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A CRITERION FOR TIGHTNESS FOR A SEQUENCE
OF MARTINGALES

By R. M. LoyNEs
University of Sheffield

An improved result is presented, showing that if the finite-dimensional
distributions of a sequence of martingales converge, and if for each time
¢ the variables are uniformly integrable, then weak convergence follows (in
either C or D) provided the limiting process satisfies a certain condition;
this condition is satisfied by the Wiener process.

1. Introduction and summary. Various authors (Brown (1971), Loynes (1970),
McLeish (1974)) have shown that in discussing weak convergence of martingales
the necessary proof of tightness is much simpler than in the general case. The
essential parts of the argument, have, however, been rather concealed among
the details, and it seems worth separating them out; moreover Brown and Loynes
both assumed the existence of second moments (McLeish assumed a different
kind of condition). Here an improved result is presented, requiring a condition
on first moments only; that the limit process need not be the Wiener process is
also true.

We deal with processes X, X;, X,, --- in C = C[0, 1] or D = D[0, 1] and on
the latter we put the Skorokhod J;-topology. Each process X, is assumed to be
a (separable) martingale.

The limit process X will be assumed to have the following property:

A. Givene, » > 0139, 0 <9 < 1, for which the following is true: for every
t of the form ¢ = id, where i is an integer, the smallest solution 2 (= A(f)) of the
following inequality

(8) eP[IX(r + 8) — X(1)| > 2] < E[X(t + 3) — X)Xt + 3) — X(t)| = D)]
satisfies

(b) min [P(X(: + 8) — X(9)] Z 4), e E[|X(r + 3) — XOU(X(t + 8) — X(9)] =
N1 < 70.

(In most cases, and in particular if the distribution of X(¢ + d) — X() has no
atoms, (a) can be strengthened to equality, and both terms of the minimum in
(b) are equal; unfortunately this would exclude the 0 function.)

In this, ¢ is restricted to [0, 1], # + 0 is to be replaced by 1 if 4+ 6 > 1, and
I is the indicator function of the associated set. It follows from A that (if X is
separable) X is in C with probability 1; this is most easily seen from the proof
of the theorem below and Theorem 15.5 of Billingsley (1968). Much the most
important limit is of course the Wiener process.
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LEMMA. The Wiener process satisfies condition A. Clearly any process obtained
from one satisfying 4 by distorting the time-scale nonrandomly and not too un-
reasonably will also satisfy A. If ¥() is the Ornstein-Uhlenbeck process (with
decay parameter 8) normalised to 0 at ¢ = 0, then e?*Y(¢) is such a distortion of
the Wiener process; that this process satisfies A, and that this is also true if Y
is the stationary O-U process, is an observation I owe to my colleague David
Grey. Any process for which P[|X(t 4 6) — X(1)| = x] ~ ¢(6)x~*, where a > 1,
for x > ¢ and every ¢ > 0, and ¢(5) = 0(9) also satisfies A.

The proofs of the lemma and the theorem are contained in Section 2.

THEOREM. In either C or D, assume

(i) for each n, X, is a martingale;

(i) X, —q X (i.e., finite-dimensional distributions converge);
(iii) for each t, E|X,(f)| — E|X(1)|;
(iv) X satisfies condition A.

Then X, —_ X.

It may be noted that from (i) and (iii) it follows that X is a martingale.

If X, is to be a martingale, then EX, () must exist; whether condition (iii) can
be dropped is not obvious, but to avoid it would seem to require a better mar-
tingale inequality than that used below. The result is somewhat disappointing,
in that X is necessarily in C, but the problems of really dealing with D seem
very difficult.

A very special case is the result that if X, are martingales and E|X,(1)| — 0,
X, = 0; this is of course an obvious consequence of the martingale inequality.
A less trivial application is to the ‘autoregressive process’: Y; = a¥,_, 4+ U, for
i = 1, where Y, = 0and U, are independent and identically distributed with mean
0 and variance 1. Take a = 1 — fn~?, and define X,(f) = n~ta~"Z, with m =
[ne]: then it follows easily that the conditions of the theorem are satisfied (second
moments are easily shown to be bounded, implying (iii)) and so X, — X, where
e #X is the O-U process starting from 0. (The final step, to conclude that
Y, = e #X, where Y,(f) = n~1Z,,, is also straightforward, but not relevant to
the present paper.)

For the following corollary, let W, ; denote a Wiener process with drift # and
scale parameter ¢°. (The idea of the corollary, and its proof, are due to W. J.
Hall.) ‘

COROLLARY. Let X, be processes in either C or D, satisfying

(i) EX,(f) = p,(t) is monotone nondecreasing for every n;
(i) X, — p, is a martingale for every n;
(iii) X, (¢) are uniformly integrable for each t;
>(iv) X, oy W, .

"o

Then Xn =5 Wp,a”'
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Conditions (i) (in which nondecreasing can be changed to nonincreasing) and
(ii) imply that X, is a submartingale of a very simple type; whether they can be
relaxed usefully is not known. The proof is straightforward.

The following final result indicates an often convenient way of showing that
condition (iii) is satisfied.

ProrosiTiON. If U, =_ Uandsup Var U, < oo, thensup EU,? < oo, E|U,|* —
E|U|* < oo for 0 < a < 2, and EU,, — EU.

This form is likely to be more useful than any other, but generalization is
possible: e.g., if Eg(|U, — EU,|) is bounded, where g is nondecreasing and
9(x)/x — oo, then E|U,|* — E|U|* for 0 < a < 1 and EU, — EU.

Proor. Suppose EU, is not bounded: then there exists a subsequence along
which |[EU,| — co. Since {|U,| < 4} c{|U, — EU,| = |EU,| — A} when |EU,| > A,
Chebyshev’s inequality shows that P[|U,| < 4] — 0 along this subsequence; a
contradiction. Everything follows.

2. Proofs.

(1) Proof ofF LEMMA. In the present case X(¢t + d) — X(f) = d*N, where Nis
a standard normal deviate. Its distribution has no atoms, and it follows easily
that if 9 is so small that 6!E|N| < ¢ we may assume equality in A(a); thus we
seek a solution of ¢P[|N| > 20~%] = 26%(26-%). Using the approximation

26(4) _ _ prny = 4] < 2
o < PNz A1 < 2
it is easy to see that if 9t < 1c there exists a solution such that (e + (¢&? — 40)}) <
A < e. Then, if x = ed?

] &~ _1_ X+ (x2 - 4)* —

as x — oo, so that d can be chosen small enough for A (b) to be satisfied as well.

(2) PRrOOF OF THEOREM. Assume that all the conditions are satisfied, and
from now on let § be fixed so that A4 holds; for convenience write A4, =
{supté‘,q“ |X.(5) — X,()] = ¢}, and Z, = |X,(t 4+ 0) — X,(¢)|, and similarly

= |X(t + 8) — X(1).

The main part of the proof consists in showing that P(4,) < 27 for suffi-
ciently large n, for a single ¢, by using the standard submartingale inequality
(Doob (1953), page 353) P(4,) < ', Z,

Define {, as a solution (e.g., the smalleét) of the inequalities P(Z, > {,) <
P(4,) < P(Z, 2 L) then P(Z,>(,) < <E|Z,I(4,)] < <E[Z,1(Z, 2 ,)].
Let { = liminf {,: then there exists a subsequence of {, converging to {, and
it is easy to show that P[Z > {| < ¢ 'E|ZI(Z = {)]. Thus { = 2, where 2 is
defined by A (a).

Consequently limsup P(4,) < limsupP[Z, = {,| < P|Z= 2] and also
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lim sup P(4,) < limsup e'E[Z,I(Z, = {,)] < ¢'E[ZI(Z = 7)], and the pro-
mised result follows.

The proof of the theorem is now completed by applying Theorems 8.3 and 15.5
of Billingsley; inspection of the proof shows that only (finitely many) values of
t, of the form id, need be considered.
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