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A CENTRAL LIMIT THEOREM FOR THE NUMBER
OF ZEROS OF A STATIONARY GAUSSIAN
PROCESS

By Jack Cuzick

Carson Systems

Using a device which approximates stationary Gaussian processes by
M-dependent processes, we find conditions on the covariance function to
insure that the number of zero crossings, after centering and rescaling, has
an asymptotically normal distribution. This device is then used to obtain
central limit theorems for integrals of functions of stationary Gaussian
processes.

1. Introduction. Central limit theorems for dependent random variables have
been a topic of considerable recent interest. General results have required strong
restrictions on the degree of dependence. Under the assumption of M-depend-
ence, Diananda (1955) gave a central limit theorem for identically distributed
sequences with no assumptions about the existence of moments higher than the
second. In studying M-dependent sequences with M tending to infinity, Berk
(1973) had to make further assumptions about moments. Rozanov (1960) ob-
tained central limit theorems for additive random functions under ¢-mixing
conditions. Again assumptions about moments higher than the second were
required (see also Ibragimov (1962)).

In this paper we specialize to additive functionals of stationary Gaussian
processes. Major attention is focused on a limit theorem for the number of
zeros of such processes. This example serves to illustrate our general techniques.
Following an idea of Malevich (1969), we approximate the underlying Gaussian
process X(f) (and its derivatives when they exist) by an M-dependent process
X,(t). One can then establish the convergence of a functional of X () as M — oo
to the corresponding functional of X(r) under dependence conditions which only
involve the covariance function for X(r).

In studying zeros, no finite moments above the second are needed if it is
assumed that the covariance function and its second derivative are square in-
tegrable. More specifically let X(r) be a separable zero mean stationary Gaussian
process with o(f) = EX(0)X(¢). Assume' that p’(r) exists and take p(0) = 1 and
—p"(0) = 2, Now X must be sample continuous and we may consider N(T')
the number of times that X crosses zero in time interval [0, T'] (cf. Cramér and
Leadbetter (1967, pages 191 ff), referred to hereafter as CL). Write ¢(f) =
p"'(t) — p"(0) = $E(X'(0) — X'(t))* for half the increment variance of X’(r). We
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obtain the following result which was first given by Malevich (1969) under hy-
potheses on the spectrum of X which are stronger than our conditions.

THEOREM 1. If

(A1) p, 0" €L,
(A2) fed(t)/tdt < oo for some ¢ >0
(A3) lim, ., T-' Var (Ny(T)) =g, > 0,

then T-¥(Ny(T) — EN(T)) —_ .40, 0) as T — co where

i 1 = [ E(X'(0)X' ()] [ X(0) = X()) =0) _ pix 2] 1 _
M o=@+ ] e EXO)])* |ar
DiscussioN. Any central limit theorem for continuous processes must have
some mixing condition at infinity and some local condition. The former is sup-
plied here by Al. Al also guarantees the almost everywhere existence of a
spectral density function which we denote by f%1). Our local condition A2 is
the weakest possible since Geman (1972) has shown that A2 is necessary and
sufficient for the variance of the number of zeros to be finite. It will become
apparent from the proof of the theorem that Al and A2 alone guarantee that
lim 7" Var N(T) exists and is finite. Thus we can replace A3 with

(A3y lim inf,_,, T-* Var (N«(T)) > 0.

After some preliminaries in Section 2, Theorem 1 is proven in Section 3. In
Section 4, we study integrals of functions of stationary Gaussian processes. We
obtain a general central limit theorem which is applicable, for example, to the
time spent above a level and the Z,-exceedance measures.

2. Preliminaries. X(r) has spectral density f%() so that we can realize X via
the spectral representation

X(1) = § cos At f(3) dB(3)

where dB(2) is Gaussian white noise and f{2) = 0. (All integrals will be taken
from — oo to oo unless specific limits are given.) We wish to determine when

@) Z(T) = TH(N(T) — ENK(T))
converges in law to a normal distribution as T — co. To this end, we define
for each positive M, the process

Xy () = § cos At (f* x P,)t dB(2) .

Then {X(r), X,(t), X'(¢), X,/(¢)} are jointly Gaussian and stationary. Here
denotes convolution and P, (1) = MK,(sin MA/M2)* with K, chosen so that
§ Fy(2)di = 1. If we define p,(f) = EX,(0)X,(t), then we have that ox(t) =
p(t)B,(t) where B.(t) =7 (Py(2)) is the Fourier transform of P,(1). One can
verify that
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(a) P,(¢) is piecewise cubic,
(b) Py(t) =1 — (K,/M*£* + O(|t]*) for ¢ near zero where K, = K, § u*(sin u/u)*du,
(c) P,(r) =0 for [t| > 4M.
From this it follows that p(0) = p,(0) and p,(r) = O for [¢| > 4M so that N, (¢)
is an M-dependent process.
Now define Z,,(T) = T~#(N,,(T) — EN,,(T)). In order to establish that Z(T)
is asymptotically normal, it suffices to show that
(3A) Zy(T) —,, Z(T) uniformlyin T > T, as M— o,
(3B) Z(T)y—_, 70, 0,) foreach M as T— oo, and
30) Oy —0.

We obtain (3C) immediately from (3A) and (3B). To verify (3A) it is enough
to show that given any ¢ > 0, we can take M, so large that for all M > M, and
all T > T, we have

“4) TTE(Ng,(T) — Nx(T))? — (E(Ng,(T) — Nx(T)))'] < €.
Once this is proven A3 implies that
%) lim,_, T7* Var (N, (T)) = 0, > 0

for M large enough. This condition allows us to apply the results in Diananda
(1955) to obtain the conclusion (3B). Thus it remains to show the truth of (4).

First let us digress briefly in order to show that X, (r) —,, X(¢r) and X,,'(f) —,
X'(¢) uniformly in ¢.

LemmA 1. If f= 0and f, = 0, then f,* — f* in L, implies that f, — fin L,.

LemMMA 2. Let {I,,(x)} be an approximate identity, i.e. each I,,(x) is a probability
density function and 5. [,(x)dx —0as M — co for all ¢ > 0. If feL, 1<
p < oo, then Iy« f— fin L,.

Proor. Cf. Loomis (1953, page 124).

With the help of these two lemmas we see that (P, x f*)! — fin L, and thus
X, (t) = X(t) in L, uniformly in 7. To show
(6) X,/ (1) = X'(9) in L, uniformlyin ¢
we need to show 2 - (P, x f%)t — Afin L,. But
12« (P = s = I - (B % Pi)Hlls < K[| []; < o0
since :
(7 (B x Py)i(p) < Ky for g =y > 0.
Thus 2 - (P, * f3t e L, and X,/(¥) € L, for all ¢. In view of Lemma 1, to prove
(6), we need only show that [|°[(f? x P,) — f*]||, goes to zero as M — oo. But
this equals

V2I(f?# Py) — [ dA = C*§2 [(f* x Py) — f?| dA
+ 2[& f(2 * Py) d2 + (G 2 d2] .
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Taking C large, the last terms go to zero independent of M (see (7)). Then for
fixed C, we make the first term small by letting M — oo.
We shall also make use of the following:

LemMA 3. Let p, () = E(X(0)X,,(?)) and py (1) = E(X,(0)X,(2)). Then py ,
and p,, , are covariance functions and under hypothesis (Al) we have that

(3) P00 O3t,00 Oar,0> Ot € Ly and
(b) 0w, 1, 0 Ot L, 0"y Ou,n 1,0, Ot L, o

PrRoOF. We have
ou,(1) = E(X(0)X, (1)) = § eXf(A)(f* x Py)t d2
so that by the Plancherel identity
[10a,0lls = 27|[ f(f* * Py)?lly = 2x|| f3(f* * Pyl ,?
= 2| 2|21 2 % Pullat = 27| £ 22| Pocll:2
= 2z|| f*l, = lloll> -

Further we have that

a0 — el = 28171/ * P — 1l
= 22| S # Put — ST
< 27| P * Pt — ST
< ool * Pu) — 712 — 0

by Lemma 2. Since p € L,, we have that p, ,€ L, and p, , —,, p.

The other cases follow in analogous fashion.
We need one more fact before proving Theorem 1.

LEMMA 4. Let X, Y be a mean zero Gaussian pair of random variables and let

EXY — EXEY

p=Cor(X,Y) = .
(E(X — EX)*E(Y — EY )%}

Then
0 < Cor (|X], |Y]) < ¢ .

Proor. Without loss of generality take EX* = EY? = 1, so that EXY = p.
Using the Hermite polynomial expansion of the bivariate normal density we have

fe) = EXY| = - §§ 20 & [ H (0 H,() exp| X5 | dxay

where {H,(x)} are the Hermite polynomials. Since f(0) = E|X|E|Y| and since
§ |x|H,(x)e=“"» dx = 0 when n is odd, we have

®) E\XY| — EIX|E|Y| = 217_1_ s, meven Z—q: [§ |x|H(x)e==*2 dx]? .
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Thus Cor (|X|, |Y|) = 0. Also (8) is less than or equal
1 1
0z Dima o [§ [l H, (e ax] |
= p(f(1) — A0)) = p*[EX* — (E|X])].
Hence we have that Cor (|X|, |Y]) < p*

3. Proof of Theorem 1. Now to demonstrate (4) directly. Clearly one can
let T tend to infinity through the integers. Let ¢ = 2" for some large n to be
specified later and for integer T write

N(T) = 223507" Nx(i)

Nyy(T) = 23507 Niy (1)
where Ny(i) is the number of crossings in time interval [i2-", (i + 1)2-") for
the process X. Then (4) equals
(9) T Z le;"l—Ti_lél,ﬁo Cov (Nx(i) - NXM(i)’ Nx(j) - NXM(j))
+ T 2 2T ie,6m0 COV (Nx(i) — Ny (i), Nx(j) — N,y () -
The first term covers a region around the diagonal and by stationarity is less
than

and

3 | 3
(10) - E(Ny(t) — Ny, (7)) + - |E(Nx(t) — Ny, (7))] -
As M — oo the second part of (10) vanishes and the first part is less than
9
(11) — [EWx(?) — )" + Bt — ")+ E(Ng,(7) — 2"V
where

X =1 if X(0)X(r) <0
=0 otherwise
and similarly for y *. Now
E(Ny(z) — 1)* £ D KP(N(z) = k)
= 2 Xt (k* — k)P(Ny(z) = k) = 2E(Nx*(r) — Ny(7)) -
Using the expression for the second factorial moment of the number of zeros
in an interval (CL, page 209) we see that

1 4 .. E(|X'(0)X'(1)| | X(0) = X(r) = 0)
_—_E(N — 2L — 1t - dt .
—EWNx(?) — )= N (F =) 221 — )

Further estimation shows this is bounded by a constant times

Vo (1)1 dt
where ¢(7) = p”(r) — p”"(0). (See CL, page 210.) In view of assumption A2,
this goes to zero as r — 0. Similarly we can show that the third term in (11)
is o(7).
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The second term of (11) is P(y. # x.”) and this goes to zero for fixed r as
M — oo since X, (?) =, X(1).

It remains to bound the second sum in (9). By an appropriate modification
of the development in CL (pages 202 ff), we can show that for |i — j| = 2

E(|X"(5)Xy' (D] | X(5) = Xy(r) = 0)

E(N()N ) — (.ii}@)z_nd (jt:b)z‘” dt
(Nx())Nx,,())) = a2 5§52 2n(1 — p o(s — D)t

where p, «(f) = E(X(0)X,(?)). It then follows that
Cov (Nx(i), Ny, ()))
(12) = T g g dt[

- EXOIEX O],
2w

E(|X"()Xy' (O] (X(5) = Xy(1) = 0)
2r(1 — piy ot — 9))}

Since X,(f) —,, X(r) and X,/'(t) —,, X'(r) uniformly in ¢ so that Ny (i) —,, Nx(i)
uniformly in i, it is necessary only to consider terms in (9) with |i — j| > 2"T,
for some large T, chosen independent of M > M,. Since E(N,, (i)N4(j)) =
E(N4(i)Ny,(j)), the summand in (9) can be written as

Cov (Nx(i), Nx(/)) — 2 Cov (Nx(i), Ny, (J)) + €OV (N, (i), Ny, (J)) -

We shall only estimate the middle term above; the others are similar, but easier.
Invoking stationarity and using (12), our proof is complete if we show that
as Ty — oo

(13A) iz SOV (O] Y1) 4
b (= plr(0)

and

v AGIERAN]
P = Pho(0)
both go to zero uniformly in M > M,. Here Y,(rf) and Y,(r) are the variables
X'(0) and X,/'(#) conditioned on X(0) = X,(r) = 0. By the Riemann-Lebesgue
lemma p, ((f) tends to zero for large ¢ so that (1 — pj ((¢))! is bounded away

from zero on the integrating set. Using Lemma 4 (13A) is bounded by a constant
times '

(14) §7, [Cov (Yy(n), Yy(n)]*dr .

(13B) § — E|X"(0)|EX,/(n)] | dt

Making use of the underlying multivariate normal distribution of {X(0), X’(0),
X, (1), X}/(1)} we find that (14) equals

o | ot PM.O(t)(p;w.o(lD_z ¥
(15) STO[ Olr,o) + 1_—‘%[) J dt.

The uniform convergence to zero of this expression follows from Lemma 3.
Again using Lemma 3 to see that p, ,—; p, (13B) will go to zero if the
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following two expressions vanish as 7, — co:

(16A) §7, |E|Y:| — E|X"(0)] dr
and
(16B) 7, |EY| — EIX/(0)]] dr

Evaluating (16B) we find it equals
2\ (o " (03r,0(0))* g ’

—_ 0 M,0 —_( — 0 ad .

(T—;) STo ( ©r,0(0) 1 Aolzll,o(t)> (—pi,0(0))? | dt

Since p,, ((7) and pj; (¢) tend to zero as ¢ — oo, this is less than

a7 (=0 57, e

From Lemma 3 p,, , —,, o and pj} , —;, 0", implying that pj, , —,, 0" and thus
(17) tends uniformly to zero. Expression (16A) follows accordingly, completing
the proof of Theorem 1.

REMARKS ON AssUMPTION A3. (i) The regularity assumption A3 is the only
condition that is not directly related to the covariance structure of X(r). This
is unfortunate, for it appears to be difficult to determine exactly when this condi-
tion holds. We can however establish the following sufficient condition:

LEMMA 5. Suppose EX(f)* = 1, EX'(t)* = 2,. Under assumptions Al and A2 of
Theorem 1 and the additional condition that

AU T
(18) Y3 ]_:—{?T(fjdt < > (A,)t
we have that lim,_,, T~ Var (Ny(T)) = 8 > 0.
PRroOOF.
lim,_., 7! Var Ny(T)
(19) — lim, .. T-XE(Ny(Ny — 1)) — (ENy)* + ENy)
. 1 r t
= lim,_, - {('22)é + 2§ (1 - 7)
E(X'O)X'(0)]|X(0) = X() =0) _ 4
* [ 2(1 — pX(t))t 7 ]d’} '

Under assumptions Al and A2, the analysis above shows that this limit exists
and is finite, and permits us to write (19) as

(20) ;1?[(*9* F2ie (E(IX’(O)X’(;)(III )_(_(032)7 X(1) =0) _ % d,]

Thus we need only verify that (20) is greater than zero. By Lemma 4 it is
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greater than

L [@g + 27 (EXOUXO = X0 =07 _ &) ,]

2(1 — p?t T
1 2 .. (Var (X'(0)] X(0), X(1)) _
=@+ 2 ( T h)de].

This expression is greater than zero when

()t + % i <22 —(140'2—/(:)2): 0 _ 22) dt>0

which will occur when

2
5 ’ipzdt<§(iz)*-

(if) Observe that (18) is not an asymptotic condition and cannot be satisfied
by looking only at the tails of the covariance function. In a general context
this is characteristic of assumption A3. For example, a 1-dependent stationary
sequence of random variables with covariance (1, —%,0,0, -..)has partial sums,
all of whose variances are unity.

ExampLE. The simplest example which satisfies our conditions is the stationary
Gaussian process for which (X(r), X'(¢)) forms a vector Markov process. In
normalized form it has covariance function (cf. Wong (1966))

(21) p(f) = $exp[—3-#](1 — §exp[—2(3-H)r])] 1=0.
With the help of the substitution x = exp[—3-47], we find that

w " 3 s~ a4 T
S°1—p2 2 T <2

Thus, for this process, (18) holds with considerable margin.

4. Integrals of functions of Gaussian paths. In this section we briefly study
central limit theorems for processes of the form

Z(T) = (o 9(X(0)) dt

when X(r) is a stationary Gaussian process. Useful examples of such processes
are afforded by the time spent above a fixed level and the Z,-exceedance measures
(cf. CL, page 212 ff). By our previous approximation methods we establish

THEOREM 2. Ler X(f) be a stationary Gaussian process with covariance function
p(t) and let g be a real-valued function satisfying Eg(X(t))* < co. Set Z(T) =
§d 9(X(n))dt. Ifpe L, then T~ Z(T)—EZ(T)) — 470, 6). Further if 9(x)—g(0)
is not an odd function, then ¢ > 0.

ProOF. Assume EX(f) = 0 and EX*(r) = 1 and write ¢(x, y, p) for the bivariate
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normal density with correlation p. Now
¢? = lim T-* Var Z(T)
=2 {5 dt { dx § dyg(x)9(y)[(x; y, p) — $(x, y, 0)] .

Expanding #(x, y, p) in Hermite polynomials H,(x), a use of Fubini’s theorem
yields

(22) ot = —715— 27 (1) 7EF (0()™ dn)(§ 9(x) Hy(x)e= =2 dx)*

Since |o(7)] < 1, we have [|o"||, < |||, foralln = 1. Thuse¢* < co whenpe L,.
Now notice that

38 (@)™ dr = [ (0™)](0)
=[F ) * - - « F(0)]0)

where * denotes convolution and . is the Fourier transform. Since & (o) = 0,

we see that

7 (p(t))*dr = 0 =

v

with equality possible only when 7 is odd and when the spectral density (%) is
identically zero in a neighborhood of 2 = 0. From this we see that ¢ > 0 except
when g(x) — ¢(0) is odd and § cos 27p(f) dt = O for all ¢ in some neighborhood
of zero.

To establish the theorem, we approximate X(f) by an M-dependent process
X, (7) just as in Section 3. By Diananda’s (1955) results we have T-¥Z,(T) —
EZ,(T)) — 410, g,). As before we need only show that

(23) T'E(Z(T) — Z(T))* -0
for M — oo uniformly in 7 > T,. Expanding (23) we find that it"equals

@4 257 (1 — ) EQ0) = 0] (0)) — 9(Xu(O)]) .

We now establish the convergence g(X, (7)) —, 9(X(¢)). Since E(g9(X(r)))" < oo,
we expand g in Hermite polynomials g(x) = >3, a, H,(x) and let gy(x) =

Y ,a,H,(x). Then

l9(Xor) — 9(X)lls = [19(Xa) — Iu(Xi)lla
+ 19x(Xy) — gDl + [l9x(X) — 9(X)]ls
=2 2y @+ [|9x(Xa) — gn(X)l; -

T he first term goes to zero with increasing N. To bound the second term, it

is enough to consider gy(X) = X*, k < N. Then

1" — X¥l < [1(Xa — X) D50 X’ X*]la
= (k + DEX™)|1 Xy — X|l; =0
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which establishes the mean square convergence. Thus, the integrand in (24)
can be made uniformly small, and as before, we need only estimate the tails.
Without loss of generality assume E(g(X(f))) = 0. One can easily show that as
Ty— oo

17, E(9(X(1))g(X(0))) dr — 0
and

17, B(0(X(1))0(X,(0)) dt — O uniformly in M > M, .

It remains to show that the cross terms are small. By analogy with (22), this
can be reduced to showing that as 7y — oo

(25) §7, [0, o))" dt — 0 uniformly in M > M, and n>1.
Since |0, 0(f)] < 1, it is enough to consider » = 1. But

§7, 0w, o)) dt < |low,0 — ol + §7, l0()] dt -

Since p, p, o€ L, and p, ((f) — p(f) pointwise, by dominated convergence the
first term is small for large M; the second term vanishes as T, — co.

Acknowledgment. The author is grateful to the referee for pointing out an
error in the original version of the paper.
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