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REFINEMENTS OF THE MULTIDIMENSIONAL CENTRAL
LIMIT THEOREM AND APPLICATIONS!

By R. N. BHATTACHARYA

University of Arizona

This is an expository survey of recent developments in the field of
rates of convergence and asymptotic expansions in the context of the multi-
dimensional central limit theorem. A number of applications are discussed.
One of them deals with normal approximations and expansions of distri-
bution functions of a class of statistics which includes functions of sample
moments.

0. Introduction and summary. The problem of estimating the error of normal
approximation in the central limit theorem is an old one. Among important
early work we cite Liapounov [28], Cramér [19], [20], Khinchin [26], Berry
[6], Esseen [21], and Bergstrom [5]. The present article emphasises those de-
velopments which have taken place since the appearance of Ranga Rao’s work
[36], [37]. Since the detailed proofs given in the literature may often appear to
be long and somewhat cumbersome, the statements of results in this survey are
generally accompanied by sketches of main ideas underlying the proofs.

In order to motivate the discussion we consider a sequence of probability
measures {Q,: n = 1} on R* converging weakly to a probability measure Q.
This means

0.1) {at fdQ, — § fdQ n— oo

for every real-valued, bounded Borel measurable function f on R* whose points
of discontinuity form a Q-null set. Equivalently, (0.1) holds if fis bounded and
the oscillation

0.2) W (x:¢) = sup {|f(y) — D)1 y, 2 B(x: e)}
of f on the open ball B(x: ¢) with center x and radius ¢ goes to zero as ¢ | 0 for
almost every x(Q). In turn this means that (0.1) holds if

(0.3) 0 (R¥) = sup{|f(y) — f2)]: y, 7€ R} < o0,
@y(e: Q) = (pewp(x: 6)Q(dx) | O as ¢|0.

We say w/(R*) is the total oscillation of f and @ ,(c: Q) is the average modulus of
oscillation of f with respect to Q. '
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2 R. N. BHATTACHARYA

A variant of a theorem due to Billingsley and Topsge [14] says that in order
that the convergence (0.1) be uniform over a class of functions &, irrespective
of the sequence {Q,: n = 1} converging weakly to Q, it is necessary as well as
sufficient that (0.3) holds uniformly over 5. Hence if {Q,: n = 1} converges
weakly to Q, then it should be possible to bound |§ fdQ, — | fdQ| by an ex-
pression which depends on f only via w,(R*) and the function ¢ — @(s: Q).
Note that if 7, denotes the indicator function of a Borel set A4, then

(0.4) ; ,(R") =1 if A#RF, A+¢,
B,(e: Q) = Q((04))
where 04 is the topological boundary of A and (0A)* is the set of all points at dis-

tances less than ¢ from 0A. One also defines another related average modulus of
oscillation, namely,

0.5) o Xe: Q) = sup,egr d),ﬂ(e: Q),

where f, is the translate of f by y, i.e.,

(0.6) Jux) = f(x + ) x,yeR".
Again note that if 4 is a Borel set, then

0.7) o7, (e: Q) = sup,er Q((3(4 + ))) »

where 4 + y = {x + y: x€ A}. Let now {X,: n > 1} be a sequence of i.i.d. k-
dimensional random vectors each with mean zero, covariance I = ((d;;)) (k X k
identity matrix), and finite sth absolute moment for some integer s = 3. 'Let Q,
denote the distribution of n~#(X, + ... + X,), and let ® be the standard normal
distribution on R*. Theorem 1.7 estimates the error § fdQ, — | fd® in terms of
4(R*) and w*(¢,: ®) where ¢, = O(n~t). Theorem 1.5 provides an asymptotic
expansion of § fdQ, with an error term o (n~“~»”) for all f satisfying

‘(0.8) 0 (R¥) < o0, @ (e: D) = o((—log e)~ =077 el0,

if Cramér’s condition (1.36) holds. The condition (0.8) is very mild. Both these
theorems have appropriate extensions to unbounded f. In case X, has a density,
Theorem 1.2 provides an asymptotic expansion for the density of Q,. Under the
assumption that X, has a nonzero absolutely continuous component, Theorem 1.3
implies that the variation norm of the difference between Q, and its asymptotic
expansion is o (n~~%7), If X, has a lattice distribution then a precise expansion
of the point masses of Q, (Theorem 2.1) may be used in conjunction with a
multidimensional generalization of the Euler-Maclaurin sum formula to yield
an asymptotic expansion of probabilities of rectangles properly aligned with the
lattice (Theorem 2.2). This restriction on the type of sets for which one has
computable expansions in the lattice case is rather severe. The source of diffi-
culty here ligs fairly deep. An indication of the nature of this problem is afforded
by a discussion of its relationship with the lattice point problem of analytic
number theory (Section 3). The usefulness of Theorem 3.1 and its extension
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(3.12) to special convex sets 4 may be viewed in this context. Section 4 is de-
voted to another application. Here one finds precise error bounds and asymptotic
expansions of distribution functions of a class of statistics. This class includes
those statistics which are functions of sample moments. With the help of the
expansions of Section 4 we are also able to resolve an old conjecture concerning
the validity of the formal Edgeworth expansion using the so-called delta method
for computation of approximate moments and cumulants. To keep the presen-
tation simple, proofs (of the results of Section 4) are merely outlined leaving
the details to a future publication. The final section briefly discusses some other
applications.

The recent monograph [11] gives a comprehensive account of the theory of
rates of convergence and asymptotic expansions in the context of the central
limit theorem. Details of proofs of the results in Sections 1 and 2 (excepting
Lemma 1.4) may be found there. However, applications are not dealt with in
[11]. The present article is intended not only to provide an easy access to some
of the main results of the theory but also to introduce the reader to some areas
of fruitful applications. Bearing statistical applications (especially, robustness)
in mind, an attempt has been made to specify (see, e.g., remarks following (1.50)
and (1.64)) the nature of dependence of the error in asymptotic expansions not
only on the function, whose integral one approximates, but also on the under-
lying distribution. In addition, Lemma 1.4 serves to clarify the role of Cramér’s
condition (1.36) in applications.

For ease of reference we list here some of the main notation used in this article.
We deal with sequences of i.i.d. random vectors {X,: n > 1} (or {Y,: n = 1},
{Z,: n = 1}). The nth normalized partial sum is n~#(X; + --- 4+ X,)if EX, = 0;
its distribution is Q, and characteristic function 0,. The Fourier transform of
a function fis f, and the Fourier-Stieltjes transform of a finite signed measure
G is G. The standard normal distribution on R* is ® and its density is ¢, while
®,, ¢, denote the distribution and density of a normal random vector with mean
zero and covariance V. Thus ® = ®,, where [ is the identity matrix. The
Cramér-Edgeworth polynomials P,, r > 1, are defined by (1.16), (1.21). The
function P,(—¢,) is defined by (1.24) (on replacing ¢ by the more general ¢,).
In other words, P,(—¢,) is the function (¢, times a polynomial) whose Fourier
transform is (B, - @,)(f) = B,(ir) exp{—<t, Vr)}. The signed measure having
density P,(—¢,) is P(—Dy).

1. The Cramér-Edgeworth expansions and rates of convergence. Consider
a sequence of independent and identically distributed (i.i.d.) random vectors
X, = X,®, .-+, X,'®): n = 1} with values in R* and common distribution Q,.
Unless otherwise specified we assume (without essential loss of generality)

(1.1) EX, =0, CovX, =1,

where EX,, Cov X, are, respectively, the mean vector and covariance matrix of X,,
and [ is the k X k identity matrix. Letv = (v, ..., v*’) denote a multiindex,
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i.e., a k-tuple of nonnegative integers, and write

(1.2) | = »® 4 - P, pl =y D@L Lyl

X = (x(l))ym . (x(k))u(k) x = (x®, ..., x®) e R* .
The vth moment of X, (or of Q,) is
(1.3) u, = EXP = (e x*Qy(dx) ,

provided the integral is convergent. For a positive integer s the sth absolute
moment of X, (or of Q)) is

(1.4) 0s = E[|X||" = (e [[X][°Qu(dX) »

where ||+|| is Euclidean norm. If G is a finite signed measure on (the Borel sigma
field of) R¥, then the Fourier-Stieltjes transform (or characteristic function (ch.f.)
in case G is a probability measure) of G is

(1.5) G(1) = § g explit, x)}G(dx) teR*,
where ( , ) denotes Euclidean inner product. Since a Taylor expansion and (1.1)
yields

(1.6) 0 — 1 = 1 re R,

the range of 0, on the unit ball {||7]| < 1} is contained in the disc D(1: }) =
{zeC: |z — 1] < 4} of the complex plane. Since log, the principal branch of
the logarithm, is analytic in D(1: %), log 0, has continuous derivatives of all
orders up to s (if p, < oo) in a neighborhood of the origin. The vth cumulant
of X, (or of Q,) is

(1.7) 1, = i~M(D* log 0,)(0) ,
provided p,, < oo. Here D* is the vth derivative, i.e.,
(1.8) D — Dl"m . Dk,,(k) ,

where D; denotes differentiation with respect to the jth coordinate variable.
Since y, = g, = 0if |y| = 1, a comparison of the Taylor-expansions

(1.9) 0(t) = 1+ Tasize by (07 + o(lAl) »

log 0u(1) = Lasiss %5 (10" + 0 (I} -0,
leads to the formal identity
(=1

m

(1.10) Diesiyi<e %';“ (1) = 2m=1 [Zzgm«» %’L @1y :l'" .

By equating coefficients of (if)* from the two sides of (1.10) one may express
cumulants in terms of moments. In particular, if s > 3 then (1.10) implies

(111) X, = Ky if [v|:2,3.
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Now the distribution of X, + ... 4 X, is the n-fold convolution Q** and its
ch.f. is Q,*. Let Q, denote the distribution of X, + --- + X,). The vth
cumulant of Q,, is i~ times

(1.12) D*(log 0,)(0) = D*[log §*(+[n)](0) = n—(wi=vray v,
if p,,; < co. This relation makes an asymptotic expansion of §, in powers of

n~t possible. To see this assume p, < oo for some s > 2 and use the second
relation in (1.9) to obtain

(113)  tog 0 = —ME 3 T iy o)
V.
= M 4 S B iy o), n oo
V.
Hence for all r € R*
(1.14) 0. = exp(—[l12} - exp { Dusis 2 (iyn=-27]
V.
X [1 4 o(n~-27)] n—oco.

If one takes s = 2 in (1.14) and uses the Cramér-Lévy continuity theorem ([20],
page 106) then one arrives at the classical multidimensional central limit theorem:
If p, < oo, then {Q, : n = 1} converges weakly to the standard normal distribution @.
If s = 3, then expanding the second exponential in (1.14) and collecting together
terms involving the same power of n~* one has

(1.15) exp{ Zasms LA M} =1+ 322 BB (it) + o(nmt-y

More precisely, replacmg n~t by the real variable u one obtains a Taylor ex-
pansion of the exponential as a function of u. The sum 1 4 Y222 u7P,(if) is this
Taylor expansion, i.e.,

a‘;:’ [exp { Pssiviss %—;’ (it)”u"’"zﬂ (0) = r! P (i) .
Combining (1.14) and (1.15) one gets
(1.17)  0,(f) = exp { il } [1 + 3928 n=2B,(ir)] + o (n=e-27) |

(1.16)

By carefully estimating the remainders in the two Taylor expansions (1.13) and
(1.15) one may obtain the following result.

THEOREM 1.1. Suppose p, < oo for some integer s = 3. There exist two positive
constants ¢,(k, s), cy(k, s) depending only on k and s such that if ||tf|| < cy(k, s)nt +
s V(s=2) then

(L18)  D[Qu(0) — {1 + Zs=d n=7P,(in)} exp{—||1|*/2}] _
= F-”Tw[llfll’“'”' + (AP M exp{—[ld"/4} P < s,

where 9, — 0 as n — co and 8, < ¢,(k, 5)p, for all n.
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The first result of this type was obtained for k = 1 by Cramér [20] (page 72).
Many authors have refined Cramér’s result and the present version is proved in
[11] (Theorem 9.12).

To obtain a more computable expression for P,(if) it is convenient to define

(L19) w0 =r Sp Bee (i) = i) = 1 D, 2 Gy

It is not difficult to check that y,(7) is the rth cumulant of the random variable
{t, X;). Now (1.15) reduces to

(1.20) exp { S agrge AL Xr(lt) n- (7—2)/2} =14 X ln'”zP,(it) + o(n—-vrr)

From this one obtains
(1-21) P,r(it) — {Z* X.71+2(lt) X.72+2(lt) .. X.jm'l'ﬁ(lt) }
Ui+ D' G+ DU U+ 2)
where the summation ) * is over all m-tuples of positive integers (j,, -+ 5 jn)
satisfying o
(1.22) Shaji=r.
For example,

Pyit) = B0 = L) = Des B Gty
i X4(”) Xs (’t)
(1'23) P2( t) + 2’ (3')2 ’
_ (i) (20)xs(22 5 (it
Py~ <’ 100 0.

For a smooth function f rapidly decreasing at infinity the function r — (ir)*f(7) is
the Fourier transform of (—1)*'D*f. Hence the function r — P,(it) exp {—||¢||*/2}
is the Fourier transform of the function

(1.24) P,(—)(x) = P,(—D)¢(x) xeR*,
where ¢ is the standard normal density, i.e.,
(1.25) $(x) = (2n)~+ exp{—||x|['/2}  xeR,

and P,(—D) is the differential operator obtained by formally replacing (ir)* by
(—D)* = (—=1)*'D¥ (for each multiindex v) in the polynomlal expression (1.21)
for P,(if). For example,
1(_¢)(x) — _'6' Z;ﬂ=1 E(Xl‘”)3[3x‘” _ (x‘“)s]
(1.26) — } Thicremsr E[EP)PX™][x™ — xtm(x®)2]
+ Disi<m<psi E(Xl‘“Xl‘""Xl"”)x”’x“"’x“"’
x = (x, ..., x®) e R¥.

The finite signed measure having density P,(—¢) will be denoted by P, (—®).
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Note that ¢ + 3,222 n="/*P,(—¢) is a polynomial times ¢, and that.(1.18) implies

r=

(on taking the derivative at r = 0)

(1.27)  §axQu(dx) = (—=)*(D*0,)(0)
= {wX[p(x) + DA P(—P)W)]dx OS5,
However, the relations (1.27) do not uniquely determine this polynomial (mul-
tiple of ¢). The reason for this is that the polynomial is of degree 3(s — 2) > s,
if s > 3.
Let us assume now that Q, is integrable. Then Q, is integrable and Q, has a
density ¢,. By Fourier inversion

(1.28) h(x) = X*[ga(x) — $(x) — LA n7P(—$)(¥)]

= (27)* § g exp{—i(t, xD}h, () dt x e R,
where
(129) A = (=)D 0,0 — (1 + ZiztnP iy exp {4 ].

By Theorem 1.1

(1'30) S{||z||s¢1(k,3m%/p31/(s—2)) |ﬁ,,(t)| dt = o(n==27),

Also, since |0,(7)| < 1 for ¢ # 0 and |0,(f)] — 0 as ||¢|]| — oo (by the Riemann-—
Lebesgue lemma)

(1.31) 3 = sup {|0,(); || > ex(k, 5)/ple "} < 1.

By repeated use of the Leibnitz rule for differentiation of a product of functions
it may be shown that

(1.32) [D0u(0)] = D0 (1fr)| < iy Qo]
Therefore,

S it1> oq(k,arnd /0 1/ 121 ID”QA%(I)| dt
(1.33) < V20,371 e |01/ di

= plltRagn=lvi-1 (L |Q1(t)| dt = o(n=t-27)

Since the remaining terms in h, possess an exponential factor it follows from
(1.28), (1.30), and (1.33) that

(1.34)  sup,cpe [2[gu(x) — $(x) — L n " P(—B)(N)]| = o(n 77

0<pl<s.
Taking v = 0 in (1.34) one arrives at a uniform local expansion of g,. It may be
noted that the proof undergoes only minor modification if one assumes that |Q,|™
is integrable for some m > 1. It is also fairly simple to show that the last con-
dition is equivalent to saying that Q,*™ has a bounded density for some positive
integer m. Thus one has

THEOREM 1.2. Assume p, < oo for some integer s > 2. In order that for suffi-
ciently large n the distribution Q, may have a density q,, satisfying (1.34) it is neces-
sary as well as sufficient that Q,*™ has a bounded density for some positive integer m.
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One dimensional versions of this theorem may be found in Gnedenko and
Kolmogorov [22] (page 228) and in Petrov [32]. The present version is proved
in [11] (Theorems 19.1, 19.2). If s > k + 1, then on integration over R* the
relation (1.34) yields an estimate o (n=~»”) for the variation norm ||Q, — ® —
it n?P (—@)||. However, for this there is a better result. We denote by
|G| the total variation (measure) of a finite signed measure G.

THEOREM 1.3. Suppose p, < oo for some integer s = 2. In order that the relation
(135)  Sar (L4 [, — @ — Xizi P (—D)|(dx) = o (w7

may hold it is necessary as well as sufficient that Q,*™ has a nonzero absolutely con-
tinuous component for some positive integer m.

If the integrand (1 + ||x||) in (1.35) is replaced by 1, then one arrives at the
variation norm estimate mentioned above. This estimate is due to Bikjalis [13].
The present stronger result is useful (e.g., in estimating moments of a function
of X = n™}(X, + --- + X,)) and a detailed proof is given in [11] (Theorem 19.5).
It should be noted that the hypothesis of Theorem 1.3 is less restrictive than
that of Theorem 1.2. Thus if one is interested only in estimating § fdQ, for
Borel measurable functions f (or probabilities Q,(B) for Borel sets B), then
Theorem 1.3 is a more useful result than Theorem 1.2.

A hypothesis less restrictive than those used in the preceding theorems was
introduced by Cramér ([20], page 82). This is the so-called Cramér’s condition:

(1.36) lim supy, -, [0y(1)] < 1.

In view of the Riemann-Lebesgue lemma, it Q, has a nonzero absolutely con-
tinuous component then Q, satisfies (1.36). There are, however, many singular
measures satisfying Cramér’s condition. The following lemma provides a class
of examples which are used in Section 4.

Lemma 1.4. Let X be a random vector with values in R™ whose distribution has
a nonzero absolutely continuous component H (relative to Lebesgue measure on R™).
Let f;, 1 < i < k, be Borel measurable real-valued functions on R™. Assume that
there exists an open ball B of R™ in which the density of H is positive almost every-
where and in which f;’s are continuously differentiable. If in B the functions 1,
fis ++ s fy are linearly independent, then the distribution Q, of (fy(X), - -, fi(X))
satisfies Cramér’s condition (1.36).

Proor. Let 8, = (6,", -+, 6,¥). e R¥, 6, = 0. The assumption of linear in-
dependence implies that there is a j (1 < j< m) and an x,e¢ B such that
(2510,YD; f)(x) = 0. Without loss of generality we may take j = 1 and as-
sume that (3., 0D, f)(x) > 6 > 0 for all xe B and all ¢ in the open ball
B(f,: ¢) with center ¢, and radius ¢ > 0. Here J is an appropnate positive
number. Consider the function

900, x) = (@, x),
X' = (ZLI 0”)fz(x)’ X, .. x‘"") X = (x(l)’ cen x(m)) eR™,
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on B(f,: ¢) x B. Since the Jacobian of this map is }}f_, 0 D, f;, which is posi-
tive on B(f,: ¢) x B, one may use the inverse function theorem to assert (by re-
ducing ¢ and B is necessary) that g defines a diffeomorphism between B(6,: ¢) x B
and its image under g. It follows that for each 6 € B(f,: ¢) the map g,(x) =
(25, 0Pf(x), x®, -+ -, x™) is a diffecomorphism between B and g,(B). Let H,
denote the restriction of H to B. Then the measure H, o g,~! induced on g,(B)
by the map g, has a density given by

O hgr)
hy = o(B) ,
@) = S 900, f)0,70) 7€ 98)

where 4 is the density of H,. Extend 4 to all of R™ by setting it equal to zero
outside g,(B). Then for all ze R, z ¢ dg, (B), hy(z) — h,(2) as 0 — 6,. Write

by ((29) = (pm1 By(2) d2® - . dz'™ ZM e R,

Since the m-dimensional Lebesgue measure of dg, (B) is zero,

(1.37) Sat By, () — ko ()| du < (g |hy(2) — hy(2)| dz — 0 6—0,.
Now suppose (1.36) does not hold. Then there exists a sequence {t,: n = 1}
such that ||z,|| — oo and

(1.38) 10.(t,)] — 1 as n— oco.

Let 6, = 1,/||t,||. Restricting to a subsequence if necessary, we assume that
{6,} converges to some #,. Let G, be the distribution of the random variable
0,0 (X)forn=0,1,2, .... Write

(1'39) G'rb == Gn,l + Gn,z ’
where G, ; has density #, ,. Then

(1.40) 10:(t)] = 1G(l11ID] = 1Gas(lltalD] + 1Gaa(llzlD)] -

But ||G, , — G,y ,|| — 0 as n — co by (1.37). Hence G, ,(u) converges to G, ,(u)
uniformly in . Also by the Riemann-Lebesgue lemma Gy o(||1]]) — 0 as n — oo.
Therefore, |G, ,(||7./|)| — 0. Using this and (1.40) one has

lim sup, ., |0s(t,)| < lim sup, ., |G, y(||%[])] < lim sup,_. ||G..,|
=1 — Spmbhy(u)du < 1.
This contradicts (1.38). []

To appreciate the significance of this result take m = 1, k > 1. Then x —
(fi(x), - -+, fi(x)) is a curve in R¥, and the distribution Q, of the random vector
(fi(X), - -+, f(X)) is clearly singular (with respect to Lebesgue measure on R¥).

It has been shown by Yurunskii [44] that if the f;’s in Lemma 1.4 are analytic
then there exists an integer m such that Q,*™ has a nonzero absolutely continuous
component.

It is clear that if Q,*~ is, for all n, singular (with respect to Lebesgue measure
on R¥), then there exists a Borel set 4 such that Q,(4) = 1 for all n and ®(4) = 0.
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Thus convergence in variation norm is ruled out and we fall back on weak con-
vergence. Recall the definitions of the total oscillation w,(R*) and the average
modulus of oscillation @ (e : @) (see (0.2), (0.3)). The following expansion holds.

THEOREM 1.5. If p, < oo for some integer s = 3 and O, satisfies Cramér’s con-
dition (1.36), then for every real-valued, bounded, Borel measurable function f on
R* one has

(1.41)  |Spefd[Q, — @ — X ?P(—D)]| = 0 (R¥) + @ (e~: q))

(3—2)/2

where 3, — 0 as n — oo, d is a positive constant, and the quantities 9, and d do not
depend on f.

A detailed proof of this theorem may be found in [8] (Theorem 4.3). How-
ever, the main ideas underlying the proof may be stated rather simply. In the
present case 0, is not necessarily integrable. Therefore, one chooses a kernel
probability measure K whose support is contained in the closed unit ball of R*,
and whose characteristic function satisfies
(1.42) ' |D*K(1)| = O(exp{—||1]|*}) ]| — oo,
for all multiindices v. The existence of such a kernel follows from a result of
Ingham (see [8], Corollary 3.1). For ¢ > 0 define the probability measure K, by
(1.43) K.(A) = K(¢7'4) (A Borelset; ¢4 = {e7'x: xe 4}).

The effect of smoothing by convolution with K, is provided by the following
lemma (see [8], Corollary 2.1).

LEMMA 1.6. Let G be a finite measure and H a finite signed measure such that
G(R¥) = H(R"), and let K be a probability measure on R*. If

(1.44) KB@O: 1) =1 BO: 1) ={||x]| < 1}),

then for every ¢ > 0 and every real-valued, bounded, Borel measurable function f on
R* one has

(1.45) $a fd(G — H)| = 0(RY||(G — H) * K[| + &2¢: |H])

where |H| is the total variation of H.

In this lemma let G = Q,,, H = ® + Y22 n="*P,(— ®) and K as specified ear-
lier. The optimum ¢ is of the order e‘dj‘ where d is a positive constant satisfying

(1.46)  0<d< —_logf, 0=sup{Q,()]: [l > (1607}

Cramér’s condition (1.36) ensures that ¢ < 1 and that, consequently, such a
choice of d is possible. Since (G — A) - K, is integrable, one may- use Fourier
inversion and Theorem 1.1 to estimate the variation norm ||[(G — H) = K,||. In-
tegrability of K, and the fact that sup {|Qn(t)| ||t|| > n%/(16p3)} = 6" makes an
adequate estimation of the tail integral of (G — H) - K, possible.
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To apply Theorem 1.5 note that the right side in (1.41) is o(n=~2/%) if (0.8)
holds. For example, consider the class of Borel sets

(1.47) S (a: ®) = {A: A Borel set, O((04)) < ac* for ¢ > 0},
where a and a are specified positive numbers. Then one has
(1.48)  sUp4c w0 [Qu(A) — O(A) — X321 17 P (— D)(A)| = o(n™C27) .

It was first shown by Ranga Rao [36] and later by von Bahr [2] that for the class
& of all Borel measurable convex subsets of R* one has (a complete proof may be
found in [11], Corollary 3.2)

(1.49) . SUPgee P(OC)) < a(k)e e>0.
It follows from (1.48), (1.49) that
(1.50)  supgeq |Qu(C) — @(C) — T3 n P (= P)(C)| = o(n=77).

We make two more observations on Theorem 1.5. First, suppose # is a rela-
tively norm compact class of probability measures Q, satisfying, in addition to
the hypothesis of Theorem 1.5, the condition

(1.51) SUPg e § ok ||X[["*1Qy(dX) < o0 .

It is then simple to show, using norm compactness, that on & the quantity 6
defined in (1.46) is bounded away from one. Hence (1.41) and, therefore, (1.48),
(1.50) hold uniformly over such a class & The second remark concerns the
extension of (1.41) to unbounded f. Such an extension is possible if

(1.52) M(f) = supseze (1 + [[X]I) 7] f(X)] < oo

Indeed, if M,(f) < oo for some integerr, 0 < r < s, then (1.41) holds (see [11],
Theorem 20.1) with w/(R*) replaced by

(1.53) M(f) = 2inf,em M(f — ©) .

Observe that if M,(f) = oo, then § fdQ, may not exist.

Theorem 1.5 still leaves out the entire class of discrete probablhty measures
as well as many nonatomic singular distributions. If Q, is of the lattice type,
then |0,| is periodic and, consequently, the lim sup of |Q,(7)| as ||¢]| — o is one.
For an arbitrary discrete Q,, the ch.f. 0, is a uniform limit of trigonometric
polynomials and is, therefore, almost periodic in the sense of Bohr; hence
lim sup |0,(#)] = |0,(0)] = 1. Now it is possible to show ([11], Theorem 17.5),
no matter what the type of the distribution Q, is, that an affine subspace of di-
mension m (0 < m < k) has Q, measure at most O(n~*=™/2) provided p; < oo.
If Q, is of the lattice type, then this bound is actually attained, and it follows
that the distribution function F, of Q, has jumps of order O(n=%). But ® -+
23523 =P (— @) is absolutely continuous. Thus Theorem 1.5 can not be true in
the lattice case. However, because of the lattice structure a different expansion
of Q,(4) for special rectangles 4 may be given. This is discussed in Section 2.
If no assumption is made on the type of Q, one may still estimate { fd(Q, — ®).
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THEOREM 1.7. If p; < oo, then for every real-valued, bounded, Borel measurable
function f on R* one has

(1.54) |§ 2t fA(Qn — P)| < e(k)@(R¥)psn™ + cy(k)w;* (e, D),
where ¢, = c,'(k)o,n%.

To prove this one chooses, as in the proof of Theorem 1.5, a smoothing kernel
K. However, this time the probability measure K is chosen so that K vanishes
outside a compact set. This rules out the possibility of K having a compact
support. Instead one requires

(1.55) rEK{I <IH >4, (wlX]*TK(dx) < oo
Define K, by (1.43). Then one has, instead of Lemma 1.6 (see [8], Corollary 2.2),

LemMA 1.8. If G is a finite measure and H is a finite signed measure such that
G(R*) = H(R*), and if K, is as above, then

(1.56)  [§mfd(G — H)| = (2r — )73 RYI(G — H) = K| 4+ o,*(2e: [H])],
for every bounded measurable f.
One also needs the analytical result (see [11], Lemma 11.6)

LEMMA 1.9. There exists a positive constant c,(k) such that if g satisfies

(1.57) §re (1 + [Ix][**)]g(x)] dx < oo,
then
(1.58) [19l; = § e |9(x)| dx = co(k) max,, o414 || D*]]; -

Write G = Q,, H = ®, ¢ = c,(k)p;n~%, and let g be the density of (G — H) x K,.
Assume p, ., < oo, so that (1.58) may apply. Note that D*[(G — H) - K ()
vanishes outside a sphere of radius O(n?). Thus Theorem 1.1 is adequate in
showing that the right side in (1.58) is O(n~t). Now use Lemma 1.8 to complete
the proof of Theorem 1.7 in the case p,,, < oo. Finiteness of p,,, is assured by
the hypothesis of the theorem if k =1 or 2. For k > 2 one uses truncation
(see [9] or [11]).

Letting f in (1.54) be the indicator function of a Borel set 4 one gets

(1.59)  [Qu(A) — B(A)]| < cy(k)oyn= + ¢/ (k) sup,e e D((IA)» + ) -
In view of (1.49) and the fact that & is translation invariant, it follows that
(1.60) SUPge |Qn(C) — P(C)| = eo(k)osn? .

The inequality (1.60) is an improvement of an earlier result of Ranga Rao [37].
Inequalities (1.59) and (1.60) were proved independently by von Bahr [2] and
the present author [7] under slightly more stringent moment conditions (e.g.,
in [7] it is assumed that p,,, < oo for some § > 0). Later the present form of
(1.60) was obtained by Sazonov [38]. Theorem 1.7 is due to the author [9].
An extension to unbounded f and applications to nonuniform rates of conver-
gence and mean central limit theorems may also be found in [9].



REFINEMENTS OF THE CENTRAL LIMIT THEOREM 13

Although Theorem 1.7 seems adequate for most applications in which no as-
sumption is made on the type of distribution Q,, it is still important to know if
w,* may be replaced by @, in (1.54). Very recently, Sweeting [41] has settled
this important issue by proving that this is indeed possible. That this is possible
if ¢, is also replaced by ¢,” = ¢, log n was shown earlier in [7], [8].

The next theorem of this section provides a limited expansion under a relax-
ation of Cramér’s condition (1.36). To state this we define a strongly nonlattice
probability measure Q, to be one for which

(1.61) 10,1 <1  forall t=0.

It is easy to show that in one dimension the terms nonlattice and strongly non-
lattice are equivalent. This is not the case in higher dimensions. Indeed, given
a real ¢ and a nonzero vector ¢, one may easily construct a nonlattice (or even
nondiscrete) probability measure Q, which concentrates all its mass on the
countable set of hyperplanes {x: {7, x) = ¢ + 2nr}, n=0, 1, 2, ....
Clearly |0,(t,)| = 1, so that , is not strongly nonlattice.

THEOREM 1.10. If Q, is strongly nonlattice and p, < oo, then the relation
(1.62) Vet fd[Qy — @ — n7tP(—D)] = o(n7H)
holds uniformly for every class & of functions satisfying
(1.63) Sup,. - @, (R¥) < oo, SUPse - 0 X(e: @) =0(c) as ¢]0.

The proof of Theorem 1.10 is analogous to that of Theorem 1.7. Let 5 be
any small number, and let ¢ = n~%;. In Lemma 1.8 take G = Q,, H = ® +
n~iP(—®@), and let K, be as in the proof of Theorem 1.7. To estimate |[(G —
H) x K|| use Lemma 1.8 with the density of (G — H) « K, as g, and then apply
Theorem 1.1 to estimate the integral of |D*§| = |D*[0, — ® — n 1B (—D)K]|
over a ball of radius ¢,'n, say. This estimate is w (R*) - o(n~%). Since K,(f) = 0
for ||#]| > nt/y, one needs to estimate the integral also over the set B, = {c,/nt <
|[¢]l =< nt/n}. Since Q, is strongly nonlattice, one has

(1.64) 0(u) = SUP, ¢y <u 10,0 < 1 u>c',

and |0,(1)| = |0,(t/nt)|* < (3(y~")) on B,. But (§(7%))" goes to zero exponentially
fast as n — oo, and the estimation is complete. It is also clear that a detailed
knowledge of the asymptotic behavior of (-) at infinity would enable one to
refine (1.62). For example, if p, < co and d(u) = O(1 — u~') as u — oo, then
by taking one more term in the asymptotic expansion one may replace the re-
mainder o(n~%) by O(n7?) in (1.62). The relation (1.62) is also uniform over
every relatively norm compact class of probability measures Q, (strongly non-
lattice and normalized) whose fourth moments are bounded away from infinity.

In many applications one needs to estimate the probability Q,({||x|| > a.})
where a, — co as n— co. The estimation (1.60) is usually not adequate for
this purpose. In case the Laplace-Stieltjes transform 2 — § exp{{2, x)}Q,(dx) is
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finite in a neighborhood of the origin, precise estimates may be given, provided
a, = o(nt). In one dimension this was done by Khinchin [26] in a special case
and Cramér [19] in the general case: For a multidimensional extension we refer
to von Bahr [3]. We shall not discuss this large deviations theory here. For
applications discussed in this article the following result (due to von Bahr [1])
is adequate.

THEOREM 1.11. If p, < oo for some integer s = 3, then for each 6 > 0 one has

(1 65) Supaz((u-z)w) logn)% asQn({llx” g a}) = 0% n—(s—2)/2
. where 8, goes to zero as n — co.

To prove this we need to apply Lemma 1.6 to G=0Q,, H=®+
31222 n~2P,(—®), K, as used in the proof of Theorem 1.5, and the function

fy =0 if x| <a
=a if ||x||=a.

Also the quantity o /(R¥) in the bound (1.45) has to be replaced by M,(f) defined
by (1.52). In this case M,(f) = a’/(1 + a') < 1, and &4(2¢: |H|) = a’|H|({a —
2¢ < ||x|| < @ + 2¢}). Since a is large, the average modulus of oscillation is
small (namely, o(n~¢~*/%) if ¢ = n~*log n). The variation norm ||(G — H) * K[|
is estimated as usual by appealing to Theorem 1.1 and doing a separate estima-
tion of the integral of D[(G — H) - R.](t) over the region {||¢f]| > n?}. This last
integration is facilitated by our choice of the kernel K (whose Fourier transform
goes to zero fast at infinity).

2. Asymptotic expansion in the lattice case. A discrete subgroup L of R is
a lattice if it is of rank k, i.e., if L has a representation

(2.1) L=Z‘El+v“‘ + Z- & ={D-imé& my, ..., mecZ}.

Here &, - -+, &, are k linearly independent vectors of R* which are said to form
a basis of L, and 7 is the set of all integers. A probability measure Q on RF s
of the lattice type (or, simply, lattice) if there exist a lattice L and a vector x,
such that

(22) O(fx + L) =1.

A lattice random vector is one whose distribution is of the lattice type. If Q is
lattice and nondegenerate (i.e., no hy'perplane carries the entire mass of Q), then
there exists a smallest lattice L,, called the minimal lattice of Q, such that (2.2)
holds with L = L, and some x, (see [11], Lemma 21.4). It is obvious that if Q
has finite second moments then it is nondegenerate if and only if its covariance
matrix is nonsingular. If the standard Euclidean basis {e,, - - -, e,}.is a basis of a
lattice L, then L = Z*. For the sake of simplicity we assume below that Q, has
a nondegenerate lattice distribution-with minimal lattice Z*. Suppose X, has a
nondegenerate lattice distribution whose minimal lattice has a basis {§,, - - -, §,}.
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Note that if T is the linear transformation mapping &,, - -+, §, into e;, - - -, e,
then the random vector Y; = TX, has minimal lattice Z*. Since such a trans-
formation changes the covariance matrix, we must now deal with an arbitrary
covariance matrix V instead of the identity /. In addition, it would be conven-
ient to take x, = 0 in (2.2). However, in order that one does not lose generality,
one should then deal with an arbitrary mean vector. Throughout this section,
therefore, we require that the lattice random vector Y, has a distribution Q with
minimal lattice Z* and that

(2.3) EY, =, CovY, =V,
where V is nonsingular. Let then {Y,: n > 1} be a sequence of i.i.d. lattice
random vectors with Y, as specified. Let Q, denote the distribution of (Y, + - - -
+ Y, — ny)/nt. Write
a — ny

nt
(2.4) @) =Pr(Yy+ .-+ + Y, =a) = Qu({Yan}) xeZ*,

Gao(%) = 17 2[By(x) + Z3Tan"P(—y)(X)] -

Here ¢, is the normal density on R* having zero mean and covariance matrix V, and
P,(— ;) is obtained by replacing ¢ by ¢, in (1.24). The polynomials P, are the
same as before with the understanding that the cumulants y, are now those of
Y, — p.

Yan =

THEOREM 2.1. If p, = E||Y, — p||°* < oo for some integer s = 2, then

(25) SUPyezk (1 + ”ya,n”s)'Pn(a) - qn,a(ya,n)l = o(n—(k+s_2)/2) ’
Zank |Pn(a) - qn,s(ya,n)l = o(n—(s—Z)/Z) n—oo.

In order to prove (2.5) first note that the ch.f. 0" of Y, + ... + Y, is the
multiple Fourier series

(2.6) 0%(1) = Taeze exp{i<t, ad}p,(a) te R,
so that
(2.7) Pa(@) = (21)7* § (e O"(1) exp{—i<t, a)} dt

= (@) M § b b €XP{— KT, Yo, a}0u(7) dr
changing variables t — ¢ = n!t in the second step. Now approximate 0, in (2.7)
by its asymptotic expansion (a change of variables will convert Theorem 1.1 into
the needed expansion corresponding to an arbitrary covariance matrix V) and
compare the resulting expression with

(2'8) qn,s(ya,n) = (271:)_k,1_k/2 SRk exp{_ i<T’ yam>}

X [1+ Ty nrPP(ic)] exp{— ¥z, Vo) dr ..
Similarly y; , p,(a) and y% g, (@) are compared by inverting derivatives of 0,
and those of its expansion. The first relation in (2.5) is obtained in this way;
the second follows from the first on summing over a.



16 R. N. BHATTACHARYA

The local expansion (2.5) is precise. The next problem is to find a method for
summing up these approximations of point masses over sets. In one dimension
Esseen [21] adapted the classical Euler-Maclaurin sum formula for this purpose.
Ranga Rao [36], [37] proved a generalization of this summation formula in
multidimension and used it to obtain expansions of Q,. To explain this we in-
troduce a sequence of functions S; (j =0, 1,2, -..) on R* which are periodic
with period one, differentiable at all nonintegral points, and satisfy

(2.9) S=1, di () = S,(x) forall x if j=1,
X

;1‘1 W(x) =1 for nonintegral x.
x

Assume also that S, is right continuous. These conditions completely specify
the'sequence. For example,
(2.10) Si(x) =x— 3%, S(x) =4 —x+ 1),

Si(x) = 4(x* — X + ix), 0<sx<1.
For j = 2 the functions S; are absolutely continuous on R!, while S, has jumps

—1 at all integral points. Let now f be an arbitrary real-valued function on R*
having continuous and integrable derivatives Dif, 0 < j < r. Write

(2.11) F(x) =\, f(¢) dt,

F(x) = 27 (—1)IS;(x)DIF(x) 4 (— 1)+ {2, S,(5)D"+'F() dr .
Then F, is the distribution function of a finite signed measure and an integration
by parts yields
(2.12) s fm) = F,() xeR.
The summation on the left is over integers m. To extend (2.12) to multidimen-
sion consider a function f on R* having continuous and integrable derivatives
D*f, 0 £ |v] £ r. Define
(2.13) F(x) = =2 .. =2 f(y) dy x = (x®, ..., x®)eRE.

Define operators I,

7,3

lm.(F)(x) — Sx(i) S,(t)(D}“F)(x“’, cee, x(]'—l)’ t, x<j+1)’ cee, x(k)) dt

T, ; acting on such functions F by

—

(2.14) = EESONDIN Dy x= (6, x),
T, i(F) = (1 = S$(x)D; + -+ + (=1)85,(x)Dy’
+ (=1L )(F) -
Since the operators T, ; are associative and commutative one may define
F(x) = (115 T0, ) (F)(x)
(2.15) = [Lio {1 — Su(x9)D; + « -+ + (= 1) S, (x?)D;"
+ (= 1) HF)() X = (x0,. 1)
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Again one may show that F, is of bounded variation; and an induction on k
using (2.12) yields

(2-16) Z(a(l)gy(l),“.,a(k)gx(k),f(a) = F,(x) x = (xP, ..., x(k)) .

The summation on the left is over integral vectors @ = (a®, ..., a®). To apply
this result to our specific situation define

(2.17) f(X) = g, (i‘:#’ﬁ) xRk,

and obtain (taking r = s — 1 in (2.16))

Z(a:agnéx+nm qn,s<a .;é nﬂ) = I;=1 {1 - Sl(n/"(j) + n*x(j))DJ' + e
(2.18) + (= 1)1, _y(npt? 4 nixtP)D st
+ (= 1)y JF)(nix + np)

By expanding the product in (2.18) and omitting terms of order O(n=#?), j >
s — 1, one has

Litasntatnu In,s <
(2.19) = Dise-a 1A= 1S (np + ntx) D D@y (x)
+ 17 Diigema 07— 1MS, (e + ntx)D*Py(— @y )(x) + - - -
+ P (—®@,)(x) + o(n )
uniformly for x € R*. Here for each multiindex v = (v, - - -, v'®)
(2.20) S,(x) = S, (x®) « o S, (x®) x = (xM, «.., xth)
Combining (2.5) and (2.19) one has

a—ny)
nt

THEOREM 2.2. If p, < oo for some integer s = 3 and F, denotes the distribution
function of Q,, then

SUP. et [Fo(X) — Dpizaca 1A= M8, (0 + mix) D@y (x)
(2:21) — 1 Dtgens A= )MIS, (mpt + ) D~ y)(x) — ---
— mURP,_(—®,)(x)| = o(n)

Note that if 4, denotes the signed measure whose distribution function appears
on the right side of (2.18), then (by virtue of (2.18) and (2.5))

(2.22) Qu(A) — pa(A)] = 0 (n==7)

uniformly over all Borel sets 4. Unfortunately, it has not been possible so far
to obtain computable expressions of 1,(A) for sets 4 other than rectangles whose
sides are parallel to the hyperplanes {x'? =0}, 1 <j< k. In case Y, has a
minimal lattice with basis {£,, - - -, £,}, Theorem 2.2 is easily modified to apply to
rectangles whose sides are parallel to the hyperplanes {x = ¥ y?¢&;: y» = 0},
I <1 < k. Thedifficulty is caused by the presence of terms involving S,. One
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of the most outstanding problems in the subject is to obtain “good” estimations
of Q,(A) in the lattice case for sets 4 other than rectangles properly aligned with
the lattice. Perhaps the nature of the problem is best appreciated by linking it
with the lattice point problem of analytic number theory. We do this in the
following section.

3. The lattice point problem. Confining ourselves to the standard lattice Z*,
we define a lattice-point as a point in Z*. Let V be a positive definite symmetric
matrix and consider the ellipsoids
(3.1) Elc: V) ={xeR": {x, V"x) < ¢} c>0.

Let N(c: V) denote the number of lattice points in E(c: V). An important
problem in analytic number theory is to obtain asymptotic estimates of N(c: V)
as ¢ — oo. If no further specification is made on k and V, then the best known
result is that of Landau, namely,

(3.2) |N(c: V) — volume of E(c: V)| = O(ct*-*/k+) ¢—o00.
Esseen [21] showed that (3.2) is essentially equivalent to the following theorem

specialized to lattice random vectors.

THEOREM 3.1. If{Y,: n = 1} is a sequence of i.i.d. random vectors each with
mean u, covariance matrix V, and a finite fourth absolute moment, then

(3.3) SUPazo [Qu(E(a: V) — @y(E(a: V)| = O(n~H**n),
where Q,, is the distribution of n=% 3 7_, (Y, — p).

The proof of Theorem 3.1 is rather long and is given in [21]. We shall only
give a sketch of Esseen’s argument linking (3.2) and (3.3). Note that the right
side in (3.3) goes to zero faster than n~t if k > 1. If the distribution Q, satisfies
Cramér’s condition (1.36), then a faster rate of convergence (with an error O(n~"))

may be obtained from (1.50) with s = 4. Here one uses the fact that P,(—¢,)
is an odd function and, therefore, .

(3.4) P(—®,)(E(a: V)) = P(—D)(E(a: 1)) = 0.

The strength of Esseen’s result lies, however, in its generality. For example,
supposeé Y, in the theorem is lattice having Z* as its minimal lattice. Without
loss of generality assume Pr (Y, € Z*) = 1. The local expansion (2.5) with s = 4
yields (we take ¢ = O for simplicity)

SUP,so | Qn(E(a: V) — (det V)~}(2zn)=*?
1
(3.5) X 2i(aezbxa—np,v—1a—nmisan) SXP {_Zl {a — np, V- — np)) H
= 0(n™), '

again because P,(—¢,) is an odd function and the set of vectors y,, = (@ —
np)/nt over which Pi(—¢,)(y,,.) is to be summed is symmetric. Combining (3.3)
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and (3.5) one gets
SUP, 5, |(det V)~4(2an)~""
(3.6) , X 20 Kamnp, v —Ha—nm)san) SXP {__2171@( oy Vi — n,u))}

— (46t V)2 § eyt SXP{—HCx, V) |
= O(n*/k+D)

Now write N(u) for the number of lattice points in E(u: V) + np = {x: {(x — ng,
V- (x — np)y < u}, u > 0. Also write B(u) for the volume of E(u: V), and let

3.7 , R(u) = N(u) — B(u) .
Then (3.6) reduces to

(det V)~4(2mn)=*" {10,001 XP {_%1} dR(”)l = O(n~*/k+1)

(3.8) SUP,>0
An integration by parts immediately gives

(3.9) SUPazo

(det V)~¥(2zwn)=** [e'“/z”R(an) + Zi $0,an1 € " R(1) du:l
n

= O(n—k/(k+1)) A
Since (an) {1y o1 |R(#)| du is of order not larger than that of |R(an)|, (3.9) leads to
(3.10) R(an) = O(n*/2=#/tk+v)

for all a > 0. Landau’s result (3.2) follows from (3.10). Conversely, on retrac-
ing the steps one can deduce (3.3) for lattice random vectors from (3.2). More
precisely, it has been shown by Yarnold [43] using the expansion in Section 2
that in the lattice case one has

(3.11) SUP,so |Qu(E(a: V)) — D (E(a: V)) — R(an)e=**(2mn)~**(det V)~
= O0(n™Y).

It is a simple consequence of (3.2) that the number of lattice points on the
surface {x: {x, V~'x) = c}is of the order O(c*?~*/*+V) as ¢ — oo. Also observe
that we can derive a weaker estimate O(c*~V/%) for this as well as for the re-
mainder in (3.2) more simply from the inequality (1.60) without appealing to
Theorem 3.1 or the material in Section 2.

The foregoing discussion virtually rules out the possibility of obtaining com-
putable expansions of Q,(A) in the lattice case except for sets 4 properly aligned
with the lattice. Under the circumstances perhaps the best one can hope for is
an extension of Theorem 3.1. Of course, for sets 4 which are not symmetric
the analogue of (3.3) is

(3.12) |0, (A) — @ (A) — n~tP,(—D@,)(A)| = O(n*/*+)

Recently, Matthes [30] proved this for a class of convex bodies 4 having
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sufficiently smooth surfaces whose Gaussian curvatures are bounded away from
zero and infinity. The result is delicate. Note that it does not hold for rectan-
gles. It would appear that (3.12) will not hold if 94 contains too many points
of the lattice n=*27Z*. Technically, the proof by Matthes uses an estimate of
Esseen [21] on the value distribution of |0, and a result of Herz [23] asserting

(3.13) L0 = O(||e]|=*+7) el — o0

for the convex sets 4 discussed by Matthes. Since convexity is a bothersome
restriction, it would be useful to extend the result of Matthes by proving (3.13)
for other smooth sets 4.

The lattice point problem is intimately related to the asymptotic distribution
of eigenvalues of self adjoint elliptic operators in the theory of partial differential
equations. For a delightful discussion of this we refer to Courant and Hilbert
[18] (pages 429-445).

4. Asymptotic distributions of a class of statistics. In this section we briefly
sketch the derivation of normal approximations and asymptotic expansions of a
class of statistics commonly used for purposes of statistical inference. Simplest
examples of such statistics are functions of sample moments. Detailed proofs
will appear elsewhere. Theorem 4.1 is based on joint work with J. K. Ghosh.
Theorem 4.2 and the expansion (4.15) were obtained by Chibisov [15] under
more restrictive assumptions on the functions f; (1 < i < k) below using different
methods. While we merely require differentiability, Chibisov [15] assumes ana-
lyticity of these functions, but obtains estimates of the variation norm.

Let {Y, = (Y,", -+, Y,): n = 1} be a sequence of i.i.d. random vectors
with values in R™ (m = 1). Let G denote their common distribution. We intro-
duce real-valued, Borel measurable functions f,, - - -, f, on R™ and assume

A;: E|fi(Y)|]* < oo, 1 £i < k. Here s is a positive integer, s = 3.
A,: H is a real-valued Borel measurable function defined on a neighborhood N of
4.1) # = (Ef(Y), -, Efi(Y1) -

H has bounded and continuous derivatives of order p, or less in some neighborhood
M(c N) of p. Here p, = 2. Also,

(4.2) (grad H)(zt) = (D, H, - - -, D,H)(zt) # 0.
The derivatives of H at ¢ are denoted by
(4.3) li=D;H)(r) (I=sj=sk), I=(0-h);
lyiy= Dy -+ Dy H)(pr) (1 S iy, o os iy S k5 p < py) -
Also write
(44 Zo= (F(Y), o flY),  Z=- Bz,

W, = ni[H(Z) — H(p)] »
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and introduce the function
(4.5) 0.() = [ H(p+ 2) — Hp) |-

By extending H, if necessary, arbitrarily (but measurably) over all of R*¥ we
make W, and g, well defined. Note that {Z,: n = 1} is an i.i.d. sequence,
EZ = p. Let

(4.6) V=CovZ.

It is easy to see that V' is singular if and only if the functions 1, f, ..., f, are
linearly dependent on the support of G, i.e., if and only if there exist 6%, ...,
0® ¢ e R, not all zero, such that

(4.7) G{y: Lt 09fC() =h =1.
Let 2, A denote the smallest and largest eigenvalues of V, respectively. Recall

that ¢, is the normal density on R* with mean zero and covariance V. The
following result holds.

THEOREM 4.1. If A, holds with s = 3, A, holds with p, = 2, and if V is non-
singular, then

(4‘8) SUPye p |PI‘ (Wn = u) - S(q”(z)éul ¢V(Z) dzl = dnt,

where d depends only on the moments of Z, of orders three or less and on the first
order derivatives of H on M.

In order to prove this theorem one cannot appeal to (1.59) directly, since, in
general, V is not the identity matrix. But transforming the random vectors
Z, .-+, Z, by a nonsingular linear transformation one easily obtains (from
(1.59))

|Qu(4) — @p(A)] = e(k)AAE||Z, — pf|*n=
(4.9) + ¢'(k) sup,e e Dy ((04)" + ) ,
p = ¢(k)AE|Z, —
where Q, is the distribution of n~#(Z, + ... + Z, — ny). To apply (4.9) one
may take 4 = {ze R*: g,(z) < u} or, in view of Theorem 1.11, its restriction to
the set {||z|]| < ((s — 1)A log n)}}. A fairly straightforward computation yields

(4.10) Sup, « ok @y ((0A) + y) < d'e e>0,

uniformly in #, and (4.8) follows from (4.9) and (4.10).
To obtain asymptotic expansions going beyond (4.8) we assume

A;: The distribution G of Y, (or G*" for some positive integer r) has a nonzero ab-
solutely continuous component H. Further, there exists a nonempty open set B of R™
on which the density of H is positive and the functions 1, f,, - - -, f, are continuously
differentiable and linearly independent.

Note that if A, holds, then by Lemma 1.4 the distribution of Z, — u satisfies
Cramér’s condition (1.36). Theorem 1.5 then implies (by a linear transformation
of Z,’s)
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THEOREM 4.2. Assume A,, A,, A, hold with py = s = 3. Then
(411) SUPye p1 |PI‘ (W'n = u) - S(aﬂ(z)sm [¢V(z) + Zi;zl n-r/2Pr(—¢V)(z)] le
= o(n~="27) n-— oo.

Since the domain of integration {g,(z) < u} is not simple to deal with we now
provide a more computable expression for the expansion. For this we first in-
troduce the function

(4'12) hy_y(2) = j= 11_1 29+ -2—11; Diisiiisk lijzmz(j) + -

1 i iy
- _(;——lﬂm Z:léil""rix—lé" 151""'3—12( Ve 2t
and note that &,_, is a Taylor expansion of g, and, therefore, for all constants
¢ >0,
8/2
(4.13) SUP aii<c 1o n) [9n(2) — h,_\(2)| = O(n~" V" log n) .
In view of (4.13) and Theorem 1.11 one may replace g, by #,_, and the random
variable W, by

(4.14) W, =h_(n"¥Z,+ --- + Z, — np)).
The next task is to derive the expansion

(4.15) Sihyyorsu) (2) d2
= Visk iz [9(2) + L5 n7g(2)] dz + O(n=¢"27)
where ¢, ¢y, - - -, ¢, are polynomial multiples of ¢, whose coefficients do not

depend on n. This may be done by an appropriate change of variables; but we
omit the details. For example, one may easily show (assuming /, + 0)

(4.16)  Smsw 9(2) 42 = (5100150 [9[)(2) <<1 - lkizm>

— (Dug)(e) e 20 Lz + O

Applying (4.13) and (4.16) in Theorem 4.1 one obtains .

(4.17) SUpyep [Pr (W, < u) — (o G5a(v)dv| < d'nt,
where d’ is a positive constant and

2
4.18 =LV,  $u(v) = {__”_}
(4.18) VDL ale) = o e =
Similarly from Theorem 4.2 one gets
(4.19)  Sup,.m|Pr (W, <4) — §0 z>5u,[¢v(z)(l — Tl zm)

- 21—‘”5 (24,5 L 2029) (D $y)(2) + E 1(——¢V)(z)]dz = O(n™),

if A,, A,, A, hold with p, = s = 4.
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By a linear transformation z — x, with x*(z) = (I, z), the rlght side of (4.15)
may be reduced by integration to yield

(420) S _mzw (6(2) + TizhnP(—6,)(2)} dz |
— 1 e[l + X223 0%, (V)]¢s(v) dv = O(n=~072)

where ¢,, - - -, ¢,_, are polynomials whose coefficients do not depend on n. To
identify the polynomials ¢,’s we describe another formal procedure for expand-
ing the distribution function of W,. Since W, may not have finite moments of
orders up to s, a formal method for computing “approximate cumulants” of W,
is used. This is the so-called delta method. Assume, for the sake of simplicity,
that Z, has finite moments of all orders. Since 4, , is a polynomial of degree
s — 1, the moments and cumulants of W,’ can be computed in terms of those
of Z, — p either directly (algebraically), or using Theorem 1.5 with f=4,_,
or using Theorem 1.1. One may show

(4.21) jth cumulant of W, = K; , + o(n~¢"27),

where
K, .= 2 n=%b,, ,
(4.22) K;,=n"UD2K, + >t n=3b,, j=2,
K; = jth cumulant of (I, Z, — p),
and b;;’s depend only on cumulants of Z, — x of orders s* and less. Also note
that K, = *>. Now write

- .
(4.23)  exp {irKl,,, n (_';—)(KM )+ T, (’r") K}
=1+ 32 n=IL(it) 4 o(n==27%) te R,

where II,’s are polynomials whose coefficients depend only on the cumulants
of Z, — p of orders s and less. One would then expect (as in the case of the
Edgeworth expansion in Section 1)

(4.24) Pr(W, < u) = {*.[1 + 2323 n=?I1(—D)]g;(v) dv + o(n==272),

where II,(—D) is the differential operator obtained by formally substituting
(—1)?D for (it)? in the polynomial IL,(ir), j = 0. The mtegrands on the right
sides of (4.20) and (4.24) are identical, i.e.,

(4.25) q:(v) = $5'(v) - IL(—D)ds(v) r=1.

One proves this by showing that the two densities under the integral signs in
(4.20) and (4.24) have the same moments of all orders.

We refer to Wallace [42] for a description of the original conjecture about
the validity of an expansion analogous to (4.24) using n~~»”K instead of K .
In [12] Bickel modified this conjecture essentially .in its present farm. We do
emphasize, however, that the moments and cumulants of W, are not quite rele-
vant for the above expansion; for the asymptotic distribution of W, depends
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only on the local behavior of H at p. Bickel [12] also discusses the possibility
of applying the above expansion to other types of statistics. The main problem,
of course, is to prove that there exists an expansion.

The results of this section extend in a fairly straightforward way to vector-
valued functions H, and to probabilities of other sets of interest (not merely
intervals or rectangles).

5. Other applications, extensions. A number of applications other than those
discussed in Sections 3, 4 are listed below.

(a) U-statistics. Suppose {X, : n = 1} is a sequence of i.i.d. observations with
values in some space S. Let ¢ be a real or vector-valued functionon § X §
such that ¢(x, y) = ¢(y, x). The function U, = (§)™ Jicicijcn 9(Xis X;) is @ U-
statistic with kernel ¢. Subtracting the expectation if necessary, we assume that
E¢(X,, X;) = 0. Also suppose E||)(X;, X,)||* < co. Let ¢,(x) = E¢(X,, x); then
{¢1(X,): n = 1} isani.i.d. sequence. By comparing U, with S, = n~' 37 ¢,(X,),
Hoeffding (see [35], page 58) showed that as n — oo the statistic ntU, converges
in distribution to ®,, where ¥ = Cov ¢,(X;). By an attractive argument Bickel
[12] has recently shown that if ¢ is real-valued and bounded, then

(51) SupueRl Pr (n%Un é H) -

where ¢ = E¢,*(X,). It would be useful to relex Bickel’s assumption of bounded-
ness of ¢, to extend (5.1) to vector-valued ¢, and, more importantly, to obtain
an asymptotic expansion under appropriate assumptions. There are similar im-
portant problems concerning the so-called rank statistics (see [12]).

(b) Maximum likelihood estimators. Let [X,: n = 1} be a sequence of i.i.d.
observations from a distribution with a strictly positive density f(x; 6) (relative
to some o-finite measure), where the parameter 6 lies in an open subset of R (or,
more generally, in a k-dimensional manifold). Assume that f is twice differenti-
able in ¢ and that the likelihood equations (in 0)

(5.2) n 0log f(Xi;0) _ o 1<j<k
00

have a unique solution 5,” the maximum likelihood estimator of 6. If the infor-
mation matrix 1(6) = —((E,D, D, log f(X,, 0))) is nonsingular, then under regu-
larity assumptions one shows that 7, = n*(én — 0) is asymptotically normal @,
where V = [7%(f). For the case k = 1 Berry-Esseen bounds and asymptotic
expansions of the distribution function of T, have been obtained by Linnik and
Mitrofanova [29] and Pfanzagl[34]. A complete derivation for multidimensional
parameters is still not available.

An entirely analogous problem arises in mathematical economics [10]. Here
the summands in (5.2) are excess demands of individuals, 6 is the (normalized)
price vector. The solution G, is the equilibrium price. One is interested in the
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asymptotic behavior of 5n when n, the number of agents in the economy, is
large.

(c) Law of the iterated logarithm. The classical law of the iterated logarithm
(LIL) is essentially tied up with the central limit theorem. Indeed, a very useful
method of proving LIL’s is by using the classical Berry-Esseen theorem. This
method is originally due to Chung [16] (also see [17] pages 231-237) and was
later rediscovered by Petrov [33]. It can be used to derive classical as well as
Strassen type LIL’s for independent as well as dependent random variables with
the help of such Berry-Esseen type bounds as obtained by Statulevicius [39] and
Stein [40]. This method is comparable in effectiveness with that using the
Skorokhod representation (of successive partial sums of a sequence of random
variables as values of the Brownian path at appropriately defined successive
stopping times).

(d) Staristical mechanics. In his important works on the mathematical foun-
dations of classical statistical mechanics Khinchin [27] used (his own) results on
refinements of the central limit theorem to provide an analytical derivation of the
Gibbs canonical ensemble and the laws of classical thermodynamics. Khinchin’s
book [27] is still one of the most penetrating studies on the foundations of equi-
librium statistical mechanics of ideal gasses.

We conclude this article with a few additional remarks. First, the main theo-
rems of Sections 1 and 2 have appropriate analogs in the non-i.i.d. case; these
analogs may be found in the cited references. Secondly, note that if {X,: n > 1}
is an i.i.d. sequence of k-dimensional random vectors such that X, has inde-
pendent coordinates, then obtaining rates of convergence and asymptotic ex-
pansions of the distribution Q, (of the normalized partial sum) reduces to a
one-dimensional problem. This is obvious if one is approximating the distribution
function of Q,; but even for more general sets (e.g., the class & of Borel meas-
urable convex sets) one only needs to use the classical Berry-Esseen theorem
and the Fubini theorem. Thus one can easily show (see [8], Theorem 4.7)

(5-3) SUPge e [Qu(C) — P(O) = 2¢(Lfas EIXL )7,

where the universal constant ¢, is the one appearing in the Berry-Esseen bound
(see Van Beek [4] for an estimation ¢, = .7975). Thus, in our context, the
complexity of higher dimensionality arises only through the dependence among
coordinate variables. ,

As a third remark it may be mentioned that errors of normal approximation
have also been estimated by methods different from the Fourier analytic method
used here (e.g., see [5], [31], [38], [41]). Because these methods are somewhat
more direct it is possible that they will yield better estimates of constants in-
volved in the bounds. However, none of these other methods have been suc-
cessful in providing asymptotic expansions. Our final remark concerns the
moment condition “p; < oo™ in Theorem 1.7. Rates of convergence can be



26 R. N. BHATTACHARYA

obtained when p,,, is assumed finite for some d, 0 < J < 1 (see, e.g., Section
18 in [11]). For distribution functions in one dimension definitive results have
been obtained in this case by Heyde [24] and Ibragimov [25].
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