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SPEEDS OF CONVERGENCE FOR THE MULTIDIMENSIONAL
CENTRAL LIMIT THEOREM

By T. J. SWEETING

University of Surrey

Speeds of convergence to normality for sums of independent and iden-
tically distributed random vectors in R*, k = 1, are investigated using the
method of operators. Results obtained improve and extend existing results
on speeds of convergence for the expectations of both bounded and certain
unbounded Borel measurable functions, and nonuniform convergence
rates.

1. Introduction. Let X, X,, - .. be a sequence of independent random vectors
in R* with common distribution F; EX, = 0, DX, = I, the identity matrix (where
D* denotes the dispersion of a random vector). Let G be the k-dimensional stand-
ard normal distribution, with density N,; let Y}, Y,, - - - be a sequence of inde-
pendent random vectors with common distribution G. For any distribution P in
R* define the scaled distribution P by P{dx} = P{n* dx} where n is some positive
integer. Thus F*" is the distribution of S, = n=t 3}, X, (where * denotes con-
volution). The central limit theorem in R* asserts the weak convergence of F*"
to G.

Most proofs of results on rates of convergence for the multidimensional central
limit theorem use expansions of the relevant characteristic functions. Bergstrom,
however, keeps closer to the distribution functions and uses essentially the same
expansions as are used here: in [1] he generalizes the Berry-Esseen theorem to
cover the multidimensional case. More recently work has been devoted to ob-
taining rates of convergence for the probabilities of arbitrary Borel sets in R*.
Ranga Rao (1961) proved that if fourth moments are finite then uniformly over
all convex Borel sets C in R*

|F**{C} — G{C}| = C(k)n~¥(log n)°

where b = (k — 1)/2(k + 1). Von Bahr (1967) and Bhattacharya (1970a), (1971)
obtained results for general classes of sets. In particular, the logarithmic term
was removed in the above rate of convergence for convex sets; Von Bahr assumed
the existence of (k + 1)th order moments (for k = 2) while Bhattacharya (1970a)
assumed that moments of order 3 + & were finite for some 6 > 0, which he later
relaxed in [4] to third-order moments. ‘ Sazonov (1968) also obtained the result
assuming finiteness of third-order moments by using a similar technique to
Bergstrom. :

In this paper distributions are treated as operators on bounded Borel measur-
able functions on R¥. In Sections 2 through 5 some basic lemmas are proved
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CENTRAL LIMIT THEOREM 29

and in Sections 6 and 7 the main results of the paper are presented. Theorem 1
of Section 6 improves and extends existing results on speeds of convergence for
the expectations of bounded and certain unbounded measurable functions, while
Theorem 2 of Section 7 generalizes the nonuniform result of Rotar (1970) when
the latter is specialized to identically distributed summands.

For vectors x = (x;, -+, X,), y = (J1» + - +» i) in R¥, (x, y) denotes the usual
inner product between x and y, |x| = (x, x)t. Throughout the paper, constants
will usually be denoted C(.), with any argument(s) in parenthesis; however,
arguments have been suppressed in the proofs of theorems and lemmas.

This work is part of a Ph. D. thesis submitted at Sheffield University. The
author wishes to thank Dr. D. P. Kennedy for his interest and help, and also
the referee for his useful comments.

2. Definitions and a preliminary lemma. Let M* be the space of finite signed
measures on the Borel g-field of |R* and B* be the class of real Borel measurable
functions on R*. The norm of a bounded function v: R* — R is given by
[|v]| = sup,cgk |v(x)|. Let B;* be the class of bounded functions in B*. We define
the operator . associated with a finite signed measure P in M* as the function
&’ B* — B/* whose values at v € B,* are given by

G(x) = § v(x — y)P{dy} .

A discussion of these operators for probability measures (defined on a narrower
class of functions) may be found in Feller (1966). In particular, &% (composi-
tion of operators) is the operator associated with the convolution P x Q of the
corresponding measures. We shall make use of the following identity (here .&°
is the identity operator).

(1) (P — @) = (P — @) T P

for all positive integers I. Let C* be the class of real functions on R* for which
partial derivatives of all orders exist and are bounded. D, will denote the partial
differential operator on C* with respect to the ith variable. If v e C¥, te R*,

define
V™ = (Zf=1 tiDi)m'v

for all nonnegative integers m. Let N be a positive integer, my, - .., m, non-
negative integersand 1, . .., t™ e R¥. Putm = (m,, - -+, my), T = (1, . . ., 1)

and define .
vp'™ = [Iio (D 9Dy .

Note that if &°is the operator associated with a measure P in M* and v e C¥,
then (9),™ = FPv,™. If ueC* x,heR* p is a positive integer, then
Taylor’s theorem in R* asserts that

) u(x + h) — u(x) = 315 ()7, 0(x) + (p!) 7w, P (x + Oh)
where 0 < 0 < 1.
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A real continuous even function v on R” is positive definite (p.d.) if 3}, ; v(x; —

x;)y.y; = 0 for every choice of finitely many vectors x,, - - -, x, and real numbers

Yi» + s Yur Bochner’s theorem (for R*) implies that v is p.d. iff it is the Fourier-
Stieltjes transform of a finite measure 4 on R*; that is

3) v(x) = { e A{dy} .
It follows from (3) that
4) ' ' Il = v(0) = A{R"}.

Let N = 1 and define m and T as above; put M = >}¥_, m;. From the theory of
Fourier transforms one can deduce that if v is p.d. then (—)"v,%™ is also p.d.
with associated measure T, (#7, y)*™iA{dy}; thus, using property (4) for p.d.
functions and applying Holder’s inequality, we find that

) [0, < k*Y(ITY, [£9["5) Yh, D& (0) .

A p.d. function will be called A-smooth if its associated measure 4 vanishes out-
side the closed sphere centered at zero of radius 2 > 0. It is easy to see that if v
is A-smooth then for all t ¢ R*, m 2 0 -

(6) H”z‘z’””’ll =l RICAS

Note that if v is 1-smooth, then the function v, defined by v,(x) = v(hx) is A-
smooth (2 > 0). We shall say that an operator is p.d. if its associated (finite
signed) measure possesses a p.d. density. It is easy to show using Fourier trans-
forms that if the operator Z7is p.d. and vis a p.d. function, then v is p.d.;
furthermore, if v is A-smooth then % is also A-smooth. ~

We also need to estimate the norms of odd-order derivatives of a p.d. function.
We use the following multidimensional form of the Landau-Hadamard inequal-
ity; if ve C*, re R¥, m = 1 then

(7 : [0 ™I < 2001w, ™[] [Jo ™[]
It follows that if v is a p.d. and A-smooth function then for all m > 1
®) [lo ™| < 4kt [Jo ™| .

For all real » > 0, define the absolute moments 8, = E|X|" (possibly infinite),
a, = E|Y,|", and let &, & be the operators associated with the probablllty
measures F, G defined in Section 1. -

LemMA 1. Suppose B, < oo and put h = 0.18,7*. va is a p.d. h-smooth function
then for 0 < i <n

©) |77 || < ||l e

where 57 is the operator associated with the normal distribution having dispersion
matrix 1.
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Proor. For 1 <i <! we have the inequality
(10) |5 & — [|Z S| < (5 — £ F|
+ [1Zhl] — [leZ & =] -
Since ¥, 5 are p.d. and v is h-smooth it follows from (4), (1), the expans1on
(2) with p = 3, (5) with m = 1 and (7) that
(1) [|ZY) - |5 F || = Db (F — S2)3F1F"=5(0)
= L5 (4h — ) ZiL 1D i g |
where 4 = Za,(1 4 2-%). We establish (9) by induction on n; assume (9) holds
forn=1—-12=0. From (1), (2)

(12)  (FF = FYT| £ § DRV IFTE 0, O(F + G)dy) -

But —v,®, v, are p.d. h-smooth, so from (7), the inductive hypothesis, (6) and
(5) with m = 1 we find that

|LFIL 10,9 < 2H)ff Tk, ||D 2SI )|
Using this in (12) we have from (10) and (11)
&0l — |22 F ]| < Lich (BhG, — }) Bh ||1D, 225 |

where B =4 + §(1 + ;) (using B, > 1). The r.h.s. is < 0 whenever <
(4BpB;)~*. Thus (9) holds for n = I, since 0.1 < (4B)~%; the result is trivial when
n=20.

If & is the operator associated with a measure P in M*, &7 will denote the
operator associated with P; if P has dens1ty p, then p will denote the density of
P. Put &, = Figni,

CoroLLARY 1. Let h = 0.18,* and suppose v is a p.d. h-smooth probability
density. Let m = (my, ..., my), T = (Y, « oo, t)) where the m; are nonnegative
integers, t'9 ¢ R* and N g 1. Then

I(<Zn 0 ™| < Clk, M) TT5, [69|™s
where M = m;, + - .- + m,,. \

Proor. If all the m; are even, the result follows easily from Lemma 1 and (5).
If some of the m; are odd, we may use (7) repeatedly to express ||(<£ ,7),™||
as a product of terms with even 1nd1ces and again the result holds.

3. Truncation. The truncation used here is the same as that used by Bikyalis
(1968) and Bhattacharya (1970b). Put X, , = X,/{|X,| < n}} and let @ = EX,,,
Z = DX,,. We use the same symbol to denote a linear operator and its associ-
ated matrix. Since X is symmetric there exists an orthogonal matrix P such that
P'YXP = A, where A is the diagonal matrix with the eigenvalues 4, ..., 2, of
displayed on its diagonal. Thus we may write X = Y'¢_ 2, E,. If X is nonsingu-

lar, all its eigenvalues are positive and the matrix 7 = Y*_, 2,~*E, is symmetric,



32 T. J. SWEETING

positive definite and satisfies T'T = T? = Z-'. We may then define X, by X, =
T(X,, — p); EX,=0,DX, = I, ; = E|X,|" < oo for all j. If P is a probability
measure with finite second absolute moment, define

A (P) = (iysat [y[*Pldy} .

Let x be a unit k X 1 column vector; it is not hard to obtain the following
estimates:

(13) ntlp] < A (F)
(14) 0 <X — Z)x £ 2A,(F).
If A is the linear operator associated with a symmetric matrix, then ||4|| = M,

the maximum absolute eigenvalue of 4. We shall assume that A (F) < p < &,
so that x’Zx = 1 — 2p > 0 for all unit column vectors x. It follows that ||T|| <
(1 — 2p)~t and we have the following bounds for |X;|, §;:

(15) 1] < IT(X] + 1) < 2(1 — 20)7n
(16) B; = EIT(X,,, — p’ < 291 — 20)""E|X, |7,

using moment inequalities. The distributions of X, ,, X, will be denoted by F,,
F respectively with associated operators . ,, % . We have

(1) T — T = Tim (F — T T ()
= 2720 Y1 [%’U(x - — %v(x)]F{dy}

where _#Z, = % ‘{5 ,»~-1. We also truncate the normal variables Y, Y,, - - .
Put Y, , = Y, I{|Y,| < nt}; then EY, , = 0 (by symmetry). Let X, = DY, ,; it is

easily shown that A,(G) < p, < 1 for all n > 1 and that if x is a kK X 1 unit

column vector
0 X(I — Z)x £ A(G).

This implies that X, is nonsingular, so there exists a symmetric positive definite
matrix T, satisfying 7)* = Z,7' and we may define ¥, = 7,Y,,. Similar inequali-
ties to (15), (16) hold with (1 — 2p) replaced by (1 — p,), and evidently a similar
expression to (17) holds with the obvious notation.

4. The operator [.] and the main lemma. In this section we obtain nonuni-
form bounds for the differentials of the smoothed convolution density and use
these to get a nonuniform speed of convergence for the smoothed convolution
density of the truncated variables. Let v € B/* and s be a nonnegative integer;
if the function |x|*v(x) is bounded, define vi*J € B* by v*I(x) = (¢, x)*v(x) where
¢ is some fixed unit vector. Evidently vl*+?] = (pte])*), Define a similar opera-
tion on measures; if P e M* and if § |x|*|P|{dx} < oo put P)dx} = (c, x)*P{dx}.
Note that when P has a bounded density p, pi*! is the density of P, Tt is a
routine matter to show by induction that for positive integers v, a

(18) (Z - ) = T al [[I5, )] P - . Bl
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where Q, = {(a,, ---,a): q, nonnegative integers, >¢_,a, = a}. If veC* m,s
are positive integers, ¢ € R* the following formula for (v,)(*) may be established
by induction on m.

(1% (O = T (—e, ()[s(s — DI(oU-),m

V will denote a probability distribution in R* with moments of all orders, pos-
sessing a p.d. I-smooth density (it is easy to construct such a distribution); let
7. = E|V|". Define V,(x) = V(hx); when 8, < oo (r = 3), the smoothing distri-
bution will be U = W*+ where W = ¥, and & = 0.13,~'. Then both W and
U have moments of all orders and possess p.d. A-smooth densities w, u respec-
tively. If r = 3, B > 0 it is not hard to show that the condition n > Bg -2
implies n > 2BB¥~» forall3 < i < r. For simplicity we treat & " rather than
<, , in the next lemma.

LEMMA 2. Suppose B, < oo for some integer r = 3. Then for integers m, s with
m=0,0<s5s<rand te R,

(=2, ™) < Ck, m, r, B)|d
for n = BB.*"=» where B > 0 is any constant.

Proor. Consider ((~ "#)[*),"* where 0 < a =, 0=<b<m. The operator
corresponding to the density (< "a)l®l is (& 57 "+1)@ (where 9% is the opera-
tor associated with W), and from (18)

(;Tn r+1)[a] = laca, c(a)gr[al] = CN L 78 CH I 7 I

where Q, = {a = (a,, -+, a,,0/, -+ -,a,,)) a,a' =0, 3 a, + Nitta = a}.
In each term in the above sum at least one a, is zero since a < r. Writing %7,
for the product of the 9771l excluding the first operator with a/ = 0 we have
the following identity for (& "a)tel:

(S = Fyeq, C@F 0 . T 0.

Partition Q, into the classes Q,(/), / =0, 1, ..., a, where a ¢ Q. () iff exactly /
of a, .-, a, are nonzero. We have |Q,(/)| < C\(}) < C,n' so that

(20) (= a)), || < C; T n'Q(a, b, 1)

where Q,(a, b, l) = sUp,cq,q, ||F ) - - - F 197, ,||. We shall show that
(21) Q.(a, b, 1) < C,Jt|'n".

If J e C*, then for allj =0

(22) 177790|| < 73k im0 < G|

since n = 2BB¢, and for0 < j < r
(23) || < B3| < Con )] j > 1
= VI y1Fdyy j=1
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(using n = 2BB,¥=% for 3 < j < r). Suppose @ ¢ Q,(/) and let N be the number
of a; equal to one (0 < N < /). Iterating (22) and (23) and remembering that
(n—10ofa, ---,a,are zero we find that if N > 1

|70 - T B0 < Con G )| TTA [y Fidys)

where Y = (y,, -+, yy), € = (L, ---, 1) (N terms), and J = ﬁ'""wt"”. From
Corollary 1 we have ||J,*|| < C,¢|* [T), |y,| so that (21) holds for N > 1; evi-
dently (21) holds also for N = 0. Thus from (20)

(& aye), || < e
Finally, from (19),
I(Z @™ < TEleme C(O)|e[f]((F @)e=2) 0] < Cyolt™

using the previous inequality witha =s — i, b =m —i.
Put &, , = & 12", We can deduce the following inequality for the trun-
cated dlstrlbutlons.

CoROLLARY 2. If A(F) < p < & then for all n > 1 and nonnegative integers
m, s

1(Za ™) < Clky m, s, p)[t]™ .

PROOF Lemma 2 in fact holds for the mixture 5/ as long as the relevant
moment conditions hold for both F and G; that is, if there are positive constants
B, and B, such that n > B,5,”“"® and n > B,a,*~». But from (16)

B, < [2(1 — 2p) - int|e—2E|X,| = (B, 'n)ts—2/2

where B, = {(1 — 20); similarly we may take B, = 1(1 — p,).
‘The next lemma is the main result of this section.

LemMa 3. If A (F) < p < L then for all real s > 0
(F — S7a()| < Clk, 5, p)(1 + |x|) et .
ProoF. From the identity (1) and expansion (2)
(7 = o) = f<~7 2) $12 Zai)|
§ D13 S (Fnna®),O(x — O)I(F + Gy} -
Using the bound (15) for X, and the correspondmg bound for ¥, we see that
n~#|X)), n4¥| < &|x| if |x| = C, for C, sufficiently large. Thus the integration

may be taken over |y| < i|x|. Choose, for each value of x, ¢ = |x|7x; then
(e, (x — 0y))| = §|x| if |y| < ]|, so for any s=0

(Fona®,¥(x = O))] < 2|x||(F, 0, @) < C X7 yI?

from Corollary 2. For |x| < C, we may apply a uniform bound instead, and
hence the result.

S. Truncation lemma. The purpose of this section is to translate Lemma 3
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into a result for the original variables. We consider here general moment and
pseudo-moment conditions. Define the class I' of functions on [0, o) by ge T’
iff g(0) =0, g(1) = 1 and

(i) g¢(x) is nonnegative and nondecreasing;
(ii) x/g(x) is defined for all x and is nondecreasing.

It is easily seen that (i) and (ii) are equivalent to
0 < h[g(x + k) — g(x)] < g(x)/x
forallx = 0, # > 0. Let geT, r be an integer at leastvtwo and deﬁné
De = n-CIAEX,g(nH X)) = n § |xlrg(x) F{dx) .
Suppose E|X,|g(|X;]) < co; we shall require the bound
(24) E[S,["9(1S.) = Clk, r)(1 + 7,) -

In the case k = 1, (24) is an immediate corollary of the inequality proved in V.
Sazonov (1974). (The inequality (24) was obtained independently by the author.)
Define for r = 0, 1, . . . the function g, on [0, co) by g, = ¢, and for r = 1

9.(¥) = §§ 0, () dy = §§ [(x — y)~/(r — D]g(y) dy-

For r = 1, g,(x) is nonnegative, nondecreasing and convex. Ifa>1, x > 0 it
follows from (i) and (ii) that

(25) g.(ax) < a™t'g.(x),
(26) rtg.(x) < xg(x) = (r + Dl g,(x) .

If x = (x,, -+, x,) € R* we have |x] < 2k, |x;| < kt|x]; it is easy to prove the
following inequalities for r = 1 (using the properties of g,):

27) 9.(1x) = 9.(Zka x]) = k7 Ziea 9.(1x)
1 9:(1%]) = 9/(X [xi]) = K71, (|x]) -

Using (26), (27) and (24) for k = 1 we can establish (24) for k > 1. Note that
if f: R* — R! is an integrable function such that f(x) = fi(|x]), where f;: R* —
R?, then for any Borel set 4 in R*

(28) Yiate 4 f(x) dx = 22" L(FR)]7* §, refi(r) dr

Suppose now that r is an integer at least three, and ge . Put.c, = B,n~?,
h(t)y =1+ tg(t), t = 0. '

LeEMMA 4. Suppose E|X,|"g(|X,|) < oo; then for all n = 1
VA — En)ix)] dx < Clk, 1)(e 4 74) -

Proor. Lety, =e¢, + ,. If 7, > {4 the result is immediate from (24). If
s < 75 We may take p = {; in Lemma 3, since A,(F) < 7,. From Lemma 3
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and (28)
(29 FADIF — T dx < Cury S AL + [x[F7+] 7 dx
é C2rn *
Using (24), the existence of an (r+41)th order moment for U and
n §,,51 2(|y|)F{dy} < 7,, one may show from (17) that
(30) § A(I(F " — F a0 dx < Gy
and similarly
(31) VA(DI(Z™ — Zma(o)| dx < Cur, -
We use the following inequality:
(32)  [(Fr— M) < [(F = D@ + [(Z,r — DMalb(x)|
+ [Z/N(b(x)) — ZZNy(%)|

where a(x) = T(x — nty), b(x) = T, 'a(x). Applying the change of variable
y = a(x), y = b(x) respectively and using the fact that the determinant of a
symmetric matrix is the product of its eigenvalues we find that

§ AN — E)a(a()| dx < Cr,
from (29) and

§A(I(Zor — Smya(b(x))| dx < Gyt
from (31). Finally, it may be shown that
(33) [ZN(b(x)) — ZN(x)| < CLT + |x]*++] 7y,
by writing b(x) = A(x — v) where A = T,7'T, v = ntpand t = (I — A)x + Av.
After some computation one finds that || < Cy(1 + |x|)r,. Using

INW(B(x) — 2) — Ny(x — 2)] = (S £ DJN(x — 2 — 61)
< Clt||x — z — Gt]e-tla—z—0t?

(since D;N,(x) = —x;N,(x)), one can eventually establish (33). Thus from (32)
we have ‘

§ A(IX)I(F " — EMa(x)| dx < Cur,
which along with (30) yields the result.
6. Application: convergence of integrals. In this section we obtain speeds of
convergence for the expectations of both bounded and certain unbounded func-

tions in B*. Following the notation of Bhattacharya (1970a) define for any real
function ¢ on R*, 4 ¢ R*

w,(A) = sup {|#(x) — d(y)|: x, y € 4} .
In particular, if 4 = S(x, ¢), the open sphere centered at x, radius ¢, put 0 (x) =
w4(A). A G-continuous function ¢ is a function in B,* for which Zw,(0) — 0
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as ¢ \, 0, and for such a function one has

(34) § 9()F* {dy} — § $(»)Gldy}
since F** converges weakly to G. It is thus natural to seek the speed of conver-
gence in (34); estimates of this speed were given by Bhattacharya (1970b). A
class of P-continuous functions & is said to be a P-uniformity class if the conver-
gence § ¢ dP, — { ¢ dP is uniform over % for every sequence {P,} of probability
measures converging weakly to P. Bhattacharya (1970b) is able to remove the
logarithmic term from his general result for G-continuous functions when the
family of translates of ¢ is a G-uniformity class. Using a characterization of P-
uniformity due to Billingsley and Topsoe (1967), it is seen that such functions ¢
are precisely those for which ||Zw|| — 0 as ¢\, 0. It may be noted that
Bhattacharya’s result for these functions follows immediately from Lemma 4
and his smoothing lemma (Lemma 8 in [2]). Recently, Bhattacharya (1975) has
obtained rates of convergence for the expectations of certain unbounded func-
tions. We prove here a smoothing lemma which applies to both bounded and
unbounded functions, and we are able to remove the logarithmic term from
Bhattacharya’s results.

Let r be an integer at least three, geI', and A(r) =1 + rg(¢) (r = 0). If
¢ € B, put

¢*(x) = [A(]xD] ¢ (x) — (0)] -

For any real function ¢ on R* define

P (%) = SUPy_<e $(3) >, PV(x) = Infy, e $(y) -
LEMMA 5. Let P, Q, K be probability measures in R* and suppose h(|x|) is inte-
grable with respect to P, Q and K. Let ¢ € B* and suppose ¢* is bounded. Put
D=P—0,0=|\¢dD| and let a > 1 satisfy

a = g0 K{dx} > % .

Let 0 <e< ¢ <at and t < (ac’)™! be a nonnegative integer. Put K {dx} =
K{e~'dx} and

r(e) = llg*[| § A(|x])|-7". Dl{dx}

Cr) = 18] Srerzer A(|x|) K{dx}

7(f) = SUPyy ciaer 0, 2%(X) .
Then

0 = (2a — 17[Cr(e) + AL(e'e™) + 7(0)] + Af[¢*][[(1 — a)/a]’
where A,, A, depend on the integrals of h(|x|) with respect to P and Q.
Proor. Consider d; = sup,, ;... | Z¢(x)| for a nonnegative integer j < ¢, where

S is the operator associated with D. Suppose that sup,, ;... Z¢(x) = ;. As-

sume that d; > z(f) and let » < d; — 7() be some positive number. "Let x, be
such that Z¢(x;) > 0; — 5 (|x;| < jae’). We have

T D (x;) = § D (x; — YKy}
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Let I, I, I, be the integrals over the regions |y| < ae, ac < |y| < aél, |y| = ae’
respectively. We have
L 2 §jy<ae (ZB(x;5) — [€0"%(x; — y) — @(x; — y)]}K.{dy}
= a[d; — 7 —7(0)]; ' ‘
I 2 Vaesiicar (290(x; — y) — [€0*(x; — y) — @B(x; — y)}K.{dy}
= (1 —a)[—0;,, — 2(0)];
1l < 119¥1) §§ A] + ae + |yl + [2D(P + Q){dz}K.(dy)
S A S MYDEAD) < ALEY) .
Thus '
D (x;) = ad; — (1 — a)d;,; — () — A, 8(e'e™Y) — ay .
If sUp,cjoer —ZP(x) = d; we find in a similar way that this inequality holds
with 72, Z¢**(x;) replaced by — 5% D¢*(x;). Also
TDPxy) s — . Dg(x;) < |I6*]] § Mlx;| + as + |y])|22 Dl{dy}
’ = Cr(e)
so that, since  was arbitrary, one has
0; < a'A + 00,
where A = Cr(e) + 4,{(e'e™) + 7(2), p = (1 — a)/a < 1; evidently, the inequality
holds trivially when d; < z(f). Iterating, one has
§=08 < a A1 +p+ 0+ o + ) + 0,
< (2o — 1)7A + p'Ay|p¥|
and hence the lemma. ‘
In order to use Lemma 5 we need to estimate the G-uniformity of the trans-
lates of ¢ within a (finite) sphere. Let # < 1, |x| < 1; we have
' L, (x) = | oM(x — yN(y) dy .
LetJ,, J, be the integrals over the regions —((y — £x), x) < 1, —((y — 3x), x) > 1
respectively. Then
Ji = S-((tﬂm,x)sl w¢h(—t)Nk(t + x)dt
= {_rpormsi € TR0 (= ON(1) dt < eZw (0)
J, < Cyllg*|| S—((y—ga:),x»l h(|yINw(y) dy

< ClIB*I| Sisiaar-t (1 + [V IN() dy
< Cllg*| x| it

Thus
(35) GoM(x) < eZ00) + C||p*|| |x|=++r-ve-iii-2,

We now give the main result of this section. As beforeletr > 3,gel, ¢, =
Ban™, 1, = n="URELXg(nmH X))
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THEOREM 1. Suppose E|X,|"9(|X}]) < oo. Then for all ¢ € B* with ¢* bounded,
and n =1 o v \
|§ ¢ d(F** — G)| < Cy(k, NI||$*||(en + 72) + § ;%% dG] .

Proor. If e, 4 7, = 1 the result holds trivially in view of (24). When ¢, +
7, < 1 the theorem follows from Lemma 4 and Lemma 5 With P = F* Q =G,
K, = U where a% = ¢,, ¢ = &, t = [(ae’)~}], and using (35) to estimate (7).

Setting r = 3, g(x) = min (x, 1) and noting that if ¢ is bounded ||¢*|| < w,(IR*)
we have the following result.

COROLLARY 3. Suppose 8, < co. Then for all ¢ € B)* and.n = 1
1§ ¢ d(F** — G)| < Clk, ][0, (R¥)e, + § 0,5 dG] .
If, further, the translates of ¢ form a G-uniformity class, then for all n > 1
[(F7* — Z)ll < Clk, N[0y(RYe, + || Zo,%||] .
The second inequality in Corollary 3 is due to Bhattacharya (1971).

ExaMPLE. Let r = 3, geI' and let ¢ be a real nondecreasing function .on.
[0, c0) With
¢*(x) = [1 + x"g(x)]7[¢(x) — ¢(0)]
bounded; put ¢(x) = ¢(|x]). For 0 < & < 1 it is easily verified that
§ 0t dG < C(k, r)||¢*||h .
Thus, if E|X|"g(|X;|) < oo, we have for all n > 1
(36) 1§ (xDEF* — G)dx}| < Clk, N)l|¢*[|(en + 7.) -

In particular, (36) contains speeds of convergence for the moments and pseudo-
moments E|S,|"g(|S,|)-

7. Application: nonuniform rates of convergence. If ¢ ¢ B/, put ¢y(x) =
#(R7'x) (R > 0). Let A, be the class of functions ¢ in B,* for which inf {|x]:
#(x) # 0} = 1. We obtain nonuniform speeds of convergence for the classes
{#r: 0 < R < oo} where ¢ is any G-continuous functionin A,. If geA,, ¢ < 1,
R > 1 we have

(37) § 05, (VNP dy = T3 @, " (RTY)N(y) dy
=< A(R) § 0,5 (2)Ny(2) dz

where A(R) = Re~(®*-1/32, |
Letr>3,9el, h(t) = 1 + g(r) (r = 0) and define ¢,, 7, as in Section 6.

THEOREM 2. Suppose E|X,|"g(|X,|) < oo, ¢ € A,. Then foralln =1, R > 0
|§ ¢z d(F** — G)| < Clk, N[w(RYA(R) (e, + 7,) + e § 0,0 dG] .
Proor. Since ¢ € A,, we have o '

$x*(x) = [A(X)]7{H(R™X) — 6(0)] = [A(R)]0y(R") .
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For R > 1, the theorem now follows from Theorem 1 applied to ¢, and (37).
If 0 < R < 1, use the first inequality in Corollary 3.

For any set 4 in R* let (4)* = {x: |x — y| < ¢ for some y ¢ A} and let 04 be
the boundary of 4. Let A.* be the class of Borel sets 4 with inf,., |x| = 1.

COROLLARY 4. Suppose E|X,|"g(|X,|) < oo and A is a Borel set such that either
AelDltor A°cA*. Thenforalln =1, R >0

[F+{RA} — G{RA)| < Clk, VKR e, + 7,) + e ™G{@A)Y2)]

This result includes the nonuniform estimate for distribution functions ob-
tained by Nagaev (1965) for the case k = 1, 8, < co. By taking g(x) = min (x, R)
for R > 1in Corollary 4, we find that if 7 is an integer at least three and E|X,|" <
co then

D,z < Clk, N[(1 + RN e, + n= 02§y X" Fldx})
+ (1 + Rr)—l(n—(r—z)ﬂ SE;’R [x[’F{dx}) + e—CIR2G{(aA}C2en}

where D, , = |F**{RA} — G{RA}|, E, » = {x: |x| £ n}(1 + R)}. The above in-
equality includes the nonuniform estimate of Rotar (1970) (when specialized to
identically distributed summands) for convex Borel sets. (It may be shown that
G{(0A4)"} < Ch uniformly over all convex Borel sets in R¥.)
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