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CONVERGENCE OF THE AGE DISTRIBUTION IN
THE ONE-DIMENSIONAL SUPERCRITICAL
AGE-DEPENDENT BRANCHING PROCESS!

By K. B. ATHREYA AND N. KAPLAN
University of Copenhagen

The age distribution for a supercritical Bellman-Harris process is
proven to converge in probability to a deterministic distribution under
assumptions slightly more than finite first moment. If the usual ‘‘jlog;”
condition holds, then the convergence can be strengthened to hold w.p. 1.
As a corollary to this result, the population size, properly normalized is
shown to converge w.p. 1 to a nondegenerate random variable under the
“jlog j”’ assumption.

1. Introduction. An important and useful aspect of age-dependent branching
processes is the limiting behavior of the age distribution. That is, if for any
family tree , Z(x, t, ®) = number of objects living at time ¢ with age < xand
A(x, t, ) = (Z(x, t, w))/(Z(o0, t, w)), then the asymptotic behavior of the random
distribution function A(., ¢, ®) as t — oo is of practical interest. Of course this
is well defined only if Z(t, ®) = Z(co, t, ®) does not go to zero as t — co. We
study this question for the supercritical one-dimensional age-dependent process
(sometimes called the Bellman-Harris process). Our results are that: (i) with
assumptions slightly more than finite mean for the offspring distribution, the
age distribution at time ¢ converges vaguely to a deterministic distribution A(-)
in probability; and (ii) under the usual “jlog;” assumption this convergence
can be strengthened to hold with probability one. .

The only known result on this problem is due to Harris ([7], page 154), who
showed that if the offspring distribution {p,} has a second moment and the life-
time distribution G(.) satisfies certain regularity conditions, then A(.,?, ®)
converges vaguely to a deterministic distribution A(.) with probability one.
Jagers [8] improved this somewhat by dropping all of the regularity assumptions
on G(+) but still requiring a second moment on {p,}. Their proofs rely on L,
theory which requires second moments in an essential way.

The approach here is somewhat different. As explained in [2] a natural way
to view an age-dependent branching process is as a multitype process (necessarily
of infinite type). In the finite case, it is well known ([4]) that on the set of ex-
plosion the vector of proportions of the number of particles of various types
converges to a fixed nonrandom vector in probability under the assumption of
finiteness of the first moments and with probability one under the *jlog;”
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condition. This leads us to suspect that the analog of the proportions vector
which is the age distribution in the age-dependent case should converge vaguely
to a nonrandom distribution in probability assuming only the finiteness of the
first moment and with probability one under the “jlog;” condition. Indeed
this essentially turns out to be the case here.

The first moment hypothesis is indispensable in the sense that the limiting age
distribution involves the so-called Malthusian parameter a which is finite iff
m= 37.,jp; < co. Whenm = oo, our preliminary investigation indicates that
the age distribution converges to a delta distribution at 0. The problem of
determining a proper normalization for the age-distribution at time ¢ to obtain
a nondegenerate limit is under investigation.

An important corollary to our result is that for any bounded measurable func-
tion continuous almost everywhere with respect to Lebesgue measure on the
support of G, {7 f(x) dA(x, t, w) converges in probability to {7 f(x) dA(x) under
mild assumptions on G and with probability one under “jlogj.” In particular,
if we take f to be the reproductive age value V(.) defined by

V(x) = me=[{7 e~ dG@)|[1 — G(x)]",
then
V& V(x) dA(x, ¢, 0)
converges with probability one under “jlogj.” Further,
e~ Z(t, w) § V(x)dA(x, t, w),
being a nonnegative martingale ([7], page 153), converges with probability one.
Combining these two, we see that under “jlog j” Z(t, w)e~** converges w.p. 1
to a nonnegative limit, thus extending the Kesten-Stigum theorem fully to the
age-dependent case. In [2] the convergence in law of Z(¢, w)e~** had been es-
tablished and it was conjectured there that the above method could be used to
prove almost sure convergence.

Our technique consists in writing A(x, t 4 s, ®) in terms of the age chart at
time # and using the law of large numbers. This is similar to the idea employed
in [3]. It is spelled out in detail in Section 3. It is quite powerful and yields
the results under minimal hypothesis. In particular, we feel that it would yield
limit theorems for the various types of processes studied by Jagers [9] and Crump
and Mode [6] with very few assumptions.

We now outline the rest of the paper.

In Section 2 we describe the basic setup, terminology and notation, and state
the results. Section 3 gives the outline of the proof while Section 4 gives the
details. Section 5 discusses the ¥, martingale and proves the Kesten-Stigum
theorem for the age-dependent case.

2. Statement of results. We shall consider an age-dependent branching pro-
cess with offspring distribution {p;} and lifetime distribution G(.). We make the
following assumptions throughout. Sometimes they will appear in lemmas and
theorems explicitly and sometimes not, but they will always be in force.
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(i) po=0.

(i) 1<m= 37,jp; < oo.

(iiiy G(0+) = 0.

The assumption p, = 0 is primarily for convenience of exposition. Otherwise
one has to keep qualifying “on the set of explosion.” However, in some of the
proofs, we will explicitly consider the case p, = 0, since slightly different argu-
ments are required. The assumption G(0+) = 0 is standard. Also without any
loss of generality we may assume that G is not lattice with finite support; since
this is a multi-type Galton-Watson process in disguise for which our results are
already available ([3]). We shall also exclude the case of lattice G with non-
compact support for which our proofs here could easily be adapted.

Since we want to be able to talk about the age chart at various times, we
need to describe the state of the system quite adequately. We shall, in fact,
overdo it a bit by assuming that our sample space Q is the space of all family
histories and our probability measure P is defined on a sufficiently big o-algebra
% on Q ([7]). Introduce the following notation. For any family history w let:

Z(t, o) = the number of particles living at time ¢.
Z(x, t, o) = the number of particles living at time ¢ whose age < x .
(Clearly lim,_, Z(x, t, 0) = Z(t, ®)).
{x(t, w);i=1,2, --., Z(t, w)} = the age chart at time ¢.

Zt0(X 5, ) = the number of particles living at time ¢ 4 s with age < x
in a line of descent initiated by a particle of age x,(¢, )

living at time ¢.

M(t) = E{Z(t, w)} .
M(x, 1) = E{Z(x, t, w)} .
We may occasionally write M(oo, ) for M(t).
A(x, t, w) = Z(x, t, w)]Z(t, ), if Z(t,w) > 0.

(Since we assume p, = 0, extinction occurs with zero probability and thus
A(x, t, w) is well defined a.e.)

We add a subscript y to all the previous random variables and their expec-
tations to indicate the case when P is supported by those w’s which start with
one particle of age y > 0. Thus we write

Fy(e, t) = E{e"ozy“‘w)} 0>0
M(t) = E{Z,(t, »)) |
Fu(e, X, t) = E{e“”zw,t,w)} P > 0

M (x, t) = E{Z (x, t, w)}.
We also put:

) = ZFeopss?
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The Malthusian parameter « is the root of the equation

m{ye*dG(t)=1.
Put

G(x -G

G,(x) = ( l-l_—y)G(y) ) x>0,y>0

V(x) = m {§ e~ dG (u)

{5 e~ 1 — G(u)] du
7 e[ — G(u)] du

V, = (¢ V(x)dZ(x, t, o)
= ZE V(X))

where x,, - -, x,, are the ages of the particles alive at ¢. It will always be
assumed that the probability measure P satisfies

Plo: Z(0, w) < o0} = 1.

A(X) =

We are ready to state our results.

THEOREM A. Let {p;} and G(-) satisfy the assumptions: 1 < m = 3 jp;, < oo,
Po = 0, G(0+) = 0 and G(+) nonlattice. Assume either of the following two addi-
tional conditions hold.

(a) inf, qp0q V(¥) > 0 (supp G = support of G)
or

(b) X p;jlogj < co.
Then
sup, |4(x, t, ) — A(x)| —,0

ast— oo.

The reader should note that condition (a) holds for example if G has bounded
support or if G is negative exponential. We conjecture that Theorem A holds
assuming only that m < co.

THEOREM B. When 3 p;jlog j < oo, the convergence on Theorem A can be
strengthened to hold w.p. 1, i.e.

sup, |A(x, t, ) — A(x)] >0 w.p. 1

ast— oo.
THEOREM C. Under the hypothesis of Theorem B
lim,_,, Z(t, w)e~* = W(w)
exists w.p. 1 and P(W(w) > 0) = 1.

Since A(-) is continuous and A(co) = 1 we can always find (for any given
¢ > 0) @ > 0 and a positive integer N such that

sup, |A(x, t, @) — A(x)| < e + sup,g;cn |A4(j0, t, ©) — A(jo)| .
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Thus Theorems A and B are consequences of the following:
THEOREM 1. Under the hypothesis of Theorem A
A(x, t, @) —, A(x) as t— oo
for each fixed 0 < x < oo.
THEOREM 2. Under the hypothesis of Theorem B
A(x, t, 0) — A(x) as t— oo
w.p. 1 for each fixed 0 < x < oo.
3. Plan of the proof. By the additive property of branching processes we
can write
(3.1) Z(x, t + 5, 0) = TP Z, 4 (X, S, 0)

where {x,(t, 0);i=1,2, ..., Z(c0, t, w)} is the age chart at time s and
Z,.0(X; 5, ©) denotes the number of objects of age < x at time (¢ + s) in the
line of descent initiated by the particle, of age x,(¢, ®) at time ¢. The o-algebra
&% is assumed to be big enough to make these measurable. It is well known
that conditioned on the age chart at time ¢, {in(,,m)(x, s,w)y;i=1,2, ...,
Z(co, t, w)} are independently distributed and further if x,(z, ) = y then the
conditional distribution of Z, ,,(x, 5, ®) is the same as Z,(x, s, w) defined in
Section 2. By an abuse of notation we shall rewrite (3.1) as

3.2) Z(x, t + 5) = TEY Z, (x, 5)

suppressing o, and (¢, o).
Starting from (3.2) we have the identity (in the notation defined in Section 2):

e 1 = 1 Z (1) _ s
Ty P T = g BEAL 9 = Mo 9k

(3.3) + 7}5 T2 [M, (x, )= — mV(x)A(x)]
+ (Ve[ Z(t))m A(x)
= ay(x, 5) + by(x, s) + ¢, A(x), say,

where n, is a suitable constant. Trivially,

_(ay(x, s)’ + by(x, 5) + ¢, A(x))
(3.4) A ) = oo 3) F biloor )+ )

We first show that [b,(x, 5)| and |b,(co, 5)| can be made small uniformly with
respect to £ and @ by choosing s large (Lemma 1). Next we show that for fixed
s, both a,(x, s), a,(co, 5) go to zero in probability as  — oo and that c, is bounded
below in probability (Lemmas 2 and 3). When we assume } jlog jp, < oo, we
show using a proposition of Kurtz [11] that the above convergences can be
strengthened to hold with probability one if ¢ and s are restricted to lattices of
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the form {nd; n = 0, 1, 2, - - -, 0 a positive rational} (Lemmas 2’ and 3’). Finally,
some technical arguments are needed to push the almost sure convergence on
the lattice to the whole continuum.

4. The proofs.
LEMMA 1. Let n, = (¢ e~*%(1 — G(t)) dt/m {5 te=* dG(t). Then
sup, (|M,(x, s)e=* — n, V(p)A(x)|, [M (o0, s)e=* — m V(y)]) =0
as § — oo.
Proor. We use the integral equation satisfied by M (x, s), namely,
4.1)  M(x,5) = J(x — y — )(1 — G,(5)) + {s mMy(x, s — u) dG,(u)

where J(u) = 0 foru < Oand 1ifu = 0. Let T > 0.
Noting the definition of ¥ and (4.1) we get for s > 2T

|M,(x, s)e=** — mV(y)A(x)|
(4.2) < e @ 4 (57T |mMy(x, s — u)e=*¢~* — n, A(x)|e~** dG (u)

+ ce—«s—T)

where ¢ is a constant independent of x, y, s, T.
The lemma now follows since My(x, t)e~** — n, A(x), and M(co, t)e=** — n,. []

The following is a trivial corollary:
CorOLLARY 1. sup,, (|b(x, 5)|, |6,(c0, $)|) — 0 as s — co.

LEMMA 2. Fix 0 < s < oo. Then

L a1z, (%, 5) — M, (x, )] >0

(4.3) Y= 26

in probability as t — oo.

ProoF. Since Z, (x, s) are nonnegative random variables and sup, , M (x, 5) <
co we can employ moment generating functions. It suffices to show that for each
0< < oo

Efe="t}—1 as t—oo.
But
0 0
4.4)  E[e¢|.F) = ex { 70 [__ M, (x, 5) + lo F<__ %, s)]}
(44) Bl 7 = exp{ DA | s Max,9) + 10 B (500
where .7, is the o-algebra of family histories up to time ¢ and F (0, x, s) =
E(e—0Zy(:c,s)).
Now observe

P(le(x’ S) ; k) é P(ng=1 ZOj(OO, S) > k) lf PO =0
< P(RY., Zj(c0, 5) > k) if p,# 0
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where
(i) N hasp.g.f. f(s).
(i) {Zy/(o0, )} are independent of N and independent copies of Zy(co, ).
(iii) {Zy(co, 5)} are independent of N and independent copies of a Bellman-
Harris process with lifetime distribution G and offspring p.g.f. f(s) = (p, + p)s +
25 Sp;e
This makes the family {Z,(x, 5); 0 < x < 0,0 < ¥ < oo} uniformly integrable.
Thus,

1=-F@mxs M,(x, 5)
7

sup, , -0 as 70,

and
sup, , M (x, 5) < oo .

Using the fact log (1 — k) = —#& + o(k) as k — 0 we conclude that

M, (x, s) + _?% log F, (th) , X, s)

sup, ., -0 as Z(t) > co.

Now use (4.4) to finish the proof. []

LEMMA 3. Assume either

(a) innyS\lppG V(y) > 0
or
(b) X p;jlogj < oo.
Then for every ¢ > O there exists an y > 0 such that
liminf, ., P(V,JZ(1) > p) > 1 —¢.

Proor. If (a) holds the result is obvious. So suppose 3] pijlogj < co. Itis
proven in [2] that
lim, ., Z()e-* = W
in distribution and P(W > 0) = 1. Also one can repeat the arguments in [2]
almost verbatim to prove
lim, , V,e=*t = W’

in distribution and P(W’ > 0) = 1. Thé lemma now follows easily. []
ProOF oF THEOREM 1. Use (3.4), and Lemmas 1, 2 and 3.

REeMARK. The additional assumptions of Theorem 1 are needed only to es-
tablish Lemma 3. It is conjectured that the lemma is valid assuming only
m < oco. The reader should note that the lemma is true when G has infinite
support if one could show that for some K > 0, Z(K, )/Z(r) is bounded below
in probability. This follows since

infu,cx V() = a(K) >0 and  V/Z(1) = a(K)Z(K, 1)/Z(7) .
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The proof of Theorem 2 depends crucially on the following strengthening of
Lemma 2.

LemMMA 2'. Let 3 5., p;jlogj < co. Then for each 6 > 0 and integer m
@5 Ll szwz (x, mi)— M, (x, m3)] >0 w.p.1 as n—oco.
Z(no) ¢ :
The proof of this lemma is a consequence of the following proposition due to
T. Kurtz [11].

ProrosiTiON 1 (T. Kurtz). Assume for each k = 1, X,;, X4y, - -, Xin, are in-
dependent random variables with finite means. Assume that for some 0 < ¢ < oo,
1 < r< oo, n, > crk and for y sufficiently large,

SUPygisnykz1 P X — EXy| 2 y} = 1 — H(y)
where H(+) is a distribution function such that § y(log y)* dH(y) < co. ThenV e > 0,

2;7:1 PHZ?& (in - Ein)l > kne} < oo,
ProofF. Let ¢ > 0. Define
O(u) = u* if o<uxl1
=u if ux>1
Lemma 2.2 of [10] states that
1 4 ,
P {"* | 227k (X — EXp)| > 5} < —— 00 (u/n,)Ly(u) du
n, 0(2¢)
where Ly(u) = sup,g;c,, P{|Xis — EXyi| > u}.
Now observe that
Dy ' (ufer®)y = O(log u) as u - oo
and
(¢ (logu)*(1 — Hu))du < oo iff {5 u(logu)* dH(u) < oo . 0

Proofr oF LEMMA 2'. Since the process is supercritical we can always find (by
truncating the offspring distribution if necessary) an 0 < a’ < « and a constant
¢ such that Z(nd, ) = ce*'".

Also for fixed mé we know » = sup, M, (x, md) < oo and forany x, y, Z,(x, md)
is stochastically smaller than R = }}¥_, Z,%(co, md) where N has p.g.f. f(s) and
{Z,3(c0, 1)},5, are i.i.d. age-dependent branching processes with the same lifetime
distribution but with offspring p.g.f. f(s) = (p, + p, + p2)s* + pss* + - -+, and
independent of N. Thus for any z > 7,

P{|Z (x, md) — M (x, md)| = z} < P{Z(x, md) = z}
SPRzz}=1-— H().

Also it is known [1] that 3] p; jlogj < oo = E{R(log R)*} < oo.
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We now conclude from the previous proposition that

z;np{ Ty L7 (2 md) — M (x, m5)]l > e|y*,,5} <oo wp.l.

By the extended Borel-Cantelli lemma [5] this is enough to finish the proof. []
LemMMA 3'. Let 3 p;jlogj < oo. Then for every d > 0,

Vs
Z(na)

lim >0 wp.1.

n—00

Proor. Let d >.0. It follows from the results of the next section that
lim, ., e~*"V,, = W’ exists w.p. 1. Also in Lemma 3 we noted that P(W’ >
0) = 1. Hence it suffices to show

lim sup,_., e*Z(nd) < o w.p. 1.
Let 0 < ¢ < 4. By Lemma 1, there exists an n, such that
sup, | M, (0n)e=*"" — n, V(x)| < ¢.
To simplify notation put W, = e~***™Z(kdn,), k = 1. Using (3.1) we can write
1
W — W { Z(kéno) —a5n0 Z 5” — M Bn
k41 Z(kong) 2 (Z.,(0my) (0m,))
}_»__ (kdno) e—aﬁnoM on)) — Vi }
 kdng S (€M, 0m) = ()
+ nle akdnoVksno .

v

Since lim,_, e~*V, converges w.p. 1, 4 = sup,e 'V, < oo w.p. 1. It follows
then from Lemma 2’ that there exists a finite integer valued random variable /
such that w.p. 1

W < Wi2e + A k=>1.

Iterating the last inequality proves that lim sup,_,, W), < co w.p. 1.
Arguing in exactly the same way as above one can show

lim sup, _,., e~***"*9 Z(d(kn, + j)) < oo w.p. 1
forj=1,2,---,n — 1.
The lemma now follows since for any &,
e~ M Z(ko) < 235" exp(—ad([k/no]ny + ) Z(3([k[no]ne + j)) - 0
Combining (3.4), Lemma 1, Lemma 2’ and Lemma 3’ we arrive at

THEOREM 2'. Let 3, p,jlogj < oo. Then fix 0 < x < 00,0 > 0. 3 a set E
of probability one such that for every w € E

(4.6) A(x, nd, o) — A(x) as n—oo.

Letting 6 and x range over positive rationals and noting that A4(x) is continuous
in x we get
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THEOREM 2", Let 3 p,jlogj < oo. Then 3 a set E of probability one such that
for every w € E,

4.7 0(A(s, nd, w), A(+)) —0
or every positive rational 0, where o is the usual Lévy metric.
VP o y

COROLLARY 2. Let Y p;jlogj < oo. Let h(+) be any bounded real valued
function on [0, oo) and continuous almost everywhere (with respect to the Lebesgue
measure) on the support of G. Then 3 a set E of probability one such that for  in E

{o> h(x) dA(x, nd, @) — {5 h(x) dA(x)
for each positive rational .

PRrOOF. Just note that A(.) is absolutely continuous with respect to Lebesgue
measure.

We now finish the proof of Theorem 2.

The following inequalities are easily checked. For 6 > 0, nd < t < (n + 1)d,
0 x< oo

(4.8)  Z(x — b, nd) — D 9, < Z(x, 1) £ Z(x + 5, (n + 1)) + DAV 7,

where 7, = number of objects that die by time (n 4 1)d in the line of descent
initiated by a particle of age x; at time nd (x, X,, « « -, Xz(,s, are the ages of the
particles at time nd). Thus,

Z(x + 0, (n+ 1)9) Z((n + 1)3) , 1 z
Z((n + 1)d) Z(nd) Z(no) <0 "

1 Z(nd)

- Z(nd) i=1 i

(4.9)  A(x, 1) <

Repeating the proof of Lemma 2’ we see that
(Z(no))™[Z((n + 1)0) — X 7#nD Mzi(oo, 0)]—0 w.p.1
and

1 o (g, — En) — 0
LR i w.p. 1.
Z(nd) PRARE ) 7:) P

By Corollary 3

1 Z(nd) , — -
Moo 0d) L M, (9) = § M,(9) dA(x) = (1 + n(9))

and since E(7;) < CG, (9) for some constant C independent of x,

lim sup, _.. 7(1,'5“) Y700 E(p) < C § G (8) dA(x) = ry(d) w.p. 1.

Thus w.p. 1

A(x, 1) < A(x + 9)(1 + r(9)) + n(9)

lim sup, ., Y
2
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Now letting 6 | 0 we get by noting that r,(d) - 0asd | 0,i= 1,2,
lim sup,_,., A(x, t) < A(x) .

A similar argument applies to the lim inf, ., A(x, ).

5. Consequences. The following strengthening of Corollary 2 is an immedi-
ate consequence of Theorem B.

COROLLARY 3. Under the hypothesis of Theorem B
o h(x) dA(x, t, ®) — {5 h(x) dA(x)

w.p. 1 for any h(+) bounded continuous almost everywhere (w.r.t. Lebesgue measure)
on the support of G.
Recall the definition of V(x) and V (w):

Vix) =m{pe=dG,u), Vo) = L Vx(, o) -
PROPOSITION 2. The family {V (w)e~**, t = 0} is a martingale.

Proor. It suffices by additivity (3.1) to check that

5.1 e*V(x) = E{V /(o) | the initial particle was of age x} .
Denote the right side of (5.1) by A(#, x). Then,

(5.2) h(t, x) = V(x + (1 — G, (1)) + m {} h(t — u, 0) dG () .
Specializing (5.2) to the case x = 0 and setting A(f) = e~*'A(t, 0) we get
(5.3) h(t) = V(1)1 — G()e~=t + ¢ h(t — u) dG(u)

where dG(u) = me==* dG(u).
Since & = 1 is the only bounded solution of (5.3) (here the definition of ¥(+)
is used) we conclude that A(z, 0) = e** and this with (5.2) yields (5.1). []

Proor oF THEOREM C. The function ¥V(x) has the same discontinuity set as
G(+) and hence satisfies the hypothesis of Corollary 3. Thus under the hypothe-

sis of Theorem B
(5.4) V|Z, = § V(x)dA(x, t, ©) — § V(x) dA(x) = n,* w.p. 1.

By the preceding proposition V,(w)e~¢ is a nonnegative martingale and hence
converges with probability one. Call this limit W’(w). From (5.4) it is clear
that under the hypothesis of Theorem B

lim,_, Z(t, ®)e= = n,"'W'(0) = W(w) .

This proves Theorem C in view of the known result [2] that W(w) is nonde-
generate at zero iff 3 p; jlogj < oo. []

If 3 p;jlogj= oo then Z(f)e=** — 0 in probability as shown in [2]. By
Theorem A, V,/Z, converges in probability to a=}(m — 1). By Proposition 2,
lim, ., Vy(w)e=** = W'(w) exists w.p. 1. Thus we get
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COROLLARY 4. 3 p;jlogj = co then
(5.5 lim, ., V(w)e=™* =0 w.p.1.
If V(x) is bounded below this implies
(5.6) lim, ., Z(t, 0)e=* =0 w.p. 1.
At any rate for each K < co in the support of G we do have

lim,_, Z(K, t, 0)e=** =0 w.p. 1
since
infog,<x V(x) > 0.

Summarizing this yields

CoROLLARY 5. (a) If 3] p,jlogj = oo and V(+) is bounded below as the sup-
port of G then
(5.7 lim, ., Z(f)e=** = 0.

(b) If X p;jlogj = oo then for any K in the support of G
(5.8) lim, ., Z(K, t, o) = 0 w.p. 1.

Perhaps (5.7) is true without any hypothesis on V.

Let N(t, ) be the number of splits up to time 7. Then we may write
(5.9) Z(t, o) = Z(0, w) + Y ¥tog,
where &, is the net addition to the process at the ith split. Clearly, &, i = 1,
2, - - - arei.i.d. with distribution P{§; = j} = p; ,. Further N(f, ) — co w.p. 1.
By the strong law of large numbers (5.9) yields
(5.10) Z(t, 0)[N(t, o) - (m — 1) w.p. 1
and hence

COROLLARY 6. If 3 p,;jlogj < oo then

N(t, w)e* — W(w)(m — 1) w.p. 1.

If Y(1, ») is the total number of progeny up to time ¢ we may write Y(¢, ®) =

4@ (§; + 1) and hence we get again by the strong law
CoRrOLLARY 7. If 3 p;jlogj < co then

Y(t, w)e=** —» W(wym(m — 1)7* w.p. 1.

CoNCLUDING REMARKS. The extension of the results of this paper to the more
general branching mechanisms considered by Jagers [9], Crump and Mode [6]
etc. seems straightforward enough not to need a separate publication.

We wish to thank our colleagues P. Jagers and N. Keiding at the Institute for
Mathematical Statistics, Copenhagen for many stimulating conversations.
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