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AN ALMOST SURE INVARIANCE PRINCIPLE FOR THE
EXTREMA OF CERTAIN SAMPLE FUNCTIONS!

By PraNAB KUMAR SEN
University of North Carolina, Chapel Hill

For a general class of statistics expressible as extrema of certain sample
functions, an almost sure invariance principle, particularly useful in the
context of the law of iterated logarithm and the probabilities of moderate
deviations, is established, and its applications are stressed.

1. Introduction. Consider a general class of extrema of sample functions
expressible as
(1.1) Z, = sup {L(x, F,(x)): x € 4} for some A4 C E”,
where F, is the empirical distribution function (df) of a random sample of size
n from a continuous df F, defined on the p(= 1)-dimensional Euclidean space
E? and L satisfies certain regularity conditions. An important member of this
class (see [2, 8]) is the bundle strength of filaments where p = 1, the basic
random variables (rv) are nonnegative, L(x, y) = x(1—y), Z,=n"'max,_, ., [(n—
i 4+ 1)X,.] and the X, , are the sample order statistics. For such statistics,
asymptotic normality as well as the embedding of Wiener processes are established
in [2, 5,7, 8]. The object of the present investigation is to show that parallel
to Theorem 1.4 of Strassen (1967) an almost sure (a.s.) invariance principle
(particularly useful in the context of the law of iterated logarithm and prob-
abilities of moderate deviations) holds for {Z,} under the same regularity con-
ditions as (in [8]) pertaining to its asymptotic normality.

The main theorem along with the preliminary notions is presented in Section
2. Section 3 deals with certain basic lemmas which are incorporated in the
proof of the main theorem in Section 4. The last section deals with some con-
cluding remarks and applications.

2. The main theorem. Let {X,, i = 1} be a sequence of independent and
identically distributed (i.i.d.) rv’s defined on a probability space (Q, %7, P)
where X, has a continuous df F(x), x ¢ E?, for some p > 1, and our desired
A c E?. We assume that for x e A4, L(x, F(x)) assumes a unique maximum 6 at
a unique point x,, so that

2.1) 0 = sup {L(x, F(x)): x € A} = L(x,, F(x,)) where x,€ 4,
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and for every ¢ > 0, there exists an 5 > 0, such that

(2.2) Lx, F(x)) < 0 — ¢ for every XX — x| > 7.

Further, we assume that for some d(> 0), sufficiently small, there exist four
positive constants C;, k,(= 1), i = 1, 2, such that

(2.3) 0 — Ci|x — x)|'1 < L(x, F(x)) < 0 — Cyfx — x,|*2 k, < k,,
for all x: |x — x,| < 9, where in (2.2)—(2.3), |«| stands for the Euclidean norm.

Also, we assume that F admits of a continuous density function f(x) for all x:
|x — x| < 4, and

(2.9 O0<p=Fx)<1, 0 < flx) < o0
Let then A* = {(x,y): xe A C E?, 0 < y < 1}, and for every 6 € [0, 1], let
(2.5) A* = {(x,y): xe 4, max (0, F(x) — 0) < y < min (1, F(x) + 9)}.

We assume that L(x, y) is defined for every (x, y) € A*, and for some ¢ > 0, (x,
y) e A;*, L(x,y) possesses a continuous partial (with respect to y) derivative
Ly (x, y) which satisfies the following conditions [due to Sen et al. (1973)]:

(2.6) ILa(x; )l = 9(x) 5V (x, ) € 4",

(L 9%(x)dF(x) S 22 < o0, VACE?;
2.7) Ly(xy, F(x5)) = &, where 0 < |6 < oo
From [8], it follows that under (2.1)—(2.7), as n — oo
(2.8) L(nZ, — 0]) - A0, 6 where

o = &7p(l — p,) sothat 0 <o < oo,

Let ¢ = {#(f): 0 < t < oo} be a positive function with a continuous derivative
¢'(7) such that (i) as t — oo with s/t — 1, ¢'(5)/¢’(f) — 1, (ii) for some § < h < &,
th(r) is | but ¢(r) = t7¥¢(¢) is 1 in ¢, and (iii) the Kolmogorov-Petrovski-
Erdbs criterion holds, i.e., {7 t72¢(f) exp{—$k*¢*(1)}dt < 0, Vk = landn = 1.
Finally, we let v,(f) = $k*¢*(t) — log ¢(t) — loglogt, k = 1, t = 1, and assume
that for every » > 0, there exists an ¢ > 0, such that
2.9) [ve(n)/ryi(n) — 1| < forevery 1<k <1+ ¢, uniformlyin n.

Let then P,(¢) = P{mt|Z,, — 6| > a¢p(m) for some m = n}, and on replacing
|Z,, — 0] by (Z,, — 0) and (¢ — Z,), we define the corresponding probabilities
by P,*(¢) and P,~(¢), respectively. Then, our main theorem may be presented
as follows.

THEOREM 1. Under (2.1)—(2.7) and the conditions on (¢, v) stated above,

(2.10) lim,_, {[log P,(¢)]/vy(n)} = —1,
and, if, in addition, lim, _,, (log log n)/¢*(n) = 0, then
@.11) lim,_, {[log P.(9)]/¢*(m)} = —% -

The same results hold for {P,*(¢)} and {P,~(¢{)}.
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3. Some useful lemmas. We consider the following.

LemMMA 3.1 [Sethuraman (1964)]. For every Borel B C E? and ¢ > 0, there
exists a p = p(B, €), such that 0 < p(B, ¢) < p(E*?, ¢) < 1, and
(3.1) lim,_. [~ 10g p {sup, . |F.(x) — F(x)| > ¢}] = logp .

Let us now define Z,* = n*[L(x,, F,(x,)) — 0]/o, where x, and ¢ are defined
by (2.1) and (2.8).

LemMMA 3.2. Under the hypothesis of Theorem 1,

(3.2) lim,,_, [{v,(n)}~*log P{Z,* > ¢(m) for some m > n}] = —1,
and in (3.2), Z,,* may also be replaced by — Z,* or |Z,*|.

Proor. Note that Z * = y (n}[F,(x,) — F(x)1/(po(1 — po))}} = 7. U,s say,
where 7, = Ly (Xg #F,(x,) + (1 — #)F(x))/Loy(%o> F(%,)), 0 <u < 1, and U, is
the standardized form of a binomial random variable. Thus, for every ¢ > 0,
we have

P{Z,* = (1 + ¢)¢(m) for some m = n}
< P{Z,* = (1 + ¢e)¢(m), forsome m =n,r, <1+ e, Vm = n}
(3.3) + P{r, > 1 + e, for some m = n}
< P{U, = (1 + &)¢(m) for some m = n}
+ P{y, > 1+ 4¢ for some m = n},
where 1 < (1 4+ ¢)/(1 + %¢) =1 + & < 1 4 ¢/2. On the other hand,
P{Z,* > ¢(m) for some m = n}
3.9 = P{Z,* > ¢(m) for some m=n,y, =1 —%e,Vm = n}
< P{U, = (1 + &")¢(m) for some m = n}
— Ply,, < 1 — 4¢ for some m = n},
where 1 < (1 — 3¢e)' =14 ¢" <1+ 4e(1 + ¢) for every 0 < ¢ < 1. Further,
by Theorem 1.4 of Strassen (1967), we obtain that as n — oo,
P{U,, = (1 + ¢)¢(m) for some m = n}
3.5) ~ (1 + &)2r)~t (¢ ()t~ exp{—4(1 + &)¢*(1)} dt
=11 +¢), say,
and by Lemma 3.1 of Sen (1973b),

(3.6) lim,_, {[log I,(1 + ¢)]/vy,(n)} = —1. _

Finally, by virtue of the assumed continuity of L, (in A4,*), for every n > 0
(sufficiently small), there exists a 6 > 0, such that |Ly(x,, ¥) — Ly(xe F(xp))| < 7
whenever |y — F(x,)| < 6- Since Ly(x, F(x,)) = &, + 0, 1 can always be so
chosen that 7/|§| < 4e. Hence, r,, < 1 4 4¢ whenever |F,(x,) — F(x,)| < 0.
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Thus,
Ply, > 1 + e for some m = n}

3.7) < P{|F,.(x)) — F(x,)] > 0 for some m = n}
< CLoO)T" 0<p(®)<1,0<C, < o,
= L(1 + Ho(D)],

where the last step follows from the fact that v,(n) is bounded by nt for large n,

while [0(9)]" = exp{n log p(d)} decreases exponentially. (3.1) then follows from
(2.9) and (3.3) through (3.7). [

Note that in (2.3), k, = k, > 1. We write d, = max (log n, ¢*(n)), and let

(3.8) B, = B,(x,, a) = {x: |F(x) — F(x,)| < cn=*d,},
a = (2k;)"(< %) and ¢ >0,
(3-9) G, = sup {n}|L(x, F,(x)) — L(x, F(x)) = L(xo, Fi(x,))

+ L(x,, F(x,))|: x€ B,} .
LEMMA 3.3. Under the hypothesis of Theorem 1, for every ¢ > 0, as n — oo,
(3.10) P{G,* > ep(m) for some m = n} = o(exp{—¢*(n)}).
PrROOF. On writing y,(x) = Ly(x, uF,(x) + (1 — #)F(x)), 0 <u < 1, xe B,
we have
G,* = sup (ndly,(x){Fu(x) — F(x) — Fu(x) + F(x,))
+ [7a0) — 7l ){Fu(x) — F(o)}| 2 x € B)
(3.11) < sup (BF,(x) — F(x) — Fy(x)
+ F(x,)|: x € B,}sup {|7.(x)|: x€ B,}
+ n}L(xo, Fo(x,))
— L(xp, FO))|[5Up {[7u(0)/7(x0) — 1)1 x€ B} .
By virtue of the assumed continuity of Ly(x, y) [for (x, y) € 4,*], (2.6)—(2.7),
Lemma 3.1 and Lemma 3.2, on denoting by
(3.12) G, = sup {n}|F,(x) — F,(x,) — F(x) + F(x,)|: x€ B,},
it suffices to show that for every ¢ > 0, as n — oo,
(3.13) P{G,, > e¢p(m) for some m = n} = o(exp{—¢*(n)}).

The proof of (3.13) follows along the line of the proof of Lemma 1 of Bahadur
(1966) with modifications as in Theorem 3.2 of Sen (1973a), and hence, for
intended brevity, the details are omitted.

Let us now define Z, = sup {L(x, F,(x)): xe B,}. Note that, P{m}(Z," —
0)> a¢(m) for some m = n} < P{sup [ L(x, F,(x)) — L(x,, F(X,)) : x € B, 1> m~bap(m)
for some m = n} = P{Z,* + G,* > o¢(m) for some m > n}, where G,* is
defined by (3.9). Hence, by Lemma 3.2 and Lemma 3.3, we arrive at the
following.
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LemMA 3.4. Under the hypothesis of Theorem 1,
(3.14)  lim,_., [{v,(n)} " log P{m}| Z,, > — 0] > a(m) for some m = n}] = -1,

and in (3.14), |Z,,® — 0| may be replaced by (Z,> — ) or by (0 — Z,V).

Finally, let B,(8) = {x: |x — x| < 0 but x ¢ B,(x,, @)} and H,* = sup {nt|L(x,
F,(x)) — L(x, F(x)): x € B,(9)}, where § satisfy (2.3). Also, let {a,} be any sequence
of positive numbers. Then, by virtue of (2.5)—(2.7) and Theorem 1—m of Kiefer
(1961) we obtain that for every n(= 1),

(3.15) P{H,* = a,} < ¢, exp{—¢qa,’},

where ¢, and c, are both finite positive numbers, and for large n, ¢, may be replaced
by (2 — ¢€)/és, for some ¢ > 0.

4. Proof of the main theorem. We prove (2.10)—(2.11) only for {P,*(¢)};
the proof for {P,~(¢)} follows on parallel lines, while by noting that P,*(¢) <
P,(¢) < P,*(¢) + P,~(¢), for all n, the proof for {P,(¢)} follows immediately.

Note that, by definition, P,*(¢) = P{m¥(Z,, — 0) > o¢(m) for some m = n} =
P{Z,* > ¢(m) for some m = n}, as Z,, = L(x,, F,(x))) = 0 + on—*Z,*. Hence,
by (4.1) and Lemma 3.2, we obtain that

(4.1) lim inf, {[log P,*(¢)]/m(n)} = —1.

Note that by virtue of (2.6), for every (x, y) € 4,%,

(4.2) |L(x, y) — L(x, F(x)| £ 9(0)|y — FI»

so that whenever sup, |F,(x) — F(x)| < 9,

(43) |L(x, Fo(x)) — L(x, F(x)| £ 9(x)|Fu(x) = F(x)| -

As such, by a straightforward generalization of Theorem 2.1 of Sen (1973 a)
[under our (2.6)], it follows that for every ¢ > 0, there exist positive constants
C(< o), p*(e): 0 < p*(e) < 1 and an integer ny(¢), such that for n = ny(e),
(4.4) P{sup . z, |L(x, F\(x)) — L(x, F(x))| > ¢} = Clo*()]"
where 4, = {x: xe 4 but |x — x,| > 8}. As aresult,
P{sup,. ;, L(x, F,(x)) > 0 — ¢ for some m = n}
< Nz Plsup,. i, L(x, Fu(x) > 0 — 4¢)
(4.5) = N2 P{sup,. 5 [L(x, F(x))
+ {L(x, F(®) — L(x, FO))] > 0 — 4}
< X2, Plsup, i, {L(x, Fa(x) — L(x, F(x)} > 3¢} (by (2:2)
< C*o*()]*, where C* = C{l — p*(¢e)}* (< 00).
Let us then define Z,® as in Section 3, and let
(4.6) Z,® = sup {L(x, F,(x)): xe B,(0)},
Z,® = sup {L(x, F(x)): xe 4,},
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so that Z, = max (Z,*, Z,*, Z,*; B,(09)) being defined after (3.14). Then, by
definition and by (3.8),
4.7 Z,® < 0 — cyn~td k4 sup {|L(x, F,(x)) — L(x, F(x))|: x € B,(9)},
so that by (4.7) and (3.15), we obtain that
P{Z,» = 60 — Yc,m~td,*» for some m = n}
(4.8) < P{sup [m}|L(x, F,(x)) — L(x, F(x))|: x € B,(0)]
= 1c, d,*» for some m = n}
S Za-slaexp{—1a'd, )] = o(exp{—¢*(m}), as n— oo,
as d,*» = [max {log n, ¢*(n)}]*: = (log n)*[¢*(n)]*2 and k, = 1. Finally,
P{Z," < 0 — ic,m~td,*, for some m = n}
(4.9) < P{Z,* < —}c,d,t, for some m = n}
= o(exp(—¢(n)}) as n— oo,
where the last step follows from Lemma 3.2 by noting that d, = [¢*(n)] is large
compared to ¢(n). Hence, noting that ¢*(n)/n log p*(3) — 0, we have
(4.10) PlZ, + Z,* for some m = n}
< CHp*()]" + 2[o(exp{—¢*(m}] = o(exp{—¢*(n)}) -
Further,
(4.11) P.*(¢) < P(m{Z, — 0) > o¢(m), for some m = n}
+ P{Z, + Z,V, forsome m = n},
and hence, by Lemma 3.4 and (4.10), we have
(4.12) lim sup, [{v(m)) log P,"(¢)] < —1,
which completes the proof of (2.10). (2.11) follows from (2.10) by noting that
lim, .. (log log 7)/g*() = 0 = lim, ., {u,(r)/¢*(m)} = }. [

5. A few applications and concluding remarks. (i) The law of iterated
logarithm. We let ¢*(t) = 2(1 + ¢)loglogt for t = 3; ¢%(t) =1, 0t < 3,
where ¢ > 0. Then, by (2.10),

(5.1 lim,_,, P{m¥(Z,, — 0) > a(2(1 + ¢) log log m)t
for some m=n =0, Ve>0.
On the other hand, Z, = L(x,, F,(x,)), V n = 1, so that every ¢ > 0,
P{m¥(Z,, — 60) > a(2(1 — ¢) log log m)* for some m = n}
(5.2) = P{Z,* > (2(1 — ¢) log log m)}
for some m=n}—1, as n— oo,

where the last step follows from the fact that Z,* = y,U, where y, — 1 a.s.
and U, = nt[F,(x,) — F(x,)] is attracted by the usual law of iterated logarithm.
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Hence, on letting ¢ — 0, we have
(5.3) P{lim sup, n¥(Z, — 0)/[20*loglogn]t = 1} = 1.

Similarly, it follows that P{lim inf, n¥(Z, — 6)/[20 loglogn]} = —1} = 1.
(ii) Probability of moderate deviations (PMD). Here, we let ¢*(n) = c*logn,
for some positive ¢. Then, from (2.10), we have

5.49) lim, ., [(log n)~* log P{m}(Z,, — 6)/o > clogm for some m = n}]

= —%Cz N
which is a stronger version of the usual PMD result
(5.5) lim,_, [(log n)~! log P{n¥(Z, — 6)/c > clogn}] = —}c*.

(iii) Embedding of Wiener processes. Let us now impose another condition
on L, namely, that the first partial derivative L, satisfies a local Lipschitz con-
dition for all (x, y): |x — x,| < 0,, |y — F(x,)| < ,, where §,, J, are sufficiently
small. Specifically, we assume that

(5.6) |Loi(%, y) — Loy(Xos po)l < Kilx — xo|*t + Kyly — pol™s,
VIX—xol < 0y, |}’—}70| < 0y,

where d, and d, are positive numbers. Then, by virtue of Lemma 3.1, Lemma
3.2, (3.8), (3.9) and (5.6) that the second term on the rhs of (3.11) is

5.7 O(n?¢logn) a.s. as n— oo, where d >0,

and by Lemma 1 of Bahadur (1966) along with Theorem 3.2 of Sen (1973 b),
the first term on the rhs of (3.11) is

(5.8) O(n~“k~1logn) a.s. as n—o0.

Thus, under (5.6), for some 0 < d < (4k,)™!, G,* = O(n~*log n) a.s. as n — oo,
and as a result,

(5.9) n(Z, — 0)jo = Z,* + O(n~logn) a.s. as n-— oo.

Let now W = {W(t), t = 0} be a standard Wiener process on [0, co). Then,
on using Theorem 4.4 of Strassen (1967) along with our Lemma 3.1, (5.6) and
following some standard steps, we claim that as n — oo,

(5.10) mZ.* = W(n) + O(n*logn) a.s. forsome 0<a<i.
From (5.9) and (5.10), we obtain that as n — oo,
(5.11) n(Z, — 0)Jo = n~tW(n) 4+ O(n=%logn) a.s.,

for some d > 0. Thus, the main results in Sen (1973a, c), deduced for the
particular case of bundle strength of filaments, also hold for general L(x, F(x)),
x € A, provided (5.6) holds.
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