'). Now combine (5), a change of variable and the fact that a(.)
is slowly varying ([3]) to obtain (11).

Some further results in this vein obtainable from the continuous mapping
theorem: If Fe D(®,) then

(X, /X, 0 X, > T} = {UVe,m = 1)

k+1
where {U,,, m > 1} are i.i.d. uniform (0, 1). Also
{log {X;,/T}: X, > T} = {a™' Z1, Z,m = 1}
Typical when F e (A) is the result from (ii):
{(Xpppy — XoaUET)): Xy > Th=(Z,, m 2 1}
We may particularize Corollary 3 by looking at the first jump past 1 or more
generally past any s. For convenience define 7(v) = inf {n| M, > v}.
CoROLLARY 4. (i) If F e D(A) then for any s, x > 0
lim, .. P[a," (M:qperp,) — (@nS + b)) S x] =1 — e,
(ii) If Fe D(®,) then for x > 0
lim,_., P[(M

()

—vx]=1—(1+ x.

Variants of Corollaries 3, 4 are obtained by looking at jump heights past time
1. The results: If F e D(A) then

{@,7 Xy, — ba): Ly > n} = {Y(1) + X, Z, m 2 1}
and
{a,,"(XLH1 - X)Ly >n—{Z,,m= 1}
asn— oo where{Z,, m > 1}arei.i.d. exponential random variables independent
of Y(1) where P[Y(1) < x] = A(x). (The limit is evaluated using Theorem 3,
[13].) Observe that these results entail
@ (X p gy — ba) = Y(1) + Z,
a”_l(XLmnH) - lem)) =27,
so that the size of the first jump after index n in the Markov chain {M,j > 1}
is asymptotically exponentially distributed.
Next consider the function k defined for x € D(0, c0) or D(— oo, co) by

(hx)() = SUPocage {X(5) — x(s —)} -
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h is continuous so by Theorem 2: hY, — kY~'. Since Y~' had independent
increments, AY-! is a variant of the class of extremal processes considered here:
hY-'is a nonhomogeneous Markov process of the type studied in [22]. (Cf.
[13], Section 2.) Due to the additive structure of Y-, the Lévy measure can be
computed. This was done in [15], Theorem 2. Consequently
P[(hY-Y)(f) < x] = P[Y~}(x) has no jump of size > x,0 <u =]
=exp{—[{re®estds — {7 e=20es—1 ds}

where Q(s) = —log G(s).

Next we identify (kY,~*)(f) as the maximum holding time of Y,(x), 0 < =
Y, "'ty =sup{A,/n|L; < z(a,t+b,)}. Recallz(a) = inf{n| M, >a}and Y,”}(t) =
t(a,t + b,)/n. In the case that G = ®@,, we set b, =0, a, = F7/(1 — n7") and
t = 1andset s = F(1 — n~'). The result:

CoRrROLLARY 5. If (1) holds then

(i) If G =D,

sup {8, F(s) | L; < =(s)} — exp{— {7 e~z dz}
as s — oo for x = 0.

(ii) If G = A then

sup {A,/n|7(b,) < L; < 7(a, + b,)} — exp{—[{7 e~z dz — (P e7*z dz]}
as n— oo for x = 0.

Attempts to derive explicitly the df of the largest jump of Y in the time interval
(1, 1], t > 1, have not been successful. Consider instead the following continuous
functional: For x(.) a nondecreasing function define

(h'x)(1) = max {x(x(0)), sup {x(s5) — x(s —=)|0 < x(s —) = x(s) = 1} -

By the continuous mapping theorem: (A'Y,)(#) — (h'Y)(f). We first compute the
df of (#Y)(t). Suppose Y is extremal-A so that the point process induced by
the range of Y is homogeneous Poisson, rate 1. If then {Z;,j = 1} are i.i.d.
exponential mean 1 random variables and S, = 37, Z; then '

(FY)(1) =, max {Z;]S; < 1} = J(1)
where max of an empty set is zero. We show for y > 0:

P < 9] = 1 + et Zg, (SR Z D) piemimy
, J:

where s, = sif s = 0, = 0if s < 0. The derivation uses some facts presented
in [6]. Conditioning on the last S, before ¢ we have:

e—(t—u)e—uun—

1
oD du + P[S; > 1] .

Note P[J(f) < y|S, = u] is the probability that of the n subintervals induced by

PI(r) = y] = L2 G PU() = p|Sa = 4]
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n — 1 points chosen at random from [0, «] none is longer than y. This probability
is computed on pages 28-29 of [6]. The rest is routine manipulation involving
reversal of the order of summations.

This derivation enables one to conclude:

CoROLLARY 6. If (1) holds with G = A then
max {a," (M.« — b,), sup {a, (X, — X,,)|0< X, <X

Le+1

< ) — (1)
where the df of J(t) is given by (25).
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