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LOCALLY FINITE RANDOM SETS: FOUNDATIONS
FOR POINT PROCESS THEORY!

By B. D. RiPLEY
University of Cambridge

The foundations of point process theory are surveyed. An abstract
theory motivated by applications in stochastic geometry is presented. It
is shown that it is sufficient to know only which sets are measurable and
which are bounded in the basic space, where we use countability hypothe-
ses rather than topological assumptions. (The sole exception is in the con-
struction of probabilities where pseudo-topological hypotheses are needed.)
It is shown that there are close connections with the random set theories
of Kendall and Matheron.

1. Introduction. This work was motivated by the desire to define point pro-
cesses on the spaces which occur in stochastic geometry (Ripley (1976a)). These
provide examples in which several topologies are equally natural but there is
only one Borel o-field. This led me to seek to build point process theory on
purely measure-theoretic foundations (rather than the usual topological ap-
proach). This proved to be possible except for the construction of probabilities;
many similar problems testify to the need here for pseudo-topological assump-
tions. This approach leads to simpler proofs of the basic results under conditions
which are easily verified; for instance in R* one may replace half-open rectangles
by balls or open rectangles.

Another objective was to unify point process theory with the theories of
general random sets given by Kendall and Matheron. This follows from an
extension of Kallenberg’s characterization theorem. Various applications are
given in Ripley (1976b).

2. Bounded spaces. Throughout this paper X is a set and .% is a o-field on
X containing all the singleton subsets. We will be interested in random collec-
tions of points from X, a finite number of which are from each member of a
class &2 of bounded sets. We say (X, %7, &Z) is a bounded space if .o contains
all singletons (so that points are measurably distinguishable) and <7 satisfies:

B(i). <7 is hereditary, i.e., if Ec <# and F C E then F e <7,

B(ii). 7 is closed under finite unions,

B(iii). <Z covers X,

B(iv). & = .% n <7 is cofinal in < under inclusion, i.e., if Ee <2 there
is Fe € with E C F.

Conditions B(i)—(iii) are obvious requirements, stating that <% is a covering
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984 B. D. RIPLEY

ideal in (X)), the class of all subsets of X. We often define <7 as the ideal
generated by a class of subsets; in particular B(iv) is the assumption that <7 is
generated by its measurable members.

The usual examples of bounded spaces are locally compact Hausdorff spaces
with their Borel o-fields and relatively compact subsets; metric spaces with the
Borel o-field and metrically bounded sets; and of course measurable spaces with
F = FP(X) (we call these totally bounded). Other examples occur in stochastic
geometry (Ripley (1976a)) which cannot be fitted into the existing theories.

We say a bounded space is o-bounded if X has a countable cover from <7, and
countably bounded if <% has a countable cofinal subclass. A locally compact
space is g-bounded if and only if it is ¢-compact, in which case it is countably
bounded (by Bourbaki (1966) I, Section 9.9, Proposition 15). A metric space is
always g-bounded,; it is countably bounded if it is separable.

Throughout this paper (X, %7, &#’) will be a bounded space, and & = & n &
will be the class of bounded measurable sets.

The class & is a conditional o¢-ring (Segal (1951); called a semi-tribe by
Dinculeanu (1967)), i.e., it is a ring and its trace on each member is a g-field.
There is a smallest conditional ¢-ring, denoted by &(&’) containing a class &
of subsets. The class of (disjoint or increasing) countable unions from Z(&) is
the o-ring S(&’) generated by &. (Dinculeanu (1967), Chapter I, Proposition
9). Thus (&) = % only if the space is s-bounded; the converse also holds.
Thus a ¢-bounded space may be specified by the set X and a conditional ¢-ring
of subsets countably covering X and containing all singletons. In general &
does not determine % (take <Z’ to be the class of finite subsets in an uncount-
able space).

We say a class .7~ of subsets of X separates points of a subset E if, given any
finite subset of E, there are disjoint members of .7” such that each member of the
finite set is contained in precisely one of these disjoint sets. We say .7 (strictly)
countably separates E if there is a countable subclass of .7~ (7 n F(E)) which
separates points of E. We say a bounded space is countably separated by .7 if
each E e & is countably separated by .77; if 7" is omitted we assume .7 = <.
In all applications I know the space is countably separated.

3. Point processes. A multiset (Rado (1974), Lake (1976)) is a collection of
points from X, distinct or not. We say a multiset is locally finite if it contains
a finite number of points from each bounded set. A locally finite multiset may
be viewed as a subset of (X x {1, 2, 3, .. .}), the index denoting the multiplicity
of the point. Let N (N') denote the class of completely additive (s-additive)
functions n: C — Z, the nonnegative integers, i.e., if E ¢ < is the union of an
arbitrary (countable) disjoint subclass (E,) of & then n(E) = 3 n(E,). The fol-
lowing result is immediate.

ProrosiTION 1. If ne N’ then D(n) = {x: n({x}) > O} is locally finite. If ne N
then n = 3, p ({X}e,.
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Thus each n ¢ N can be identified with the locally finite multiset {(x, n({x})):
x € D(n)}, and this map is a bijection (it is here that condition B(iv) is used.)
We see we identify 5, the class of locally finite subsets of X with N, = {n:
neN,n({x}) £ 1VxeX}. We need to define a o-field on N. In the totally
bounded case it is well established that .47, the smallest o-field making the
evaluation maps e, measurable for each 4 ¢ &, is the only natural choice (Carter
and Prenter (1972), Fortet (1968), Moyal (1962)). In the general locally finite
case this o-field is justified by the following procedure (the topological analogue
of which fails in general).

For each Ee & let (Ng .47%) denote (N, #") for (E, En &, AE)). If
E,Fe € and E C F we can define the restriction map r,,: N, — N;. Then
(Ng, rgp)e is an inverse system with inverse limit

M = {(ng): ny € N, ny = rgp(ny) for E C F}

(Bourbaki (1968), III, Section 7). We give M the inverse limit o-field M gener-
ated by the canonical maps r,: M — Ny.

PROPOSITION 2. The spaces (M, .4") and (N, .¥") are isomorphic under the natu-
ral map.

PrROOF. Let u,: N — N, be the restriction map. The family (u;) separates
points of N and so induces a measurable bijection u: N—>M by uy =ryou
(Bourbaki (1968), III, Section 7.2, Proposition 1). Define a map v: M — N by
v(m)(E) = ry(m)(E). Then v is a measurable inverse of u.

This result is equally true if & is replaced by a cofinal subclass throughout.
It shows that M is nonempty, and justifies the use of _#"

We define a point process to be a measurable map from a probability space to
(N, .7¥7), and its distribution to be the probability induced on .#7 We say a
point process is simple if Nj is thick for its distribution P, i.e., the outer measure
P* gives N, measure 1. Let .47 be the trace of _#" on N,.

Proposition 1 shows that elements of N are purely atomic and may be uniquely
extended to (possibly infinite-valued) purely atomic measures on °(X). The
following lemma shows that e, is measurable for all 4 € .5(€) and that .4 is
generated by {e,: 4 e 77} for any z-system .7~ with 7~ C &€ C SAT").

LEMMA. Suppose & is a class of subsets of X closed under countable increasing
(or disjoint) unions and <8 N & is closed under finite disjoint unions and proper dif-
ferences. Suppose £ N & contains a n-system 7. Then & > A TF").

Proor. The ideal generated by .7 is a conditional ¢-ring, so each 4 € €(.77)
is contained in some finite disjoint union T from 7. Let &' = {F: Fe &,
FcTland 7' ={F: Fe 7, F C T}. Then & isa A-system containing the -
system .7, s0&" D A(T) N A F )andhence & D €(F )and & D A T).

The following result has been proved under compactness conditions (Carter
and Prenter (1972), Harris (1968), Jagers (1974), Kerstan, Matthes and Mecke
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(1974)), but that a pure countability hypothesis suffices seems to have been
overlooked.

THEOREM 1. If the bounded space is countably separated then N = N'.

Proofr. From the definitions we may assume that the space is totally bounded.
Suppose {4,} is a countable subfield of % separating points of X. Fix ne N'
and xe X. Let B, = N {4,:i<m, xeA4}). Then B, ec{4,} and B, | {x}, so
n(B,) = n({x}) for some m. Thus {4,: n(4,) = 0} is a countable cover of
X\D(n), 50 n(X\D(r)) = 0 and n = 3, ¢pem n({x})e, € N.

Even in the totally bounded case we cannot replace ¢-additivity by additivity
unless the space is finite, for Ulam (1929) gives an example of a {0, 1}-valued
function which is additive on the class of all subsets of a countable set but is
not ¢-additive.

This theorem shows that we have extended other point process theories (for
instance those in Jagers (1974) and Kerstan, Matthes and Mecke (1974)). The
following result enables us to transfer results from these theories. A Lusin space
is the continuous injective metrizable image of a Polish space (Bourbaki (1966),
IX, Section 6).

THEOREM 2. Suppose X is a Lusin space with Borel o-field 7 and (X, 7, &7)
is a countably bounded space. There is a complete metric on X making it a locally
compact space with a countable base, with 57 as its Borel o-field and £ both the
class of relatively compact sets and the class of metrically bounded sets.

Proor. Let (K,) be an increasing countable cofinal subclass of &°, with suc-
cessive differences (E,). Then {E,} is a Borel partition of X. Each E, is a Lusin
space and so a Borel set in its completion (Bourbaki (1966), IX, Section 6).
can be given a metric d, bounded by } making it a compact metric space with
E, n %7 as its Borel o-field. (If E, is countable let d,(x, y) = 4 if x = y. If E,
is uncountable it is Borel isomorphic to 27+ (Parthasarathy (1967), Chapter I,
Theorem 2.12) which can be metrized suitably). Let d(x, y) = max (r, s) for
xeE, and ycE, unless r = s when d(x, y) = d,(x, y). Then d is a complete
metric inducing the sum topology on X which makes X a locally compact sepa-
rable metric space. Each E, is compact and open, so <7 is the class of relatively
compact subsets.

We call bounded spaces standard if they satisfy the hypotheses of this theorem.
If each E, is uncountable it is also Borel isomorphic to [0, 1), so we can take
our standard bounded space to be the real line.

4. Construction of point processes. We have to show that point processes do
exist. To do so we must specify a probability P on .47 Such a probablhty is
determined by its restriction to

FNT)
={Nr{n:n4)=k,i=1,--.,m}y: k,eZ,,A4,e T, m=1,2, ...}
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for a m-system .~ with &~ ¢ & < A(7"). We call this restriction the Sfinite-
dimensional distribution which we view as a function P Un(T™ % (Z)™) —
[0, 1]. We ask what conditions p must satisfy to ensure that it is the finite-
dimensional distribution of a probability on N. Obviously p satisfies:

P p(Asays s Agimys Torays + 0 Tom) = P(Ap <oy Aps 1y -+, 1) for any
permutation ¢

P@i). X, p(A, Ay ooy Aps Py by oo 1) = p(Ayy ooy Ay ry e e, ')

P(iii). X, p(4;r) =1

P(iv). p(AU B, 4, B;r,s,t) =Ounlessr = s+ rif An B = @
and

P(v). g(4) =1 — p(4; 0) is continuous at @.

In general P (i)—(v) are not sufficient, for Dr. David Fremlin has constructed
a totally bounded separable metric space for which P (i)—(v) are not sufficient
to ensure that a function p, with .9~ = &, defines a probability on .47 Thus
we are forced to add pseudo-topological conditions. We suppose .5 is a com-
pact class closed under finite unions (i.e., %" possesses the finite-intersection
property). We say an increasing finite function ¢ on .7 is tight if for every ¢ > 0
and A€ .7 thereis Be .7 and Ke % with B C K C A4 and ¢(A) — ¢(B) < «.

PROPOSITION 3. Suppose 7™ is a ring and z: .7~ — Z is additive and z(A) > 0
implies z(B) > O for some Be 7~ with K& 9 such that BC K C A. Then z is
tight and may uniquely be extended to a member of N.

ProOF. We show by induction on n that if z(4) = n there is Be .9 and
K e 2 such that B C K C A and z(B) = n, so z is tight. This is true forn = 0
and n = 1 by hypothesis. Suppose it holds for all m < n and z(4) = n. There
is 4, 7" and K, € % with 4, C K, C K and z(4,) > 0. Thus z(4\4,) < nand
there are 4,¢ .7 and K,e .2 with 4, C K, C A\4, and 2(Ay) = z(A\A,). Let
B=4,U 4, and K=K, UK, This completes the inductive step. We now
restrict attention to a member of .7 and so assume .7 is a field. A tight addi-
tive function &~ — Z, may be extended to a measure on o(.7") tight with respect
to the closure of %" under countable intersections (which is still compact)
(Pfanzagl and Pierlo (1966), Section 3.5). This measure must coincide with the
outer measure defined by its restriction to .7~ and so is Z,-valued. If the space
is countably separated then Theorem 1 shows that this extension belongs to N.
In general there are B, e & and K, ¢ %% with B, c K, ¢ X \{x} and z(X\(B, U
{xh) = 0. Thus N,.x K, = @ and K, n..--nK, =@ for some finite set
{xp, -+, x}. Thus z(E) = z(UJ (E\B,)) < T Z(E\B,) = X z(E n {x;}), for all
Ee&,s0ozeN.

THEOREM 3. Suppose p satisfies P(i)—(iv), 7 is a ring and q is tight. Then p
is the finite-dimensional distribution of a unique probability on " :

PROOF. Suppose .77 is a ring. By P(i)—(iii) and the Daniel-Kolomogorov
theorem there is a unique probability P on (Z,)” with restriction p to the
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cylinder sets. For each 4e.7” we can find sequences (B(4, n)) c .7~ and
(K(A, n)) C % with B(4, n) C K(4, n) C A and g(4) — q(B(4, n)) < 2-*. De-
fine: L = {z: z is additive, z(4) > 0 = z(B(A, n)) > 0 for some n}. We will
show P*(L) = 1. Suppose A4 is measurable in (Z,)” and 4 D L. Then A4 re-
stricts z at a countable set & only; we enlarge <&, to a countable ring. Thus
A D L, where L, = {z: z is additive on &, z(4) > 0 for 4 € &, implies z(B(4,
n)) > 0 for some n}. From P(iv) and the definition of B(A4, n) it follows that
P(L)) = 1, hence P(4) = 1 and P*(L) = 1. By Proposition 3 we can embed L
in N. If we take the trace of P on L we obtain a probability on .4~ with p as
its finite-dimensional distribution.

PROPOSITION 4. Suppose (X, &7, &F) is a standard bounded space. Then p is
the finite-dimensional distribution of a probability on 4" if and only if it satisfies
P (i)—(v).

Proor. We take X to be a LCD space with <Z the class of relatively compact
subsets. From P (i)—(iv) ¢ is increasing and strongly subadditive;

g(A U B) + q(A n B) < q(A) + q(B)  forall 4,Be<Z.

Thus there is an extension of ¢ to a Choquet <-capacity (Dellacherie and Meyer
(1975), III, 32). This is a fortiori a .7 ~capacity where .7 is the class of com-
pact sets, so g is tight by Choquet’s theorem if P (i)—(v) hold.

5. Simple point processes. In this section we give a result which is peculiar
to simple point processes. These are defined by P*(N;) = 1 for the distribution
P, so it is of interest whether N, is measurable.

PROPOSITION 5. (i) N, € 4" only if the space is o-bounded.
(ii) N, e A if the space is countably separated and o-bounded.

ProoF. (i) Suppose the space is not g-bounded. Then any 4e.#" is the
trace on N of a subset of (Z,)¥ restricting only at a countable set &%5. Thus 4
restricts the mass given to singletons only inside &7.

(ii) Suppose Ec &; define E, = {(x,x): xeE}. Then E, e €(¥€ x ¥)
(Christensen (1974), Theorem 2.1). We can extend n x n, for n e N, as a finite
measure to &(&€ x €). The argument of Krickeberg (1973), Theorem 3,
shows that {n: n({x}) < 1 Vxe E} = {n: (n x n)(E,) = n(E)} which is measura-
ble since n — (n x n)(E,) is measurable by our lemma.

For each n e N define Sn = };,,,¢,. The map S: N — N, correspond to re-
garding a multiset as a set. Let .4  be the smallest o-field on N making S
measurable. Of course Sn = n if and only if ne N, and N, n A" = 4.

THEOREM 4. Suppose 9~ C & and 7' = {E: E€ &, E is strictly countably
separated by .7} contains a n-system 7" with (T "") D &. Then
(i) A =o(e,: Ae T)

and
(ily S = a(&,) where &, = {{n: n(E) = 0}: E€ .7}, so S is measurable.
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PROOF. Suppose ne Nand E€.7'. Let I be a countable subclass of .9 n
) separating points of E. Let .~ be the class of finite sets of disjoint mem-
bers of Z. Suppose Sn(E) = r, so D(n) N E = {x,, ---, x,}. There is {4, ---,
Ale X withx,ed,i=1,...,r so

n(E) = sup {} n(4,): (4,) e &£},
and
Sn(E) = sup {3} Linayso: (4) € £}

Since 7 is countable e is o(e,: 4 € 7 )-measurable and S o e, is 0(&,)-meas-
urable. The theorem follows from the lemma applied to 77",

COROLLARY. Suppose 7" is closed under finite unions. A probability P on 4~
with P*(N,) = 1 is determined by its restriction to &,.

The conditions on .7~ seem complex; it suffices that .7 is itself a m-system
countably separating the space and generating (.77). The complexity is neces-
sary to cover the class of open balls in a separable metric space. In particular,
S is measurable on any countably separated space.

Suppose X is a metric space. We say .7 is a DC-class of subsets if every
bounded set has a finite cover from .7~ of sets of arbitrarily small diameter.

PROPOSITION 6. (X, .57, &7') is countably separated by any DC-class 7. If X
is the countable union of bounded closed sets then /(7" contains the Borel o-field.

PRroOF. Suppose E € & and x and y are distinct points of E. Then d(x, y) >
1/n for some n. Now E has a finite cover .7, from .7~ of sets of diameter less
than 1/2n. Thusif xe 4,€ .7, and ye 4,6 7, then 4, N 4, = @, so Y .7,
countably separates E.

Suppose E is closed. Let E, ={4: Ae 9,,An E + @}. Then E, | E, so
E e 7). Under our hypotheses &/(.7") is a o-field containing the bounded
closed sets, hence all Borel sets.

Proposition 6 shows that Theorem 4 (ii) and its corollary generalize the results
of Kallenberg (1973) for DC-rings in a locally compact space. (They were dis-
covered independently.) There is related work by Belayev (1969), Leadbetter
(1972) and Monch (1971). We shall see the natural setting for these results in
Section 7. They are applied in Ripley (1976 b).

The following simple example shows that the distribution of a point process
is not in general characterized even by its restriction to

éﬂ:{{n:n(A):k}:Ae%,keZJ.

Let (X, &7, &) be the two-point space. Define P and P’ by the following prob-
abilities:

n{0}) n{1}) 0 1 2 0 1 2
0 b 03
! bid b0
2 b 033
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Then P and P’ agree on &, but differ. Of course both P(N,) and P'(N,) are less
than one.

6. Marks. Suppose a mark is associated with each point of the random multi-
set (Matthes (1963)). A marked point process with marks in a measurable space
(K, 2¢") is a point process on (X x K, % ® %, {B x K: Be Z}). A simple
point process will be one in which no point occurs twice with the same mark.
To forbid points to occur more than once irrespective of mark we introduce:

Ny={n:neN,n({x} x K) <1V xeX}.

The map r: N(X x K) — N(X) given by rn(4) = n(4 x K) which corresponds to
ignoring marks is measurable and Ny, = r='(IVy), s0 Ny € A7 if X is g-bounded
and countably separated.

There is a sense in which every point process can be converted to a simple
one, as noted by Srinvasan (1962). We form a new process by replacing the
multiset by a set with points marked by the number of occurrences. Let
h: N(X) — Ny(X % (Z,\{0})) be the map thus defined.

PROPOSITION 7. Suppose the bounded space is countably separated. The map h
is an isomorphism.

PrOOF. h({n(A) = k}) = {n: ¥, mn(A x {m}) = k}, so h~" is measurable. Let
T, =S — S)™ for m = 1. Then h~*({n: n(4 x {m}) = k}) = {n: T, n(A4) = k}
which is measurable by Theorem 4.

COROLLARY. Under the hypotheses of Theorem 4 .4 is generated by U, {(S(I —
S)™)y~H &) : m = 1}.

More generally for a marked point process we may replace the multiset of
marked points by a set of points marked the collection of marks which occur
at the point, defining a map /,: N(X x K) — Ny(X x (K\{@})) where K, is the
exponential space of K, the class of all finite multisets from K (Carter and Prenter
(1972)).

PROPOSITION 8. Suppose both (X, S, ) and (K, X") are countably separated.
Then h, is an isomorphism.

Proor. For B C K let B,, be the class of multisets from B of size m. Then
h({n(4 x B) = k}) = {n: Y, mn(A x B,) = k}, so k"' is measurable. We know
hy: N(X x K) — Nyo((X x K) x (Z,\{0})) is measurable. A basic measurable set
in the range space is of the form {n: n{4 x B) = 0} by Theorem 4, where 4 ¢ &
and B = {k: no s-fold points of k are in C} for Ce " by the corollary of
Proposition 7 (since we may identify K, with N(K)). This set has inverse image
{n:n(4x C x {s}) =0}.

7. General random set theories. We suppose throughout this section that X
is a locally compact Hausdorff space with a countable base, & is its Borel o-
field, and <Z contains all the compact subsets, so (X, &, ) is g-bounded.
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Each locally finite set meets each compact set in a finite set and so is a closed
set (Bourbaki (1966), I, Section 9.7, Proposition 11). According to Theorem
4(ii) applied to .7, the class of compact sets, we have given £ the smallest
o-field containing {{F: Fn K= @}: Ke >¢"}. Let % denote the class of
closed subsets of X and 2" the o-field generated by {{F: Fe &, F n K = @}:
Ke 97}, Thus &£ isasubspace of (&, 777). Matheron (1972, 1975) defines
a random closed set to be a measurable map from a probability space to (&, 77),
so a random set with range in £ a.s. is precisely a simple point process.
(This special case of Theorem 4 was given by Matheron in an unpublished note
dated February, 1968.)

Suppose .7 is a base for the topology of X. Then Kendall’s theory (1974)
gives & the o-field 7(77) generated by {{F: FNE= @}: Ec 7 }. If L is
the class of open sets it is easy to show that Z(97) = Z(¥) = 2(F ) = 7,
so the theories coincide. Christensen (1974, Theorem 3.8) shows that {F: F n
A= @}e? if and only if 4e >,. Matheron shows that 7 is the Borel o-
field of a topology on .&; this is true for almost all topologies proposed on &~
(surveyed by Flachsmeyer (1964)).

PROPOSITION 9. Suppose <& has a countable cofinal subclass from K,. Then
LT e

Proor. Exactly as in the proof of Theorem 4 (ii), taking .~ = %7, we have
F — #(F n A) measurable on & for all 4e.%,. Let (E,) be the countable
cofinal class. Then

LG ={F:Fe F,4FnNE,) <o forall mje 7.

The random set theories characterize probabilities P on 2" by the avoidance
function 4 on %" (Matheron) or .7, the closure of .7~ under finite unions
(Kendall) defined by

A(E)=P({F: Fn E= Q}).

An obvious problem is to express P*(£% ) = 1 in terms of 4. Then we could
construct a simple point process (on a standard space) from a specified function
g by setting 4 = 1 — ¢ and taking an a.s. locally finite random closed set with
this avoidance function. There is related work by Karbe (see Kerstan, Matthes
and Mecke (1974), Theorem 1.3.8) and Kurtz (1974) for A4 specified on a ring
and all Borel sets respectively.

Suppose .7 is a subclass of ., on which 4 is defined, (E;) Cc 7 is a count-
able cofinal class in <7, and each E, has a dissecting system (Leadbetter (1972))
from .7, i.e., there is {T,,: 1 < k < k,} c T satisfying

(a) for each n (T,,) are disjoint subsets of E;,
() EAUk T C F, | D,
and
(¢) {T,.: n = m} separates points of E, for each m.
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PRrOPOSITION 10. Let & denote the class of finite disjoint subclasses of 7~ n
A(E;). The following are equivalent:
(i) (&LF)=1
(i) sup,e .., P({F hits at least r members of ¢}) — 0 as r — oo
(iii) inf,, 2 Lgcpigise Lipgeyes (— DPFHTAY 1) — L as r — oo,
Jfor each i.

Proor. The equivalence of (ii) and (iii) follows from the equivalence of
P({F hits those members of ¢ in ¢}) with the inner sum of (iii). For ¢ ¢ &
P({F hits at least r members of ¢}) < P(#(F n E,) = r), so (i) implies (ii). Con-
versely, consider ¢, = {T,,: 1 < k < k,} € &,. Let Y,, be the indicator of the
event that T,, is hit. Then §(F n E,) = lim, };, Y, by (b) and (c), so

P(#(F n E) =z r) = lim, P{F: 3, You(F) = 1})
= sup,.,, P({F hits at least » members of ¢}).

The condition (iii) of this proposition seems to be too complicated to be useful.
It would be very useful to have a simple sufficient condition for a random closed
set to be a.s. locally finite. We give separate necessary and sufficient conditions
for a stationary random closed set on the real line.

Suppose X is the real line, &7 is the class of relatively compact sets and .7~
is the class of bounded open intervals. We say a probability P on 27" is stationary
if its avoidance function is invariant under shifts. (If P corresponds to a simple
point process this is then strictly stationary, Ripley (1976b).) For each r = 0
let a(f) = A((0, #)). Kendall (1974) showed that for a stationary probability there
is a subprobability p on (0, co] with

a(t) = §0,01 (1 — t/x), dp(x) for t>0.
Thus a always has a right-hand limit a(0+) at 0.

THEOREM 5. Suppose a corresponds to a stationary probability P on 2. Then
LF (i) and LF (ii) are equivalent and necessary for P(#" % ) = 1 and LF (iii)—(v)
are equivalent and sufficient for (&% ) = 1.

LF (). a(0+)=1

LF (ii). pis a probability

LF (iii). a has a finite right-hand derivative at 0

LF (iv). lim2*(1 — a(27")) < oo

LF(v). pis a probability and x — x~1 is integrable.

Proor. (a) a(0+) = p((0, oo]). Suppose p is a probability. Then (1 —
a(f)) = § min (+7%, x™*) dp(x) 1 § x~*dp(x). This establishes the equivalences.

(b) 1 —a(0+4) = lim (1 — a(27")) = P({F hits (0, 2-*) V n}) which is 0 if
P(LF) = 1, so (i) is necessary. '

(¢) Assume (iv). Then b, = A([0, 27")) = A({0} U (0, 2-")) = a(2~")— A({0}) =
a2y — (1 — a(0+)) = a(2™), so lim 2*(1 — 5,) < oo.
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(d) Let I(m,n,r) =[—m, m] n [r27", (r + 1)27"). Let A(m, n, r) = {F hits
I(m, n,r)and I(m, n,r 4 1)} and A(m, n) = U, A(m, n,r). Suppose F ¢ & \LF".
For some m F n [ —m, m] is infinite and has a cluster point, so F ¢ lim sup,, A(m,
n). Thus P(Z %) = 1if P(lim sup, A(m, n)) = 0 for all m for which it suffices
that 3, P(A(m, n)) < oo for all m.

(e) P(A(m, n)) < 2m2"P(A(m, n, 0)) = 2m2~(1 — b, + b,_,) by stationarity.
Thus

T3 P(A(m, m) < 4m(2(1 — b) + b, — 1)

which is bounded by part (c). Thus (iv) suffices for P(ZF7) = 1.

The following examples show that the conditions of Theorem 5 are in a sense
the best possible in a alone.

(1°) The mixtures of randomized arithmetic progressions discussed by
Kendall (1974) are locally finite a.s. if and only if p is a probability. This class
exhausts the class of functions a, so if a(0+) = 1 then there is another random
closed set with the same a which is locally finite a.s. We may take p to be
Lebesgue measure on (0, 1), violating our sufficient condition.

(2°) Suppose a,, = 2™(1 — a(2~™)) increases to infinity. We will construct a
random closed set with a’(0+) = 1, P/(LF) = 0 and 2™(1 — a’(2™™)) < a,,. We
define (b,) inductively by b, = 0, b, = max (b,_, + 1, min {m: a, = n + 3})),
and set ¢, = 27'n. Then ¢, | 0. Thus {n +¢,:neZ, m= 1} is a closed set
which is not locally finite, and we may form a stationary random closed set by
translating it by a random variable with uniform distribution on (0, 1). Then
2™(1 — a'(2~™)) < min (a,, m + 3), so this is the required random set.

(3°) Suppose A(E) = exp(—42|E]|) for Ee .7, so a satisfies LF (iii). The as-
sociated random set is the Poisson process of intensity 2. This provides a con-
struction of the Poisson process and another proof of Rényi’s (1967) theorem
for Lebesgue measure |«|. (The general case follows from Theorem 4.)

REFERENCES

[1] BeLAYEV, Y. K. (1969). Elements of the general theory of random streams of events. Univ.
of N. Carolina Statistics mimeo series no. 703.

[2] BourBAKkI, N. (1966). General Topology. Hermann, Paris.

[3] BourBaki, N. (1968). Theory of Sets. Hermann, Paris.

[4] CARTER, D. 8. and PRENTER, P. M. (1972). Exponential spaces and counting processes. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 21 1-19.

[5] CHRISTENSEN, J. P. R. (1974). Topology and Borel Structure. North Holland, Amsterdam.

[6] DeELLACHERIE, C. and MEYER, P. A. (1975). Probabilités et Potentiel. Hermann, Paris.

[7] DiNcULEANU, N. (1967). Vector Measures. Pergamon, Oxford.

[8] FLACHSMEYER, J. (1964). Verschiedene Topologisierung im Raum der abgeschlossen
Mengen. Math. Nachr. 26 321-327.

[9] ForteT, R. (1968). Sur les répartitions ponctuelles aléatoires, en particulier de Poisson.
Ann. Inst. H. Poincaré Sect. B 4 99-112. '

[10] Harris, T. E. (1968). Counting measures, monotone random set functions. Z. Wahrsche-

inlichkeitstheorie und Verw. Gebiete 10 101-119.



994 B. D. RIPLEY

[11] JAGERrs, P. (1974). Aspects of random measures and point processes. In Advances in Prob-
ability 3 (P. Ney and S. Port, eds.). Decker, New York.

[12] KALLENBERG, O. (1973). Characterization and convergence of random measures and point
processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 9-21.

[13] KenpALL, D. G. (1974). Foundations of a theory of random sets. In Stochastic Geometry
(E. F. Harding and D. G. Kendall, eds.). Wiley, London.

[14] KERsTAN, J., MATTHES, K. and MECKE, J. (1974). Unbegrenzt teilbare Punktprozesse. Aka-
demie, Berlin.

[15] KRICKEBERG, K. (1973). Moments of point processes. Reprinted in Stochastic Geometry
(E. F. Harding and D. G. Kendall, eds.). Wiley, London.

[16] Kurtz, T. G. (1974). Point processes and completely monotone random set functions. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 31 57-67.

[17] LAkE, J. (1976). Sets, fuzzy sets, multisets and functions. J. London Math. Soc. 12 323-326.

[18] LEADBETTER, M. R. (1972). On the basic results of point process theory. Proc. Sixth Ber-
keley Symp. Math. Statist. Prob. 3 449-462, Univ. of California Press.

[19] MATHERON, G. (1972). Ensembles aléatoires, ensembles semi-markoviens, et polyédres
poissoniens. Advances in Appl. Probability 4 508-541.

[20] MATHERON, G. (1975). Random Sets and Integral Geometry. Wiley, New York.

[21] MaATTHES, K. (1963). Stationdre zufillige punktfolgen I. Jber. Deutsch. Math.-Verein. 66

66-79.

[22] MoNcH, G. (1971). Verallgemeinerung eines Satzes von Rényi. Studia Sci. Math. Hungar.
6 81-90.

[23] PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Academic Press,
New York.

[24] PrANzAGL, J. and PiErLO, W. (1966). Compact systems of sets. Lecture Notes in Math.
16. Springer, Berlin.

[25] RADO, R. (1974). Multisets and multicardinals. Lecture to the London Math. Soc.

[26] RENYI, A. (1967). Remarks on the Poisson process. Studia Sci. Math. Hungar. 2 119-123.

[27] RrIpLEY, B. D. (1976a). The foundations of stochastic geometry. Ann. Probability 4995-998.

[28] RrpLEY, B. D. (1976b). On stationarity and superposition of point processes. Ann. Proba-
bility 4 999-1005.

[29] SeGAL, L. E. (1951). Equivalences of measure spaces. Amer. J. Math. 73 275-313.

[30] SrinvasaN, S. K. (1962). Multiple stochastic point processes. Zastos. Math. 6 209-219.

[31] ULawm, S. (1929). Concerning functions of sets. Fund. Math. 14 231-233.

DEPARTMENT OF MATHEMATICS
IMPERIAL COLLEGE

180 QUEEN’S GATE

LoNpoN SW7 2BZ

ENGLAND



