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AN ERGODIC THEOREM FOR THE SQUARE OF
A WIDE-SENSE STATIONARY PROCESS!

By A. LARRY WRIGHT
University of Arizona

Let {X(#), —oo < t < oo} be a stochastic process which is stationary in
the wide sense with spectral representation X(r) = (%, eit2 d&(2), where
the & process is centered and has independent increments with E¢(1) = 0,
E|&(2)|2 < oo. It is shown that under weak conditions

P —1im 1o = {7y | X2 dt

T
ar "
exists and is equal to ¢% + X Ji2 + 3 £,2, where o2 is equal to the vari-
ance of the Gaussian component of the continuous part of the ¢ process,
2. Ji is the sum of the squares of the jumps of the Gaussian component
of the & process, and énv = &(An + 0) — £(An — 0), where {An} are the fixed
discontinuities of the ¢ process.

1. Introduction. If {X(r), —co < t < oo} is an L’-continuous stochastic pro-
cess which is stationary in the wide sense, then it admits a spectral representation
of the form
0 X(t) = {2, e dE(D),
where the process {§(4), —co < 2 < oo} is a process with orthogonal increments.
Corresponding to such a process are two functions defined over R!, namely,
r(t) = E(X(u 4+ ©)X(u)) and F(2) determined by F(v) — F(u) = E|§(v) — &(u)|?
for u < vand F(—oo) = 0. F is a bounded nondecreasing function, and r(.) is
a nonnegative definite function; they are related by the relation

r() = {=, e dF(2),

It is assumed that the expectations EX(r) and E£(2) are zero. When ¢ has inde-
pendent increments and is centered, a separable version of £ is such that except
at a countable number of fixed points {1,} — R', almost all sample functions are
continuous and the limits {§(4, + 0) — §(2, — 0),n = 1,2, ...} exist and are
independent random variables. These properties of & are often useful in study-
ing the properties of X.

An infinitely divisible stochastic process is a process {Z(¢), € T} such that
every finite dimensional marginal distribution is an infinitely divisible distribu-
tion function. An infinitely divisible process which is stationary in the wide
sense can be constructed as follows. Let {§(2), —oo < 2 < oo} be a process with
independent increments, is centered and has no fixed points of discontinuity;
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830 A. LARRY WRIGHT

assume that it satisfies E|£(2)|* < co for all 1€ R, and that the limits E(+o0)
and é(—o0) exist in quadratic mean (and hence almost surely). Then the sto-
chastic process in (1) has the above described properties. Possibly the first study
of the general infinitely divisible process was made by P. M. Lee [4]. A deeper
study of such processes was made by G. Maruyama [6], who also in the same
paper obtained results concerning those that are stationary in the wide sense.
This present paper concerns itself with a slightly wider class of processes, which
will be referred to as extended infinitely divisible processes which are stationary
in the wide sense. Such a process is constructed in the same way as is X above,
except now & may have fixed discontinuities which are necessarily countable in
number. For this class of random spectral measures &, the processes X defined
by (1) have a rich structure and provide a natural setting for an extension of a
theorem due to N. Wiener.

The theorem due to Wiener referred to is this: if g is the characteristic func-
tion of a distribution function G, then the limit

. I or 2
2) lim,_,, > §Z7 |g()|* du

exists and is equal to the sum of the squares of the jumps of G. With this theo-
rem and some rather general results of variational sums in mind, one is led to
consider the following. Let & be a process with independent increments, cen-
tered but possibly with (necessarily countable) fixed discontinuities at {2,} of
(random) sizes {£,}, with E|§(2)|* < oo, all 2, E§(2) = 0, and the limit §(+ c0) —
§(— o) existing in quadratic mean. Then & can be written as the sum of two
independent processes

$=€¢+€d7

where &, has no fixed discontinuities and &, is defined by

§u(4) = Z(mlnéﬂ €,

We may, and do, assume that &, is separable, so that almost all sample functions
are continuous from the right at each point, and have left limits, thus having a
countable number of discontinuities (referred to as the mobile discontinuities by
P. Lévy). With these assumptions, the aim here is to prove that the limit

. 1
3) limy_q - 20 |X() P dr

exists in probability and equals

4 o'+ NI+ &S

where ¢* = 0 is the variance of the Gaussian component of the continuous part
. of &, and {J(»)} are the jumps of the sample function &,(-, w).

In the special case where £ is a stationary Gaussian process, then the limit as
given in (4) reduces to

®) o'+ 2 &0
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2. Preliminary theorems and lemmas. In this section we provide the material
necessary for the proof of the main theorem.

Let X{(7) be a separable process with independent increments over the finite
time interval T = [¢#,, ,]. When X is continuous in law it is known to have the
following representation for its characteristic function

fX(t)—X(t])(u) = exp{¢.(v)}, where
_ ws 1 dux 14 x?
u(u) = iua, + § <e 1 e x2)7_d¢,(x) .

We refer to this characteristic function by («,, ¢,), and we set X,, ,, = X(#)— X(s),
L £s5s<t<t, Foreach n we divide the interval T into the k, subintervals

(refinement) P, ,, k = 1,2, ..., k,, where P,, =[t,,,,1t,,], with max (s, , —
t,io» 1 =k < k,} — 0. We next set

Xue = X(ta ) — X(thi-1) » lsk=k,.

Cogburn and Tucker [1] proved that if {X(), r € [1,, £,]} is a separable process,
continuous in law, and with law («,, ¢,), where a, is a function of bounded
variation on 7, then

lim,_, Yk, X2, = o* + 1 J7 as.,

where ¢° is the variance of the Gaussian component of X1 and 35 J2 is the sum
of the squares of the jumps of X. We shall need a generalization of this theorem
in the case where the process X() is not necessarily continuous in law. Let {X(),
0 < 7 < 1} be a centered real stochastic process with independent increments,
satisfying EX(f) = 0, and X(¢) € L* for all re[0, 1]. Let the countable set of
fixed discontinuities of X in [0, 1] occur at the points {#,, i = 1,2, --.}. Letting
V. = X(t, + 0) — X(1, — 0), we see that EV, = 0, the V',’s are independent
random variables, and V,e L%, n = 1,2, -...

We can write X(f) = U(f) + V(f), where the U(r) process is continuous in law,
with characteristic function (a,, ¢,), and V(1) = 3, (n:tysty Voo Both processes
have independent increments, and they are independent of each other.

Foreachn=1,2,...andk =1, -.., k,, set

Xow = X(tap) — X(15-1)
Unp = Ulta) — Ultu i)
Ve = V(tl'n,k) — Wty ) -
Using the above notation, we now prove the following extension of the theorem

of Cogburn and Tucker referred to above.

THEOREM 1. If {X(1), 0 < t < 1} is a separable stochastic process with independ-
ent increments which is centered, and such that the continuous in law part of the
process has law (a,, ¢,), where a, is a function of bounded variation on T = [0, 1],
then 31 X3, —po® + Y J? + 32 V,2 where o* is the variance of the Gaussian com-
ponent of Uy, and {J?, 0 < ¢ < 1} are the squares of the jumps of U.
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The proof follows from writing

2 X:,k =2U.+2x UiVar + 2 Vi
applying the Cogburn-Tucker theorem to the first term on the right side, and
verifying that
LU Vak—0n0 and LVie—p V2.

Let us now consider the following case. Let £(2) be a separable and a centered
complex process over (— oo, co) with independent increments and a countable
number of fixed discontinuities, E£(2) = 0, &(c0) = lim,__, &(T) and §(— o) =
lim,___ §(T) exist, and Var (§(4 o0) — §(—o0)) < oo, F(2+) = F(2). We will
also assume that in the infinitely divisible representation of the continuous-inlaw
part of the process, as given by (a,, ¢,), that a, is of bounded variation over
every finite interval. Using the notation of the last theorem, and setting &, , =
§(k/2") — &((k — 1)/2"), we have the following result:

THEOREM 2.
P — limn—»oo Zin_nzn |5n,k|2 = ‘712 + o, + Z”Jtl2 + Z:’:l |Vs|2 s
where ¢.* is the variance of the Gaussian component of Re (§(4o0) — &(— o)), 0.2

is the variance of the Gaussian component of I,(§(+o0) — &(— o)), and {|J,], t =
1,2, ...} are the squares of the magnitudes of the jumps of U.

The proof follows from writing §(r) = Z(r) + iW(t) and applying Theorem 1
to the Z and W processes over intervals of the form [T, T, and letting T — oo.

3. Proof of the main theorem. In this section we prove a result which allows
us to weaken the hypotheses of the ergodic theorem to include a class of pro-
cesses which are stationary in the wide sense but not necessarily strictly station-
ary. In addition, an explicit representation of the limiting random variable is
given. In the following, we continue to use the notation of the last section, and
the £(2) process will be as in Theorem 2.

THEOREM 3. Let {X(t), —oo < t < oo} be a measurable extended infinitely di-
visible process, stationary in the wide sense with representation
X(t) = (=, e dEQA) .
Then

. 1
P—lim o §T, YO d = o + 0 + 5P+ S VP

where o is the variance of the Gaussian component of R,(£(4o0) — &(— o)), 0,2
is the variance of the Gaussian component of I, (§(+o0) — &(—o0)), 37 |J,|* is the
sum of the squares of the magnitudes of the jumps of the sample function &,, and {V,}
are the sizes of the jumps at the fixed discontinuities of &.

ProoF. We shall prove the theorem by showing that for each T,

1 : .
o Vr (X de = P — lim, o S [l + Dy
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where D, — 0 in probability as T — co. For fixed 7€ (— o0, o0),

|X()* = |P — lim,_, 2337 o0 e™*2mE, |2
=P —lim,_, 2% 6.l

1 n2" nam it(k—r)/2"
=+ P — llmn—’oo k=—n2" r=—n2m;rsk € én ksn,r .

It follows that for fixed T,
1 7
. X(0)|* dt
o Ve 1O

(1) = P — lim P Sl

n—00

1 . n ,, A —
+ _2_T_ S{T {P - llmn—»oo ;cﬂ=—n2” :2=—n2”;r¢k e”(k_r)/zns'n,k Sn,r} dt *

The second term above is D, which we will show converges to zero in prob-
ability as T — oo, which will prove the theorem. We shall begin by justifying
an interchange of the P-limit and integral sign in D,.

From the definition of X, it follows ([10], pages 353-357) that there exists a
sequence of nondecreasing right-continuous step functions {¢,,r = 1,2, ...} on
[T, T], with 6,.(f) — ¢ uniformly in ¢, such that the sequence of measurable
processes {X,,r = 1,2, ...} defined by X, (¢, w) = X(0,(¢), ») for te[—T, T],
o € Q satisfies X, (1, +) € L2(Q) forte[—T,T]and

lim, . $i_r.yea X (6 @) — X(2, @)[(m, X P)(d(t, w)) = 0.

It follows from Fubini’s theorem that we may choose a subsequence {r,,} of {r}
such that a.e. [P],

1 1
(2) 2T Sier,m |er(t» w)|*dt — 2T Sior,m |X(2, @) dt
as m — co. Hence it remains to show that
. 1
llmk—»oo A S[—T,T] |er(t’ ')|2 dt

2T
(3) =P —lim, , >* . 1€ il?

1
P — lim, b T o [ T pittk—r)/2™ dt:‘
+ Zk 2 Wirkk | S $ir

X EpiCnr Ao,
and that the last term converges to zero in probability as 7 — oco. We note that

(4) X, (1, +) = P — lim 1 explif, (0k[2"]6,. -

Since the set {6‘,m(t), m=1,2,...,te[—T, T]} is countable, by proper choice
of a subsequence, we may and do assume in the following that the above limits
as well as the limit of }7™" .. |§, .|* are almost sure in n. By the definition of
{0.,}), for each m there exists a partition —7 = to,n <thm< oo <ty u=T
of [—T,T] such that 6, (=40, (s) if t;, ,,=s<t< t] = and also,
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lim,,  [max; At; ] = 0, where Az, , =1t — t;,_, .. Thus for fixed m,

1
7 Si-r,r [X(0, (2, +)|* dt

. g n N, At
(5) — hmn_mo k__nzn |€” kl -+ llm".—wo k——nz"l r2_—n2"‘ rek ( i a ‘2*]7',“‘"‘

X explit;_ym(k — r)/2"]$m,,§;> :
By comparing (3) and (5), and defining

- ” 1
¢'m,n - ZZ:—nz"” 2:—%2”;1‘#1:[

2T {Seer, et 7" dt

= X% explityanlk — N2l ) |05
it can be shown ([9], pages 60-62) that given ¢ > 0,

(6) lim,, ., {sup,_,,... P[|m .| = €]} =0,

and that this in turn implies that (3) holds. From (3) it follows that the proof
of the theorem will be complete if we can show that

P — lim,__lim, _¢,, =0,

¢n T — ;:2_—7;2'” 'r——n2 sr#Ek (T(k _ r)> SIn( ( 2,” r)>5n,k$'n,r .

where

Since E¢, , = 0, we only need show that lim,__, sup, Var ¢, ., = 0. This can
be shown by noting that

Var ¢, . = E|$, ,|"

" 2
S 4 B P { B () 0 (R 2) £u)

where F, ,=E|§(k/2")—&((k—1)/2")|*, and that |(sin x)/x| < 1 and lim,._, E|§(c0) —
E&T)* =0, lim,_,_, E|§(T) — §(—o0)|* = 0. The calculation is rather involved,
and may be found in [9], pages 63-69.

In the following results we assume that the § processes involved satisfy the
conditions as given in Theorem 2.

The following corollary is an immediate consequence of Theorem 3.

CoRrOLLARY 1. Let X(f), —co < t < oo be a stationary and measurable Gaussian
process with spectral representation
A1) = (2. e dEQR)
where the & process necessarily has independent Gaussian increments and satisfies
gigl) = 0, E{|§(400) — §(=0)["} = F(400) — F(—o0) < o0, F(A+) = F(d).

lim,__ % V7r X dt = o + 02 + T2, V3.
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Corollary 1 allows us to give a quick proof of the following result.

COROLLARY 2. If X(t) is a stationary Gaussian process satisfying the conditions
of Corollary 1, then X(t) is ergodic if and only if |X(t)|* is ergodic.

PROOF. Suppose X(¢) is ergodic. Since every invariant set for the | X{(7)|* pro-
cess is an invariant set for the X(#) process, it follows that | X(#)|* is ergodic.
Conversely, suppose |X(#)|* is ergodic. By the ergodic theorem,

lim,_.. 517 {7, [X(n[dr is a constant a.s.

Hence by Corollary 1, lim,_,, 2T)™* {%, |X()? = 62 + 02 + 3,2,V 2 is a con-
stant a.s. Hence there are no fixed points of discontinuity of £(1), which implies
that F is continuous. By Maruyama’s theorem ([5]), X(¢) is ergodic.

In the same way that Corollary 1 was proved, the following may be proved.

CoRrOLLARY 3. Let X(n), n =0, +1, +2, -.- be a real stationary Gaussian
sequence with spectral representation X(n) = {* . e™*d&(R), where EE(2) =0,
E{|§(+7) — §(—m)*} = F(+7) — F(—7) < oo, F(A+) = F(). Then

lim,_., % S XK = 02 4 of + D Ve as.
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