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AN AGE-DEPENDENT MODEL WITH PARENTAL SURVIVAL

By THoMAS H. SAvVITS
University of Pittsburgh

We consider an age-dependent model which not only allows the gener-
ating function to be age-dependent, but also allows the parent to reproduce
several times during its lifetime. By using the notion of v-space-time
harmonic functions, we study the behavior of Z;, the number of particles
alive at time ¢, in the supercritical case. In particular we obtain results
which are analogous to the classically known results for the Bellman-
Harris model; in fact, we obtain convergence in probability.

0. Introduction. In this paper we consider an age-dependent model X which
allows the parent to reproduce several times during its lifetime. The generating
function for newborn progeny is also allowed to be dependent upon age. We
shall show that for this process, all the classical results are valid. In particular,
if m is the mean number of progeny produced during the lifetime of a particle,
then the extinction probability ¢ = 1 iff m < 1. The rest of the paper is con-
cerned with the supercritical case, m > 1. Then, under a finite second moment
assumption, W,* = Z,/ce’ converges in mean square and a.s. to a random vari-
able W* satisfying E(W*) = 1. Here Z, is the number of particles alive at time
t, 2 is the Malthusian parameter and c is an appropriate normalizing constant.
Using the method of space-time harmonic functions we exhibit a function ¢ such
that W, = e-“gZ(Xt) is a martingale and being nonnegative it converges a.s. to a
nonnegative random variable W. If ¢ is bounded, we show that under a techni-
cal condition, E(W) =1 iff }; (klogk)p, < co. Lastly, we make use of a
majorization lemma to infer something about the behavior of W, *. In particu-
lar, it will follow thatif 0 < @ £ ¢ < b < oo, then W,* converges in distribution
to a random variable W* satisfying E(W*) = 1 iff E(W) = 1.

1. The model. We use the framework of Ikeda, Nagasawa and Watanabe to set
our model up rigorously. Let G be a (right-continuous) probability distribution
function on [0, o) satisfying G(0+) = G(0) = 0. We define T = inf{r > 0:
G(t) = 1} (inf @ = oo) and take S = [0, T') as our base space. Let « and 8 be
two nonnegative measurable functions on § such that « 4+ 8 = 1. Also, let
m(x, 8) = Yoo Pu(¥)s*, s€[0,1], i = 1,2, be two age-dependent generating
functions with p,, measurable functions on S. If T < oo, we allow a, 8 and p,,
to be defined on [0, T'] but assume that a(T) = 0.

Then, according to [3], there exists a unique right-continuous strong Markov
process X on S possessing the branching property and satisfying the following
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S-equation. If fis a measurable function on S such that sup,.s |f(x)| < 1, then
u(x, f) = E,[ f(X,)] is a solution of

(L1)  u(x, ) = flx+ O[1 = Gu(t)] 4 §i0,11 B(x + p)mafx + y, w(0, t — y)] dG,(y)
+ Soaalx + y)m[x + y, u(0, t — y)]u(x + y, t — y) dG,(y)
(x€S,t = 0). Furthermore, if f > 0, u is the minimal solution in the class of all
solutions U satisfying 0 < U < 1. Here G, is the distribution function given by
Gu(t) = [1 — G][G(x + 1) — G(X)] -

As usual, S = S U {A} is the one point-compactification of S, S = Jg_,S",
$" is the quotient topological space of the n-fold Cartesian product of S under
the equivalence relation of permutation for n > 1, and S° is the set consisting of
an isolated point 9. (9 corresponds to extiction and A corresponds to explosion.)
Also

fx)=1 if x=2
= Iz, f(x) if x=[x,..-,x,]es"
=0 if X:A.

Recall that the branching property is the statement

P T
rf=TNIs,

where T, is the induced semigroup of X.

Intuitively this model can be described as follows. An object of age zero waits
a random length of time 7, according to the distribution function G. At this
time, it either continues living with probability a(r,) or dies with probability
B(z,). Inthe former case it gives birth according to the age-dependent generating
function m,(r,, 5); in the latter case it gives birth according to the age-dependent
generating function m,(z,, s) before dying. If the original object has not died by
time 7,, it waits another random length of time r, according to the distribution
function G, . In this case, the relevant parameters are a(r, + 7,), (7, + 7,),
and 7(, + 7,, 5). The parent object continues in this manner until it dies. All
newborn progeny exhibit the same behavior independently of one another and
of the parent. This model includes as special cases then the classical Bellman—
Harris age-dependent model and the age-dependent birth-and-death model of
Kendall.

Another integral equation of improtance is the following. Let g be any
bounded (or nonnegative) measurable function on S. Then v(x, 1) = E[9(X)]
satisfies

(1.2)  o(x, 1) = g(x + O[1 — G,()] + §e,am(x 4+ Y)v(0, t — ) dG,(y)
+ Soaa(x + y)v(x + y, t — 1) dG.(y),

m(y) = a(y)ym(y) + B(y)my(y) ,
my(y) = #/(y, 1) = 2is, kpa(y)

where
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and
g(x) =0 if x=0 or A
= 2 9(x) if x=[x,-.--,x,]eS".
Furthermore, if g = 0, v is the minimal solution in the class of all solutions ¥
satisfying V' = 0. ,
We note that (1.1) is nonlinear whereas (1.2) is linear.
It is convenient to introduce the following notation.

(1.3) 7(*) = fwaa@[l — G(2)]7 dG(2)
(1.4) m = {qrym(y)e’” dG(y) .

We are now ready to state our main assumptions.
(1.6) ASSUMPTIONS.

(i) G is continuous
(ii) lim,,,[1 — G(x)]er™ =0
(ili) m < oo.
The first assumption is a technical assumption which facilitates computations.
The second assures us that the parent eventually dies. The last gurantees no
explosion (in finite time).
We conclude this section with several facts that we shall have occasion to use.

1.7 If f is any bounded. (or nonnegative) measurable function on S and
xe S, then

§o f(x + ) dG.(y) = [1 — G()]™ §Z f(y) dG(y) -

(1.8) If F is any continuous monotone function on S and ¢ is any function
absolutely continuous with respect to Lebesgue measure on the range of F, then

§o ¢'(F(x)) dF(x) = ¢(F(b)) — ¢(F(a))
forall0 <a<b<T.
(1.9) Ber = —% [(1 — G)er] a.s. (dG) .

2. Reduction. It is well known that the behavior of branching processes is
intimately connected with the behavior of the solutions to certain renewal equ-
ations. Classical renewal theory has been an indispensable aid in the study of
such solutions. Although the renewal equations that we are led to, namely (1.1)
and (1.2), are not of the classical type, this causes no difficulties as the next
theorem shows.

Consider the following two integral equations.

2.1) U@ =[1 - GO0 exp{§; a(z)m [z, U(t — 2)][1 — G(2)]* dG(2)}

+ $ )Ly, Ut — y)] exp{§} a(z)m,[z, U(r — 2)]
X [1 — G(2)]7" dG(2)} dG(y)
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and

(2.2) V(r) = [1 — G(t)]er®g() + §§ e m(y)V(t — y) dG(y)

where 0 < f < i,Ogg.

(2.3) THEOREM. If u and U (v and V) are the minimal solutions of (1.1) and
(2.1) ((1.2) and (2.2)) respectively, then u = EU (v = EV) where E(E) is the opera-
tor defined by (2.4) ((2.6)).

Proor. Let 0 < U(f) < 1 be a solution of (2.1). We define in extension
operator £ by

(EU)x, 1) = [1 = G,()]f(x + 1)
2.4 X exp{{z** a(z)m[z, U(x + 1 — 2)][1 — G(2)] dG(2)}
+ [1 = G §27 pO)mly, U(x + t = )]
X exp{§2 a(2)m[z, U(x + 1 — 2)][1 — G(2)] 7" dG(2)} dG(y)
for xe S, t = 0. It is easy to see that U is a solution of (1.1).

Now suppose that 0 < u(x, 7) < 1 is a solution of (1.1). We will show that
u(0, £) is a supersolution of (2.1); by this we mean that 4(0, 7) satisfies (2.1) if
we replace the equal sign (=) by the inequality sign (=). Since (1.1) is valid
for all x € S, it is valid for x = 0. In the resulting expression there is one term
in the integrand, namely u(y, t — y), which depends on x = 0. For this term
we substitute the right-hand side of (1.1). Continuing in this manner, we obtain
after n substitutions the expression

w0, 1) = f)[1 = G()]
X { Tt o (a2, 40, ¢ = D)1 = @I G|

(2.5) + 1 BQ)mLys w0, t — )]
X { o gT (§4 a(2)m,[z, u(0, t—2)][1 —G(2)]™* dG(z»k} dG(y)
+ R,(1)

where

Ry(0) = S a()mly, 40, £ = Py 1 =)
x L (a@)mlz, w0, 1 — A1 — G(2)] d6(2) d6() -

If we could show that for each fixed ¢, R,(f) — 0 as n — co, we could conclude
that u(0, ) was a solution of (2.1). This can be done for each 7 such that
7(f) < oo, but it is not clear otherwise. Instead we observe that since R, = 0,
we have the inequality > in (2.5) if we throw that term away. Letting n — co
we deduce that (0, #) is a supersolution of (2.1). Actually, in the same manner,
we can conclude that u(x, r) = [£u(0, +)](x, r) forall xe S, ¢t = 0.

So now let u(x, f) be the minimal solution of (1.1) and let U(r) be the minimal
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solution of (2.1). Then we have ¥ < EU. On the other hand, since the minimal
solutions are obtained by the usual iteration procedure starting with U = 0, it
follows that (0, f) = U(f). Consequently, # = £(u(0, +)) = EU and we are done.

The proof of the corresponding statement for v and V is similar except now
the extension operator E is defined by

(2.6)  (EV)(x, 1) = [1 — G,(1)]er=+=r®g(x + 1)
+ [1 — G 7e™® §77 m(p)erV(x + 1 — y) dG(y) .

As an immediate consequence of the above we have the following result.
2.7 THEOREM. There is no explosion (in finite time) if m < oo.

Proof. Let Z, = 1(Xt) be the number of particles alive at time ¢ and set
u(x, t) = E,[1(X,)] = P,(Z, < ). According to Theorem (2.3), u(?) = u(0, )
is the minimal solution of (2.1) with f = I; furthermore, it is easily seen that
U(t) = 1 is also a solution. Since we have uniqueness of solution when m < oo,
we deduce that P(Z, < o) =1 for all + =0, and hence Py(Z, < oo, all
t= 0) =1.

3. Extinction problem. If Z, = i(Xt) denotes the population size at time f,
then we know that the probability of extinction before time ¢, g(x, ) =
E[[0(X))] = P.(Z, = 0), is the minimal solution of (1.1) with f=0. Letting
t — o0, we see that extinction probability g(x) = P(Z, = 0 for some ¢ = 0)
satisfies
3.1 q(x) = §§ B(x + y)mlx +y, 9(0)] dG.(y)

+ 10 a(x + y)mlx + 5, 9(0)]q(x + y) dG.(y) -
As usual we have the following characterization.
3.2) THEOREM. ¢(x) is the minimal solution of (3.1).

Proor. Set r, = 0 and for k > 1, let 7, be the kth split time. Let ¢ (x) = P,
(there are at most n splits). Then, using the strong Markov property, we have
the inequality

g™ (x) < {7 B(x + p)mlx 4y, ¢™(0)] dG.()
+ 0 a(x, y)mlx + y, ¢ (0)]g™ (x + y) dG(y) -
Now note that if g(x) is any other nonnegative solution of (3.1), then g(x) =
¢ (x) = 0. By induction it follows that g(x) = ¢(x) and hence g(x) = q(x)

since ¢'™ 1 g clearly.
From the results of Section 2, we also know that ¢(0, #) is the minimal solu-

tion of (2.1) with f = 0. So letting ¢ 1 oo it follows that

(3.3) g = P(Z, =0 forsome t = 0)= g(0)

is a solution of

3.4 g= 7 BO)mlys 1 exp{§i a@)mz, g)[1 — G(2)]7 dG(2)} dG(y) -
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Using the same techniques as in Section 2, we arrive at the following conclusion.

3.95) THEOREM. q given by (3.3) is the minimal solution of (3.4). Furthermore

9(x) = [1 = G()]™ 2 B(y)mly, q] exp{§s a(z)m[z, g][1 — G(2)]* dG(2)} dG(y) -
Consider now the function H defined by

(3:6)  H(s) = {7 B(y)mly, s]exp{§t a(z)mz, s][1 — G(2)]™* dG(2)} dG(y)

for s [0, 1]. It is clear that H is a power series with nonnegative coefficients.
Furthermore, from (1.9),

H) =1 — lim,,, [1 — G(x)]er™ = 1.

Consequently H is a generating function; in fact, it is the generating function
of the underlying Galton-Watson process. By the standard arguments, we know
that the smallest solution of s = H(s) is determined by the value of H'(1). Dif-
ferentiating equation (3.6) and using Fubini it is easy to see that H'(1) = m.

3.7) THEOREM. The extinction probability q is the smallest root, 0 < s £ 1,
of s = H(s); moreover, q = 1 iff m < 1 (except in the degenerate case H(s) = s).

In the remainder of this paper we shall only consider the supercritical case
m> 1.

(3.8) ASSUMPTION. m > 1.

4. Behavior of Z,. Let M(f) = E[Z,] = E[1(X,)]. Then M is the minimal
solution of the renewal equation

(4.1) M(r) = [1 — G(D)]er® + [im(y)erM(t — y) dG(y) -
Using the standard results from renewal theory we deduce
(4.2) THEOREM. M(t) ~ ce* as t — oo, where
c = (F[1 — G(r)]erVe~* dt/( te~*ter ' m(t) dG(1) ,
and 2 is the Malthusian parameter given by the unique positive root of
{7 e=ervm(y) dG(y) = 1.

In order to study mean square convergence, we consider the joint second
moment of Z(¢) and Z(t + ), = = 0. Let

Fy(sy, 85 t, T) = E[5,7t5,7t+7] for s,s,¢€[0,1].
Using the Markov and branching property of X we rewrite F, as
Fy(s1, 853 8, ) = E[§,(X))85(X,,)] = E[81(X,)E, [8,(X)]]
/\
= Ej[s;Fy(s55 +, 7)(X))]

Fy(s} x, t) = E[3(X,)] = E,[s%] .

where
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Consequently, F, is the minimal solution of a renewal equation of the form (2.1).
The same analysis as in Harris ([2], page 140) leads us to conclude that if
H"(1) < oo, My(t,7) =EJ[Z,Z,,.] is the unique solution bounded on finite
t-intervals of

My(t, 7) = (s m(p)er P Myt — y, 7) dG(y) +.[1 — G()]e" " My(t, 7)
(4.3) , + §i e (" (y, DMy(0, 1 + 7 — y)My(0, £ — y)

+ a(yym(y)M(0, 1 — Y)Mi(y, t + 7 = ))

+ a()m()My(y, t = )M 0, 1 + 7 = y)}dG(y)
where My(x, t) = E,[Z,] and ="(y, 1) = a(y)m"(y, 1) + B(y)m"(y, 1)- Now it
follows from (2.3) and (4.2) that

M(x, 1) ~ cgp(x)e* as t— oo
where , .
(4.4) $(x) = e ekl — G(x)]™* {7 m(y)er'e=" dG(y) .
Applying renewal theory to (4.3) we conclude the following result.
4.5) THEOREM. If
H'(1) = {7 2"y, 1]e"® dG(y)
+ 2§ m(y)er” §§ a(zymy(2)[1 — G(2)]7 dG(2) dG(y) < o0,

then
My(t, t) ~ cKe* 0 [(1 — mm) as t—oco, uniformlyin t >0,
where
= §§ m(y)erve it dG(y)
and

K = {§ ewe{z"[y, 1] 4 2a(y)m(y)¢(y)} dG(y) -
Following Harris [2] and Jagers [4], we deduce

(4.6) THEOREM. If 1 < m < oo and H"(1) < oo, then Z,[ce* converges in
mean square and a.s. to a random variable W* satisfying E[W*] = 1, Var (W*) =

(K1 — m)) — 1> 0.

Many times it is also of interest to study Z(x, ), the number of particles alive
at time 7 and of age < x. Since Z(x, ) = I[M](Xt), a similar analysis leads us to

4.7) THEOREM. If 1 < m < oo, E[Z(x, t)] ~ c(x)e* as t — oo where
e(x) = (2 [1 — G(t)]e~er® di/\T te~er“m(t) dG(f)

for 0 < x < T. In addition, if H'(1) < oo, Z(x, t)[ce** converges in mean square
to A(X)W* where A(x) is the limiting age distribution given by A(x) = c(x)/c.

(4.8) REMARK. Presumably one can also obtain a.s. convergence as in
Harris ([2], page 154]).
Note that for x = T, ¢(T) = c.



AGE-DEPENDENT MODEL 389

5. V-space-time harmonic functions. Following Savits [5] we define a\/-space-
time harmonic function of X as any function 4 satisfying

h(x, 0) = E[k(X,, t + 0)]

forallxeS,t = 0,0 = 0. The study of such functions is of interest since they
yield martingales.

In this section, we shall state our results without giving proofs since the proofs
are essentially only slight modifications of the corresponding results found in [6].

5.1 THEOREM. h(x, t) = e~"@(x) is a \/-space-time harmonic function, where
B(x) = e[ — G(x)]™ {7 m(y)e-Per dG(y)

Consequently, W, = e‘“q‘ﬁl(Xt) is a nonnegative martingale (with respect to each P,)
and converges a.s. to a nonnegative random variable W satisfying E[W] < ¢(x).

(5.2) REMARKS.

(i) Itis interesting to observe that {& ¢(x) dA(x) = 1/c; i.e., the average value
of ¢ with respect to the age-distribution is the reciprocal of the constant c.

(if) For the classical Galton-Watson process and for the age-dependent birth
and death process of Kendall having constant birth and death rates, ¢ = 1.
Consequently e~*Z, is a martingale in these cases.

(5.3) THEOREM. If H"(1) < oo and e~*'er™[1 — G(t)|¢*(t) is bounded then
{W.}i20 is a square integrable matingale. Hence W, — W a.s. and in L* moreover,
E[W] = ¢(x) and P, (W = 0) = q(x).

(5.4 REeMARK. If in'the above, e-**%er®[1 — G(t)]¢*(t) — 0 as ¢t — oo, then
one can show E[(W, — W,*)*] — 0 as t — co where W,* = Z,/ce**. Consequently
W = W* a.s. in this case. :

We now set z(y, 5) = a(y)m(y, s) + B(¥)7o(y, s). Then

(Y, 8) = Lo Pu(y)s*
where p,(y) = a(y)pu(y) + B(y)Pu(y)- Suppose
d= {7 eerv dG(y) < oo
and set
Pe = d7\§ pi(y)e=tver™ dG(y) .

(5.5) THEOREM. Suppose d < oo. If 315, (klogk)p, = co, W =0a.s. If
(i) §7 e *erVa(y)m(y)P(y) dG(y) < oo and (ii) e~***er[1 — G(1)]$*(¢) is bounded,
then W is nontrivial provided Y7 (klogk)p, < oco; furthermore, E[W] =1,
P(W = 0) = q and W has a continuous density on (0, o). :

(5.6) REMARK. If ¢ is bounded, then (i) and (ii) above are automatically
satisfied.

6. Deductions. In this section we shall see how much information about
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W = Z,/ce* can be inferred from W,. Set
a = inf, . ¢ #(x)
b = sup,.s P(x) .
Then we have the inequality
(6.1) (ac)yW* < W, < (be)W,* .
This leads to the following
(6.2) ProposITION. (bc)~'W < lim inf,, W, * < lim sup,;, W,* < (ac)™'W.
In particular, then,
(i) if w=0as.anda >0, W*—0a.s.

(i) f0<a=<b< oo, W*—0as. iff W,—0a.s.

Now let ¢(u, t) = E[e~*"¢] be the Laplace transform of W, and ¢(u) = E,[e=*"]
be the Laplace transform of W. Since E[e~*":] = E,[[exp —ue *¢(+)](X,)] and
W, — W a.s., we see from Theorem (2.3) that ¢ () is a solution of the functional
equation
(6.3)  ¢@) = {7 B()mly, pue=™)]

X exp{{§ a(z)m[z, p(ue=**)][1 — G(2)]™* dG(2)} dG(y)

for all u = 0.
This functional equation will play an important role in our subsequent discus-
sion. Firstly we note the following uniqueness result.

(6.4) LEMMA. For every 6 € [0, co), there is at most one solution ¢ of (6.3)
satisfying

() 0<g=1,¢0) =1

(ii) [1 — ¢(m)])fu—6asu|O.

ProoF. A slight modification of the proof given in Athreya ([1], Theorem 1,

page 748) works.
For 0 < x < T we set W*(x, t) = Z(x, t)/ce’* and define

a(x) = infog, <, $(y) -

Note that Z(T,t) = Z(¢t) and a(T) = a. Let us now fix x and set 6(f) =
E[W*(x, )], &, ) = Efe=""="], I(u, 1) = u=E[puW*(x, )] and K(x) =
lim sup,_., sup,,, 416, t + s) — &(u, t)| for u > 0, where p(x) = e=* + x — 1,
x 2 0. Ifa(x) > 0, we have that W*(x, t) < kW, for k = [ca(x)]~'. Sincep = 0
and is nondecreasing, 0 < I(u, t) < u~'E [ p(ukW,)] = kH(uk, t), where H(u, t) =
u'E[p(uw,)]. Consequently, if E(W) =1,
6.5) lim, ,limsup, ., (4, f) = 0.
Since

utEu, t + 85) — E(u, )] < I(u, t + 5) + I(u, t) + |0(t + 5) — 6(2)] ,
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it follows that

(6.6) limMOK(u) = K(O—{—) =0.
Now, using (2.1), it is not hard to show as in Athreya ([1], page 756) that
(6.7) K(u) < E[K(ue=¥)] '

where X has distribution function given by P(X < x) = (¢ m(y)e~"ve"¥ dG(y).
Iterating (6.7) and using the strong law of large numbers along with (6.6), we de-
duce that K(x) = 0 for all ¥ > 0. Consequently, for eachu = 0, lim,_, §(u, t) =
£(u) exists. Since {W*(x, t)} is tight, we deduce that W*(x, t) converges in dis-
tribution to a random variable having Laplace transform &(u) satisfying (6.3).
Furthermore, from (6.5) and (4.7), it has mean value A(x). We now use the
uniqueness result (6.4) to conclude the following theorem.

(6.8) THEOREM. If E(W) = 1 and a(x) > 0, then W*(x, t) — A(x)W in dis-
bution.

6.9) REMARKS.

(i) If we know that W,* — W* in distribution with E(W*) =1, then as
above, W*(x, t) — A(x)W* in distribution for all x € S. Furthermore, if b < oo,
then E(W) = 1.

(i) If 0 < a < b < oo, then W,* — W* in distribution with E(W*) = 1 iff
E(W) = 1.

7. Convergence in probability. We conclude this paper by showing that
without any additional assumptions, it is possible to replace convergence in dis-
tribution in Theorem (6.8) with convergence in probability.

(7.1) THEOREM. Assume E[W] = 1. Then

(i) W*(x, t) — A(x)W in probability and in L' if a(x) > 0.
(i) Z(x, 1)/ Z(t) — A(x) in probability and in L' off {W = 0} if a > 0.

ProOF. We shall first show that the joint distribution (W,, W*(x, r)) converges
in distribution to (W, A(x)W). It suffices to show that for each u, v = 0, Y(r) =
uW(f) + vW*(x, t) converges to (u + vA(x))W in distribution. Let 7(r, ) =
E[exp{—rY(1)}] be the Laplace transform of Y(r) and set J(r, t) = r=*E [ p(rY(1))].
Since Y(¢) is majorized by a constant multiple of W(r), the result follows from
the methods of Section 6.

It now follows that A(x)W(f) — W*(x, ) — 0 indistribution and hence in prob-
ability. But A(x)W(f) — A(x)W w.p. 1 which implies that W*(x, f) — A(x)W in
probability. Since E[W*(x, t)] — A(x) = E[A(x)W], we also get convergence
in L'. This proves part (i).

To prove part (ii), we note that for every sequence (t;), there exists a sub-
sequence (t;), such that w.p. 1 W*(x, 1) > A(x)W and W*(t/) — W. Con-
sequently

WH(x, 1)) WH(t;') = Z(x, 1])] Z(t]) > A(x) w.p.1
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off {W = 0}. Hence we have convergence in probability; moreover, since
1Z(x, )] 2(1) — AXKW # 0} < 1,
we have convergence in L. -

(7.2) REMARK. Note that J(r, 1) < K(u + v)[uH(r, t) + vI(r, )] where K is
a constant depending upon # and v. This follows since the function p(x) = e~* +
x — 1 is convex and has the property that for every k > 0 there is a constant
K >0 such that p(kx) < Kp(x) for all x>0. It thus follows that
lim, , lim sup, ., J(r, f) = O if the same is true of H and /. This was the main
result we needed in order to prove (7.1). In particular, then, the results of
Theorem (7.1) are valid if W*(r) — W* in distribution with E[W*] = E[W] = 1.

(7.3) CoROLLARY. For the supercritical classical Bellman—Harris age-dependent
model (« = 0 and w, independent of age), the results of Theorem (7.1) are valid if

s (klog k)p,, < oo.
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