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ON THE INDIVIDUAL ERGODIC THEOREM
FOR K-AUTOMORPHISMS

By J. R. BLuM AND J. I. REICH
University of Wisconsin

Let (X, £2(X), P) be a probability space and let T be a K-automorph-
ism. If T satisfies a Rosenblatt mixing condition of a certain kind, we show
that if {k,)2_, is an arbitrary increasing sequence of integers and g belongs
to a certain class of functions then

limn_m% _, 9(T*ix)=E(g) as.

1. Introduction. Let (X, <(X), P) be a probability space. Let T be an in-
vertible bimeasurable measure-preserving transformation on X. If & c Z(X)
then & (<) will denote the smallest s-algebra containing &

FP= (A, -+, A,) is a partition of X if each 4, is a measurable set of positive
measure, they are disjoint, and their union equals X. Fis a generator for T if
F(T'A|Ae Fi=0, 1, £2, ...}) = Z(X).

Let T:“”denote the partition {T°4,, - - -, T?4,}. Let &7 (Ur, T°F”) denote the
algebra genera't'ed by T'F, T, ..., T Let & = Ug,, AUr-, T'F);
it is clear that .9 is an algebra since the 7 (|J7-_, T'S°)’s are increasing.

Let (%) = closure under the || ||..-norm of the linear manifold generated
by the class of functions {y,},.,. And finally define

f(n) = sup, 5 |P(4 N B) — P(A) - P(B)|
where

Ae F(Ui--. T'S), Be #(Ur,T'9?) for n=1.

T satisfies the Rosenblatt condition if lim,_, f(n) = 0. T is said to satisfy the
strong Rosenblatt condition if for every sequence {r(j)};-, so that r(j) = jfor j =
1,2,..-3a€(0,2) so that

f=1(n — NAr())) = O(n%) .
Note that if T satisfies the Rosenblatt condition then }}7_, (n — j)f(r(j)) = o(n?)
for every sequence {r(j)} so that r(j) = j. Moreover if f(n) = O(1/n?) for 0 <
then it follows at once that T satisfies the strong Rosenblatt condition.
It is well known that if . is a generator for T and T satisfies the Rosenblatt
condition then T is a K-automorphism (see [1]).

2. The strong Rosenblatt condition and the ergodic theorem.

(2.1) THEOREM. If T satisfies the strong Rosenblatt condition then for every
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strictly increasing sequence {k ;}5_,
lim, ., 1 2t 9(Thix) = E(g) a.s.
n

for every ge (7).

Proor. Fix a sequence {k;}5;.

(1) We will first prove the theorem for g(x) = y,(x) where 4 ¢ %"
Now if 4e % then 4 e ¥ (UL, T"F) for some [, = 1.

(2) It therefore follows that

T-hde F(Ui-—z, T'9°) € F(Ui--w T') .
(3) Fore >0 let
By, = {x|| - Die (i — Pa)| < ¢}
n

(4) Using Chebyshev’s inequality we obtain

PBL) = 5 Sx | D 2(T*53) — P(A)| Pld)
[ n

1 1
= oy Do U DL(T0(T1) — PAYIP(d)
1 1 n k,; k 2
= | = Xt P(T4A 0 ThA) — P(A)
e Ln
<L 1 s P(Tha 0 THA) — Py
& n
1 1
= e [ P(A) = PUAY| + 2 Dagyaug PTH¥5A 0 A) — PAY].
5) For each integer s = 1, 2, . .. there exists an integer j(s) = 1 so that
g ger J

|[P(T*i® + s7*iwA N A) — P(A)* = |P(T*i+s=%id n A) — P(A)?|

fOI'j: 1,2,
This follows from the fact that if k;,, — k; is bounded for all j, there is nothing
to prove; if k e — Kk is unbounded then it follows from the fact that T is
strongly mixing (by the Rosenblatt condition).

Now we define r(s) = k., — k;, fors = 1,2, .... Notice that r(s) = s for
s=1,2, ... since {k;}7, is a strictly increasing sequence.

(6) Observe now that

T-hde F (oo T'F)  and  Tr9-d e F(UL e, T'F)
Therefore we obtain the following inequality for s > 2I; + 1:
|P(T™A 0 A) — P(AYY| = |P(T"®~hA n T-YA) — P(AY| < f(r(s) — 21,) .

(7) From the fact that T satisfies the strong Rosenblatt condition we see that

dae (0, 2) so that

Poagea(n — 9f(r(s) — 21) = O(n®) .
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(8) Combining (4), (5), (6) and (7) we get the estimate

en

_ 2
pB) < PO TP 4 25 sn IPTHHid 0 ) — PV
_ 2
_ PA) = P4} T%ﬁ Ynsk Snmg [P(THi+s=*id 0 A) — P(A)Y

e’n

< w + 2y = AT 4 0 4) — P4
&n &°n
S o N (=) 24 2 i (=PI A 0 A P4y
en
<2y f‘ﬂ 2 Btz (1 — () — 24
en € n

~o(1)+o(;k).
n n

(9) Now remember that 2 — a > 0. This means we can choose a positive
integer jso that j = 2 and j(2 — a) > 1; this together with (8) gives us

L P(Bi,) < oo
Use the Borel-Cantelli lemma now to conclude that the set
C. = {x|xeB,;, for all except finitely many n’s}

has P(C,) = 1. Let C = N3, Cy;. It is clear that P(C) = 1.

(10) If x € C then.

lim,

1 =
— Db (M) - P(A)l —o0.

(11) Now suppose ni<m< (n + 1)7. Then

o X5 (T5) — P(A)|

R 1
< |2 T T — P+ L (T
m pi m

fj P(A) — P(4)| + ((n+ 1).’:— n)
m ni

I
3 li

- S () — P+

IA

ST — P + (pray 4 D =)
ni =

— ST — P+ 0 (L),

n?

Therefore from (10) and the last inequality we obtain: if x ¢ C then

lim, . - 572, 5 (T¥ix) = P(d) .
n
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It is clear now that we can extend a.s. convergence to simple functions whose
characteristic function components come from sets in %7, and of course then
we can extend a.s. convergence to functions which can be uniformly approxi-
mated by these simple functions. []

Krengel proves in [3] that we can find a strictly increasing sequence {k}5_,
and a set 4 € ZZ(X) so that

lim sup _’11— 2y xa(Thix) = 1 aus.

and
liminf L 3%, 4, (T¥x) = 0 a.s.
n

In view of this fact we cannot have pointwise convergence for all strictly increas-
ing sequences and all fe L?(X, P); this means that the best we can hope for is
that 3 a dense set 7 C L?(X, P) so that the individual ergodic theorem holds
for every strictly increasing sequence {k;} and all g ¢ 2.

(2.2) CoROLLARY. If & is a generator for T and T satisfies the strong Rosen-
blatt condition then 3 a closed linear subspace ' C L=(X, P) so that 7 is dense in
L?(X, P) for 1 < p < oo and for every strictly increasing sequence {k;}5_,

lim, . L 7, g(Thix) = E(g) a.s.
n

for every ge 2.

Proor. Observe that if & is a generator for T then & (%) = ZZ/(X). From
this it follows that & = Z1(.97) has the desired properties. []

In [2], J.-P. Conze proves:

(2.3) THEOREM. If {k;}5., is a sequence of integers with positive lower density
“then

[rer, pftim, .- 35, f(7x) = E(f) as.)

is a closed subset of L' (X, P).
This result allows us to prove:

2.4) THEOREM. If {k;}5_, is a sequence of integers with positive lower den-
sity, & is a generator for T, and T satisfies.the strong Rosenblatt condition, then

lim, .. L Y5 A(Thix) = B(f) as.  for ¥feIXX,P).

n—00

n
Proor. Combine (2.2) and (2.3).

3. Topological spaces. Let X in addition be a topological space with topology
7 (i.e., 7 is the class of open sets). |

DeriNiTION. We say that (&, T) is a generator for .7~ if 3 a class of sets
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B C ¥ so that

(i) if Be <7 then interior (B) + @;
(i) ifxe Xand xe0, e 7 then3 B, e Z'so that B, C 0, and x ¢ interior (B,).

Let
C(X) = (I) the bounded continuous functions if X is compact.
= (II) the bounded continuous functions which vanish at infinity

if X is not compact.
(3.1) LemMA. If (F T) is a generator for 7~ then C(X) < (.57).

Proor. Let ke C(X) be real valued and fix ¢ > 0.

(1) Choose a positive integer m so large that (2/m)||%||,, < .

(2) Let A, = {x|((k — Djm)||]l. < h(x) < ((k + L)/m)|JAll} for k = —m
—m+1,...,m. ThenA_,, ..., A4,e7 and Up_,. 4, = X.

(3) Choose a compact set K so that if x € K* then |A(x)| < e. That this is pos-

sible follows from the definition of C(X).
(4) For k = —m, ..., m and x e 4, choose B, e <% so that x ¢ interior (B,)

B, c A,. Then U,” interior (B,) = X and therefore we can find xl, <+, X, SO
that J:_, B,. D K.

&) Deﬁne
C, =B,
1 1
C,,2 = B, \B,,
C., = B.\Uja B,

Then: (i) C,, ---,C, € % and they are dls]omt.
(i) If xe (U}, C,,)° then |A(x)| < e. This follows from (3) and (4).
(6) From (4) and (5) it follows that each C,, A, ; for some k.
Define ¢; = (k,;/m)||A||., for j=1,2, ... 1.
(7) Let g(x) = Xt ¢c; Xo,j(x)- Then g(x) € (") and

1969 — Kl < ZJJA. <. i

3.2) CoroLLARY. If (F T) is a generator for .7 and T satisfies the strong
Rosenblatt condition then for every strictly increasing sequence {k;}5_,

lim,_,, L 721 9(T*ix) = E(g) a.s.
n

for all g e C(X).
Proor. Immediate from Lemma 3.1 and Theorem 2.1.

(3.3) REMARK. If ZZ(X) = F(F7) = Borel sets in the topological space
(X, 77), Fis a generator for T, and (&, T) is a generator for .77, then Corol-
lary 2.2 holds with &7 = C(X). This follows simply from the fact that in this
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case Corollary 3.2 is in force and C(X) is dense inr L?(X, P) for 1 < p < oo.

4. Concluding remarks. J.-P. Conze proves in [2] some individual ergodic
theorems for subsequences if T has Lebesgue spectrum; however, his techniques
are not related to ours. In [4] N. F. G. Martin proves that if f(n) decays at an
exponential rate and & is a generator for T then T is a Bernoulli shift; however
our strong Rosenblatt condition for f(n) is considerably weaker than exponential

decay.
We would like to thank the referee and Associated Editor for a number of

comments which have improved the paper.
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