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CONDITIONS ON THE REGRESSION FUNCTION WHEN
BOTH VARIABLES ARE UNIFORMLY DISTRIBUTED!

By R. A. VITALE AND A. C. PIPKIN
Brown University

Consider the class of probability distributions on the unit square with
uniform marginal distributions. The class of associated regression func-
tions is characterized by integral inequalities or, equivalently, as forming
the closed convex hull of 1-1, measure-preserving mappings of the unit
interval onto itself.

1. Let & be the class of probability distribution functions F on the unit
square with uniform marginal distribution functions

F(x,1) = x, F(l,y) =y, x,yel0,1].
We seek to characterize the class m(.%") of associated regression functions
m(x) = E[Y|X = X] .

We show that condition C, below, characterizes these functions.

Let us explain the main ideas of the theorem in the analogous discrete con-
text. Consider doubly stochastic matrices P. The regression vector for such a
matrix is m = Pv, where v = (1, 2, - .., n). If P is a permutation matrix, then
m is a permutation of v. In the general case, since any doubly stochastic matrix
is a convex combination of permutation matrices, it follows that m is a convex
combination of permutations of v. Now the sum of any k components of v is
at least k(k + 1)/2, and the sum of all of its components is n(n 4 1)/2. The
same is therefore true of m. The more difficult part of the theorem is the con-
verse: m is indeed in the convex hull of permutations of v (and hence represent-
able as Pv) if these conditions on sums of components are satisfied.

For the proof of the theorem in its continuous form, we use the following
definition of the class of regression functions under consideration (see, for ex-
ample, Loéve [1]:

DEFINITION. A Borel-measurable function m is in m(%") if, for some pair of
random variables X, Y with distribution function in &, m(X) = E[Y | X]; that s,

() §o m(x),(x) dx = §o §5 yL(x)F(dx, dy)

for all indicator functions /, of Borel subsets of [0, 1].
Here, as well as later on, we are content to have m uniquely defined almost
everywhere (Lebesgue measure).
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Measure-preserving transformations take the place of the permutations in the
analogous discrete case:

DeriNiTION. 9 = {T: [0, 1]— [0, 1], invertible, Borel-measurable, measure-
preserving}.

Condition C is analogous to the system of bounds on the sums of components:

DEFINITION. fe L,[0, 1] satisfies condition C iff

© AT () dr 2 2 osusl,

for all T € & and with equality for u = 1.
Our main result is the following:

THEOREM. The following statements are equivalent:
(iy mem().

(ii) m satisfies condition C.

(iii) m € closed convex hull of .7~ (L, norm).
The proof, in Section 2, will proceed by showing that

(1) — (ii) — (iii) — (i) .

In Section 3 we show how a distribution F corresponding to a given regression

function m can be constructed in certain special cases.

2. Proof of theorem.

(i) — (ii). A direct application of (1) shows that 0 < m(x) < 1 a.e. and thus
that m e L,[0, 1]. To verify condition C, we first note that me m(% ) =m o
Tem(&),V¥Te 7 Using (1), we have

s L(x)m(T(x)) dx = (3 Ip 4 (x)m(x) dx
= {5 S y1,(x)G(dx, dy) ,
where
1,(x)G(dx, dy) = Iy 4(x)F(dx, dy) .
It is easily verified that G € #. Hence it is sufficient to show (C) with 7(x) = x.

We omit the trivial proof that equahty holds in (C) at u = 1. For u ¢ (0, 1),

let A = [0, «]in (1). Then
§o m(x) dx = E{I(X)E[Y|X]} = E[YI,(X)]
= P[X < u]E[Y|X < u] = uE[Y|X < u].
Now, conditioned on the event X < u, Y is stochastically at least as large as X:
for0<y<u,

PYsylxgn="0D L TCD ) o pr<yx <.
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Hence

E[Y|X<u]Z E[X|X<u] = _;_
and it follows that
f§ m(x)dx 2 L.
2
(ii) — (iii). We use the following criterion (see, for example, Luenberger [2]):
If (m, ¢) = a ¥V ¢ € L,[0, 1], where a satisfies
(T,9) = LW T(xg(x)dxza VTeT,

then m e closed convex hull of .7,
For ¢ a step function, there is some T, € 7 such that ¢ o T, is a monotone
nonincreasing step function,

$(Ty(x)) = € + D=1 Clioz,i(X) ace.,

where
>0 (k=1 and 0o<x < v <x, < 1.
Then
§o m(x)g(x) dx = §sm(T ,(x)$(Ty(x)) dx = ¢, J(1) + T e d(x,)
where

J(x) = § m(T(u)) du .
By (C), J(1) = 4 and J(x) = x?/2. Hence
§im(x)g(x) dx = S0+ Do, S
But the right-hand member is equal to the integral of x¢ o T, so
(3 m(x)p(x) dx = §5x$(T,(x)) dx = § T, (x)d(x) dx .
Hence (T,™, ¢) = a = (m, ) = a.

For ¢ not a step function, we use a sequence of step functions approaching ¢
in norm to obtain the desired result. The straightforward but lengthy details
are omitted.

(iii) — (i). Since m ¢ closed convex hull of .77, there is a sequence {m,} con-
verging to m (L, and a.e.) in which each m, is a convex combination of func-

tions in 7"
mn(x) = kN——Eq) 0711: T'nk(x) ’ Tnk € y-,

with positive weights ¢,, whose sum is unity. Let G, be defined by
IA(x)Gn(dx’ dy) = 2% 0ﬂkITnk(A)(x)F*(dx’ dy) s

where F* assigns uniform measure to the diagonal y = x. It is straightforward
to verify that G, e & with associated regression function m,,:

§5 Ly(x)ym,(x) dx = §§ \3 y1,(x)G,(dx, dy) .
As n — oo, the left-hand side tends to the corresponding member of (1). As for



872 R. A. VITALE AND A. C. PIPKIN

the right-hand side, we extract a subsequence of the G, converging weakly to
some G. Via standard arguments, it is seen that G € & and that the limit of
the right-hand side is

§o $0yLu(x)G(dx, dy) .
Comparing with (1), we conclude that me m(.5").

3. A construction. Given m satisfying condition C, it is sometimes possible
to show that m € m(%") by direct construction of a distribution with regression
function m. We show how to do this for cases in which m e C'[0, 1] and 0 <
m'(x) < 1. Specifically, we construct a singular distribution concentrated on
y = xand y = g(x), where g(x) is yet to be specified. Let F(y|X = x) be a con-
ditional distribution function with atoms at y = x and y = g(x), and let

Fx,y) =\ F(y| X = w)du.
We take the sum of the two atoms in F(y | X = x) to be unity in order to produce
the required uniform marginal distribution in x and require that they yield the
correct conditional expectation m(x). These conditions determine the two atoms
as
9(x) — m(x) (at y =x) and T —X
g(x) — x g(x) — x
At points where g(x) = x, we let F(y|X = x) have a single atom of weight 1 at
y =X )

The function g is determined from the condition F(1,y) = y. We describe
the solution without indicating how it was derived. First, we introduce the
auxiliary function

@t y =g(x)-

Iu) = {§ (m(x) — x)dx .
From the assumed properties of m, it follows that 7 is positive on (0, 1) and
strictly concave downward, with /(0) = I(1) = 0. Then the equation I(y) = I(x)
has a unique nonidentical solution y = g(x) for all x except the point x, where
m(x,) = X,; there we define g(x,) = x,.
The following properties of g will be used:
(i) g(g(x)) = x, g(0) =1, g(1) = 0.
(i) x < xp=x < m(x) < m(g9(x)) < 9(x),
X > Xo=x > m(x) > m(g(x)) > g(x)-
Gy I'(x) m(x) — x
(iii) ¢'(x) = — = < 0 (x # x,).
Ig(x) — m(g() — 9(x) "
We now verify that F(1, y) = y. Suppose thaty < x,(the verification fory > x,
is similar). Then _
F X = U) = g_(u)__ni(_u_) U S s
0l ) o) —u =y
=0 O <u<g@y),

_m(u) —u
= Z(u—)———z (9(y) = ).
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Hence F(1,y) = S, + S,, where
s, = 0 =mW g g M) g,
1 SO g(u) —u 2 Sa(u) g(u) —u

By making the change of variable # = g(v) in S, and using the previously listed
properties of g, we obtain

S, =1 mgw) —g®)  _ mv) —v g _ Y] mv) —v

v — g(v) m(g(v)) — 9(v) g(v) —v

It then follows immediately that S, + S, = y.
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