ON THE INDIVIDUAL ERGODIC THEOREM FOR K-AUTOMORPHISMS

By J. R. BLUM AND J. I. REICH

University of Wisconsin

Let $(X, \mathcal{B}(X), P)$ be a probability space and let T be a K-automorphism. If T satisfies a Rosenblatt mixing condition of a certain kind, we show that if $\{k_n\}_{n=1}^{\infty}$ is an arbitrary increasing sequence of integers and g belongs to a certain class of functions then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n g(T^k jx)=E(g)$$
 a.s.

1. Introduction. Let $(X, \mathcal{B}(X), P)$ be a probability space. Let T be an invertible bimeasurable measure-preserving transformation on X. If $\mathcal{S} \subset \mathcal{B}(X)$ then $\mathcal{F}(\mathcal{S})$ will denote the smallest σ -algebra containing \mathcal{S} .

 $\mathscr{T}=(A_1,\cdots,A_r)$ is a partition of X if each A_i is a measurable set of positive measure, they are disjoint, and their union equals X. \mathscr{T} is a generator for T if $\mathscr{T}(\{T^iA | A \in \mathscr{T}, i=0,\pm 1,\pm 2,\cdots\})=\mathscr{B}(X)$.

Let $T^i\mathscr{S}$ denote the partition $\{T^iA_1, \dots, T^iA_r\}$. Let $\mathscr{A}(\bigcup_{i=1}^m T^i\mathscr{S})$ denote the algebra generated by $T^i\mathscr{S}$, $T^{i+1}\mathscr{S}$, \dots , $T^m\mathscr{S}$. Let $\mathscr{A}=\bigcup_{n=1}^\infty\mathscr{A}(\bigcup_{i=-n}^n T^i\mathscr{S})$; it is clear that \mathscr{A} is an algebra since the $\mathscr{A}(\bigcup_{i=-n}^n T^i\mathscr{S})$'s are increasing.

Let $\mathscr{L}(\mathscr{A}) = \text{closure under the } || ||_{\infty} \text{-norm of the linear manifold generated}$ by the class of functions $\{\chi_A\}_{A\in\mathscr{A}}$. And finally define

$$f(n) = \sup_{A,B} |P(A \cap B) - P(A) \cdot P(B)|$$

where

$$A \in \mathcal{F}(\bigcup_{i=-\infty}^{0} T^{i}\mathcal{G}), \quad B \in \mathcal{F}(\bigcup_{i=-\infty}^{\infty} T^{i}\mathcal{G}) \text{ for } n \geq 1.$$

T satisfies the Rosenblatt condition if $\lim_{n\to\infty} f(n) = 0$. T is said to satisfy the strong Rosenblatt condition if for every sequence $\{r(j)\}_{j=1}^{\infty}$ so that $r(j) \ge j$ for $j = 1, 2, \cdots \ni \alpha \in (0, 2)$ so that

$$\sum_{j=1}^{n} (n-j) f(r(j)) = O(n^{\alpha}).$$

Note that if T satisfies the Rosenblatt condition then $\sum_{j=1}^{n} (n-j) f(r(j)) = o(n^2)$ for every sequence $\{r(j)\}$ so that $r(j) \ge j$. Moreover if $f(n) = O(1/n^{\beta})$ for $0 < \beta$ then it follows at once that T satisfies the strong Rosenblatt condition.

It is well known that if \mathscr{S} is a generator for T and T satisfies the Rosenblatt condition then T is a K-automorphism (see [1]).

- 2. The strong Rosenblatt condition and the ergodic theorem.
- (2.1) THEOREM. If T satisfies the strong Rosenblatt condition then for every

Received January 16, 1976; revised June 16, 1976.

AMS 1970 subject classifications. Primary 47A35; Secondary 28A65, 60F15.

Key words and phrases. Ergodic theorem, K-automorphism, Rosenblatt condition.

strictly increasing sequence $\{k_i\}_{i=1}^{\infty}$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n g(T^k jx)=E(g)\quad \text{a.s.}$$

for every $g \in \mathcal{L}(\mathcal{A})$.

PROOF. Fix a sequence $\{k_i\}_{i=1}^{\infty}$.

(1) We will first prove the theorem for $g(x) = \chi_A(x)$ where $A \in \mathcal{A}$. Now if $A \in \mathcal{A}$ then $A \in \mathcal{A}(\bigcup_{i=-l_0}^{l_0} T^i \mathcal{P})$ for some $l_0 \ge 1$.

(2) It therefore follows that

$$T^{-l_0}A \in \mathscr{A}(\bigcup_{i=-2l_0}^0 T^i\mathscr{S}) \subset \mathscr{F}(\bigcup_{i=-\infty}^0 T^i\mathscr{S})$$
.

(3) For $\varepsilon > 0$ let

$$B_{n,\varepsilon} = \left\{ x \left| \left| \frac{1}{n} \sum_{j=i}^{n} \chi_A(T^k j x) - P(A) \right| \le \varepsilon \right\} .$$

(4) Using Chebyshev's inequality we obtain

$$\begin{split} P(B_{n,\varepsilon}^c) & \leq \frac{1}{\varepsilon^2} \int_{\mathcal{X}} \left| \frac{1}{n} \sum_{j=1}^n \chi_A(T^{k_j}x) - P(A) \right|^2 P(dx) \\ & = \frac{1}{\varepsilon^2} \cdot \frac{1}{n^2} \sum_{j,l=1}^n \int_{\mathcal{X}} \left[\chi_A(T^{k_j}x) \chi_A(T^{k_l}x) - P(A)^2 \right] P(dx) \\ & = \frac{1}{\varepsilon^2} \left[\frac{1}{n^2} \sum_{j,l=1}^n P(T^{k_j}A \cap T^{k_l}A) - P(A)^2 \right] \\ & \leq \frac{1}{\varepsilon^2} \cdot \frac{1}{n^2} \cdot \sum_{j,l=1}^n |P(T^{k_j}A \cap T^{k_l}A) - P(A)^2| \\ & = \frac{1}{\varepsilon^2} \cdot \frac{1}{n^2} \left[n \cdot |P(A) - P(A)^2| + 2 \sum_{1 \leq j < l \leq n} |P(T^{k_l - k_j}A \cap A) - P(A)^2 \right]. \end{split}$$

(5) For each integer $s=1,2,\cdots$ there exists an integer $j(s)\geq 1$ so that $|P(T^{k_{j(s)}}+s^{-k_{j(s)}}A\cap A)-P(A)^{2}\geq |P(T^{k_{j+s}-k_{j}}A\cap A)-P(A)^{2}|$

for $j = 1, 2, \dots$

This follows from the fact that if $k_{j+s} - k_j$ is bounded for all j, there is nothing to prove; if $k_{j+s} - k_j$ is unbounded then it follows from the fact that T is strongly mixing (by the Rosenblatt condition).

Now we define $r(s) = k_{j(s)+s} - k_{j(s)}$ for $s = 1, 2, \dots$. Notice that $r(s) \ge s$ for $s = 1, 2, \dots$ since $\{k_i\}_{j=1}^{\infty}$ is a strictly increasing sequence.

(6) Observe now that

$$T^{-l_0}A\in \mathscr{F}(igcup_{i=-\infty}^0T^i\mathscr{S}) \qquad ext{and} \qquad T^{r(s)-l_0}A\in \mathscr{F}(igcup_{i=r(s)-2l_0}^\infty T^i\mathscr{S}) \ .$$

Therefore we obtain the following inequality for $s \ge 2l_0 + 1$:

$$|P(T^{r(s)}A \cap A) - P(A)^2| = |P(T^{r(s)-l_0}A \cap T^{-l_0}A) - P(A)^2| \le f(r(s) - 2l_0).$$

(7) From the fact that T satisfies the strong Rosenblatt condition we see that $\exists \alpha \in (0, 2)$ so that

$$\sum_{s=2l_0+1}^{n-1} (n-s) f(r(s)-2l_0) = O(n^{\alpha}).$$

(8) Combining (4), (5), (6) and (7) we get the estimate

$$\begin{split} P(B_{n,\varepsilon}^c) & \leq \frac{P(A) - P(A)^2}{\varepsilon^2 n} + \frac{2}{\varepsilon^2 n^2} \sum_{1 \leq j < l \leq n} |P(T^{k_l - k_j} A \cap A) - P(A)^2| \\ & = \frac{P(A) - P(A)^2}{\varepsilon^2 n} + \frac{2}{\varepsilon^2 n^2} \sum_{s=1}^{n-1} \sum_{j=1}^{n-s} |P(T^{k_j + s - k_j} A \cap A) - P(A)^2| \\ & \leq \frac{P(A) - P(A)^2}{\varepsilon^2 n} + \frac{2}{\varepsilon^2 n^2} \sum_{s=1}^{l-1} (n-s) |P(T^{r(s)} A \cap A) - P(A)^2| \\ & \leq \frac{2}{\varepsilon^2 n} + \frac{2}{\varepsilon^2 n^2} \sum_{s=1}^{2l_0} (n-s) \cdot 2 + \frac{2}{\varepsilon^2 n^2} \sum_{2=2l_0+1}^{n-1} (n-s) |P(T^{r(s)} A \cap A - P(A)^2| \\ & \leq \frac{2}{\varepsilon^2 n} + \frac{8l_0 n}{\varepsilon^2 n^2} + \frac{2}{\varepsilon^2 n^2} \sum_{s=2l_0+1}^{n-1} (n-s) f(r(s) - 2l_0) \\ & = O\left(\frac{1}{n}\right) + O\left(\frac{1}{n^{2-\alpha}}\right). \end{split}$$

(9) Now remember that $2 - \alpha > 0$. This means we can choose a positive integer j so that $j \ge 2$ and $j(2 - \alpha) > 1$; this together with (8) gives us

$$\sum_{n=1}^{\infty} P(B_n^c \tilde{j}_{,\varepsilon}) < \infty.$$

Use the Borel-Cantelli lemma now to conclude that the set

$$C_{\varepsilon} = \{x \mid x \in B_{n\tilde{j},\varepsilon} \text{ for all except finitely many } n$$
's}

has $P(C_{\epsilon})=1$. Let $C=\bigcap_{j=1}^{\infty}C_{(1/j)}$. It is clear that P(C)=1.

(10) If $x \in C$ then.

$$\lim_{n\to\infty} \left| \frac{1}{n^{\tilde{j}}} \sum_{j=1}^{n^{\tilde{j}}} \chi_A(T^k j x) - P(A) \right| = 0.$$

(11) Now suppose $n^{\tilde{j}} \leq m \leq (n+1)^{\tilde{j}}$. Then

$$\left| \frac{1}{m} \sum_{j=1}^{m} \chi_{A}(T^{k_{j}}x) - P(A) \right|
\leq \left| \frac{n^{\tilde{j}}}{m} \cdot \frac{1}{n^{\tilde{j}}} \sum_{j=1}^{n^{\tilde{j}}} \chi_{A}(T^{k_{j}}x) - P(A) \right| + \frac{1}{m} \sum_{j=n^{\tilde{j}}+1}^{m} \chi_{A}(T^{k_{j}}x)
\leq \frac{n^{\tilde{j}}}{m} \left| \frac{1}{n^{\tilde{j}}} \sum_{j=1}^{n^{\tilde{j}}} \chi_{A}(T^{k_{j}}x) - P(A) \right| + \left| \frac{n^{\tilde{j}}}{m} P(A) - P(A) \right| + \frac{((n+1)^{\tilde{j}} - n^{\tilde{j}})}{n^{\tilde{j}}}
\leq \left| \frac{1}{n^{\tilde{j}}} \sum_{j=1}^{n^{\tilde{j}}} \chi_{A}(T^{k_{j}}x) - P(A) \right| + (P(A) + 1) \frac{((n+1)^{\tilde{j}} - n^{\tilde{j}})}{n^{\tilde{j}}}
= \left| \frac{1}{n^{\tilde{j}}} \sum_{j=1}^{n^{\tilde{j}}} \chi_{A}(T^{k_{j}}x) - P(A) \right| + O\left(\frac{1}{n}\right).$$

Therefore from (10) and the last inequality we obtain: if $x \in C$ then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n\chi_A(T^kjx)=P(A).$$

It is clear now that we can extend a.s. convergence to simple functions whose characteristic function components come from sets in \mathscr{A} , and of course then we can extend a.s. convergence to functions which can be uniformly approximated by these simple functions. \square

Krengel proves in [3] that we can find a strictly increasing sequence $\{k_j\}_{j=1}^{\infty}$ and a set $A \in \mathcal{B}(X)$ so that

$$\lim \sup \frac{1}{n} \sum_{j=1}^{n} \chi_A(T^k j x) = 1 \quad \text{a.s.}$$

and

$$\lim \inf \frac{1}{n} \sum_{j=1}^n \chi_A(T^k j x) = 0 \quad a.s.$$

In view of this fact we cannot have pointwise convergence for all strictly increasing sequences and all $f \in L^p(X, P)$; this means that the best we can hope for is that \exists a dense set $\mathscr{D} \subset L^p(X, P)$ so that the individual ergodic theorem holds for every strictly increasing sequence $\{k_i\}$ and all $g \in \mathscr{D}$.

(2.2) COROLLARY. If $\mathscr S$ is a generator for T and T satisfies the strong Rosenblatt condition then \exists a closed linear subspace $\mathscr D \subset L^\infty(X,P)$ so that $\mathscr D$ is dense in $L^p(X,P)$ for $1 \le p < \infty$ and for every strictly increasing sequence $\{k_i\}_{j=1}^\infty$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^ng(T^kjx)=E(g)\quad\text{a.s.}$$

for every $g \in \mathcal{D}$.

PROOF. Observe that if \mathscr{P} is a generator for T then $\mathscr{F}(\mathscr{A}) = \mathscr{B}(X)$. From this it follows that $\mathscr{Q} = \mathscr{L}(\mathscr{A})$ has the desired properties. \square

In [2], J.-P. Conze proves:

(2.3) THEOREM. If $\{k_j\}_{j=1}^{\infty}$ is a sequence of integers with positive lower density then

$$\left\{ f \in L^1(X, P) \left| \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n f(T^k j x) = E(f) \text{ a.s.} \right\} \right\}$$

is a closed subset of $L^1(X, P)$.

This result allows us to prove:

(2.4) THEOREM. If $\{k_j\}_{j=1}^{\infty}$ is a sequence of integers with positive lower density, \mathcal{S} is a generator for T, and T satisfies the strong Rosenblatt condition, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n f(T^k j x)=E(f) \quad \text{a.s.} \quad for \quad \forall f\in L^1(X,P).$$

Proof. Combine (2.2) and (2.3).

3. Topological spaces. Let X in addition be a topological space with topology \mathcal{I} (i.e., \mathcal{I} is the class of open sets).

DEFINITION. We say that (\mathcal{P}, T) is a generator for \mathcal{T} if \exists a class of sets

 $\mathscr{B} \subset \mathscr{A}$ so that

- (i) if $B \in \mathcal{B}$ then interior $(B) \neq \emptyset$;
- (ii) if $x \in X$ and $x \in 0_x \in \mathcal{T}$ then $\exists B_x \in \mathcal{B}$ so that $B_x \subset 0_x$ and $x \in \text{interior } (B_x)$. Let
 - C(X) = (I) the bounded continuous functions if X is compact.
 - = (II) the bounded continuous functions which vanish at infinity if X is not compact.
 - (3.1) LEMMA. If (\mathcal{S}, T) is a generator for \mathcal{T} then $C(X) \subset \mathcal{L}(\mathcal{S})$.

PROOF. Let $h \in C(X)$ be real valued and fix $\varepsilon > 0$.

- (1) Choose a positive integer m so large that $(2/m)||h||_{\infty} < \varepsilon$.
- (2) Let $A_k = \{x \mid ((k-1)/m)||h||_{\infty} < h(x) < ((k+1)/m)||h||_{\infty} \}$ for k = -m, $-m+1, \dots, m$. Then $A_{-m}, \dots, A_m \in \mathscr{T}$ and $\bigcup_{k=-m}^m A_k = X$.
- (3) Choose a compact set K so that if $x \in K^c$ then $|h(x)| < \varepsilon$. That this is possible follows from the definition of C(X).
- (4) For $k=-m, \dots, m$ and $x \in A_k$ choose $B_x \in \mathcal{B}$ so that $x \in \text{interior } (B_x)$ $B_x \subset A_k$. Then $\bigcup_{x \in X}$ interior $(B_x) = X$ and therefore we can find x_1, \dots, x_l so that $\bigcup_{j=1}^l B_{x_j} \supset K$.
 - (5) Define

$$\begin{split} &C_{x_1} = B_{x_1} \\ &C_{x_2} = B_{x_2} \backslash B_{x_1} \\ &\vdots \\ &C_{x_l} = B_{x_l} \backslash \bigcup_{j=1}^{l-1} B_{x_j} \,. \end{split}$$

Then: (i) $C_{x_1}, \dots, C_{x_l} \in \mathcal{A}$ and they are disjoint.

- (ii) If $x \in (\bigcup_{j=1}^{l} C_{x_j})^c$ then $|h(x)| < \varepsilon$. This follows from (3) and (4).
- (6) From (4) and (5) it follows that each $C_{x_j} \subset A_{k_j}$ for some k_j .

Define $c_j = (k_j/m)||h||_{\infty}$ for $j = 1, 2, \dots, l$.

(7) Let $g(x) = \sum_{j=1}^{l} c_j \chi_{C_{x,j}}(x)$. Then $g(x) \in \mathcal{L}(\mathcal{N})$ and

$$||g(x) - h(x)||_{\infty} \le \frac{2}{m} ||h||_{\infty} < \varepsilon.$$

(3.2) COROLLARY. If (\mathcal{P}, T) is a generator for \mathcal{T} and T satisfies the strong Rosenblatt condition then for every strictly increasing sequence $\{k_i\}_{i=1}^{\infty}$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^ng(T^{k_j}x)=E(g)\quad\text{a.s.}$$

for all $g \in C(X)$.

Proof. Immediate from Lemma 3.1 and Theorem 2.1.

(3.3) REMARK. If $\mathcal{B}(X) = \mathcal{F}(\mathcal{T}) = \text{Borel sets in the topological space}$ $(X, \mathcal{T}), \mathcal{P}$ is a generator for T, and (\mathcal{P}, T) is a generator for \mathcal{T} , then Corollary 2.2 holds with $\mathcal{D} = C(X)$. This follows simply from the fact that in this

case Corollary 3.2 is in force and C(X) is dense in $L^p(X, P)$ for $1 \le p < \infty$.

4. Concluding remarks. J.-P. Conze proves in [2] some individual ergodic theorems for subsequences if T has Lebesgue spectrum; however, his techniques are not related to ours. In [4] N. F. G. Martin proves that if f(n) decays at an exponential rate and $\mathscr P$ is a generator for T then T is a Bernoulli shift; however our strong Rosenblatt condition for f(n) is considerably weaker than exponential decay.

We would like to thank the referee and Associated Editor for a number of comments which have improved the paper.

REFERENCES

- [1] Blum, J. R. and Hanson, D. L. (1963). Some asymptotic convergence theorems. In *Ergodic Theory*, 55-70. Academic Press, New York.
- [2] Conze, J.-P. (1973). Convergence des moyennes pour des sous-suites. Bull. Soc. Math. France, Memoires 35 7-15.
- [3] Krengel, U. (1971). On the individual ergodic theorem for subsequences. Ann. Math. Statist. 42 1091-1095.
- [4] Martin, N. F. G. (1974). The Rosenblatt mixing condition and Bernoulli shifts. Ann. Probability 2 333-338.
- [5] ROSENBLATT, M. (1956). A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. 42 43-47.

MATHEMATICAL SCIENCES SECTION NATIONAL SCIENCE FOUNDATION WASHINGTON, D. C. 20550 DEPARTMENT OF MATHEMATICS UNIVERSITY OF WISCONSIN MILWAUKEE, WISCONSIN 53201