The Annals of Probability
1977, Vol. 5, No. 3, 500-510

WEAK CONVERGENCE OF THE RAO-BLACKWELL
ESTIMATOR OF A DISTRIBUTION FUNCTION!

By B. B. BHATTACHARYYA AND P. K. SEN
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University of North Carolina, Chapel Hill

Under the condition that the minimal sufficient statistics are transitive,
the sequence of Rao-Blackwell estimators of distribution function has been
shown to form a reverse martingale sequence. Weak convergence of the
corresponding empirical process to a Gaussian process has been established
by assuming that the sufficient statistics are U-statistics and utilizing certain
results on the convergence of conditional expectations of functions of U-
statistics along with the functional central limit theorems for (reverse)
martingales by Loynes (1970) and Brown (1971).

1. Introduction. Let {X;, i = 1} be a sequence of independent and identically
distributed random vectors (i.i.d. rv) defined on a probability space (Q, %7, P)
with each X, having a continuous distribution function (df) F(x), x € R?, the
p (= 1) dimensional Euclidean space. For every n (= 1), the empirical df F, is

defined by

(1.1) F,(x)=n13r c(x — X)), XeRr,
where for a p-vector u = (u,, - -+, u,),

(1.2) cuy=1 if u=0 andis O otherwise,

and by x = y we denote the coordinatewise inequalities x; = y;, 1 < j < p. We
assume that the df F admits of the existence of a complete sufficient statistic
(vector) T,, where

(1.3) T, =T -+, Thy) s forsome ¢g>1.

[When we encounter the asymptotic situation where n — co, we assume that ¢
remains fixed. Note that the sample order statistics (for p = 1) or the collection
matrix (for p = 1) constitute a sufficient statistic where ¢ = n, and in that case,
our study is of no real interest.]

Let &, = &(X,, - -+, X,) be the o-field generated by X, ---, X,, and let
%, = &(T,) be the o-field generated by T,, so that &Z,® ¢ Z,. Also, let
F, = F(T,, T,y -+ +) be the o-field generated by {T,, k = n}, n = 1, so that
&, is a monotone nonincreasing o-field. Finally, let &, be the o-field generated
by the unordered collection {X,, - - -, X,}and X, ,,, X, 5, - -+, n = 1, so that &,
is monotone nonincreasing and &%, C &,.

Received August 5, 1974.

! Work partially supported by A.F.S.C., U.S.A.F., Grant No. AFOSR 74-2736.’

AMS 1970 subject classifications. Primary 60B10, Secondary 62B99.

Key words and phrases. Gaussian process, Rao-Blackwell estimator, reverse martingale, transi-
tive sufficiency, U-statistics, weak convergence.

500

%J

v

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁv
The Annals of Probability. STOR

®

Www.jstor.org



WEAK CONVERGENCE 501

Consider the usual empirical process
(1.4) Vu(X) = ni[F,(x) — F(x)], XeR,nz=1.
Then, the Rao-Blackwell empirical process is defined by
(1.5) V(%) = E[Va(X)| £,7] = nt[$u(x) — F(x)], xeRre,
where for every x € R?,
(1.6) $u(X) = E[F,(x)| Z,"] = E[c(x — X,)| ]

is the Rao-Blackwell empirical df. Note that when T, is a complete sufficient
statistic, ¢, is the unique minimum variance unbiased estimator (UMVU) of F.
Specific expressions for ¢, for various F (mostly belonging to the exponential
family) have been worked out by various workers; we may refer to Tate (1959),
Ghurye and Olkin (1969) where additional references are cited. In the context
of the UMVU estimation of the density function f(x) and its various functions,
the recent works of Seheult and Quesenberry (1971) and O’Reilly and Quesenberry
(1972) deserve mention.

In view of the fact that the empirical process in (1.4) weakly converges to an
appropriate multiparameter Gaussian process [viz., Neuhaus (1971) for p > 1
and Billingsley (1968) for p = 1], our interest centers here on deriving similar
weak convergence results for the process V,* in (1.5). That, in general, the
weak convergence of ¥, does not necessarily imply the same for ¥, * can easily
be verified with the simple example of the uniform [0, ] df, where ¢,(x) =
(n — x/nX,,,if0 < x < X, andis1forx > X,;; X,, = max{X,;: 1 <i < n},
and the distribution of sup {|¢,(x) — F(x)|: 0 < x < 6} is independent of 4.
Hence, assuming 6 = 1, n}{sup,c., |4.(X) — F(x)|} < max {nt|(n — 1)/nX,, — 1],
n}|l — X} — 0, in probability, as n — co. We also note that by definition in
(1.6), ¢,(x) ceases to be an average of i.i.d. rv and (n 4 1)¢,,,(X) — n¢g,(x) is
no longer stochastically independent of n¢,(x). Thus, the basic technique of
deriving the functional central limit theorems, displayed in detail in Billingsley
(1968) and extended to the multiparameter case by others, is not readily appli-
cable. Our task is accomplished by showing that because of transitivity of T,,
for every x € R?, {¢,(x), & ,; n = 1} is a reverse martingale on which the central
limit theorems of Loynes (1970) and Brown (1971) can be applied under parallel
regularity conditions.

The basic results on ¢, and some properties of U-statistics are studied in Section
2. The main theorem is stated and proved in Section 3. The last section includes
(by way of concluding remarks) certain additional results.

2. Some basic lemmas. Let us denote by
(2.1) B(a,b) ={x:a<x<b} where a<bh;
(2.2) Py(a,b) = P{X,c B(a, b)} = Pla < X, < b}.
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Also, for every n = 1, let
(2.3) Z,*(a, b) = P{X, € B(a, b) | £Z,"}
= 2 (=D)".(ia + (1 —j)bs 1 =i < p),
where the summation }; * extends over all ' = (ji, - -+, /,), ;i =0, 1, i=1,.--,p.
LemMMA 2.1. Let C and h be some positive numbers such that
(2.4) l<nh<n and P,(a,b) < Ch.

Then, for every positive integer s, there exists a constant K, (independent of h, n and
Py(a, b)), such that

(2.5) n'E|Z *(a, b) — Py(a, b)|* < K, h° .
Proor. Let us define
(2.6) Z,(a,b) = Z* (—)"F,(iai + (1 —j)b, l i< p) s
so that by (1.6) and (2.3),
(2.7) Z,*(a,b) = E[Z,(a, b)| £, ] .
Therefore, by the Jensen inequality,
(2.8)  E|Z,*(a, b) — Px(a, b)[* = E|E{Z,(a, b) — Ps(a, b)[ZZ,}*
< E|Z,(a,b) — Py(a, b)[* .

Now, nZ,(a, b) has the binomial distribution with the parameters (n, Py(a, b)),
so that by Lemma 5.2 of Neuhaus (1971), under (2.4),

(2.9) E|Z,(a,b) — Py(a, b)|* < K,n™h" .
The lemma follows directly from (2.8) and (2.9). []
LEmMMA 2.2. For every X € R?, {¢,(X), & ,; n = 1} is a reverse martingale.

Proor. Since {X,, n > 1} are i.i.d. random variable and {T,} is complete and
sufficient, it follows from Bahadur (1954, page 447) that it is transitive. Hence,
by definition in (1.6)

(2.10) Dnir(X) = Efc(x — X)) | B}
= E{E[c(x — X)) |o(Z,*, Fyi)]| i} -
Since {T,} is transitive, by the Wijsman theorem [viz., Zacks (1971, page 84)],
B, and B, are conditionally independent given <Z,. Therefore,
(2.11)  E[e(x — X,)|0(Z,®, B)] = E[e(x — X,)| B, @] = ¢u(X) a.s.
Hence, from (2.10) and (2.11), we have for every n = 1, x € R,
(2'12) ¢n+1(x) = E{gbn(x)l‘%?::)l = E{¢'n(x)lﬁ—n+l} a.s.,
and the lemma follows. []
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For a large class of df’s (including the exponential family), T, can be equiv-
alently expressed in terms of a set of U-statistics. Thus, we write
(2.13) T, =[0,", ---, U, 7], for n=zm>=1,

where m is the maximum of the individual degrees of the kernels for the U,'.
From the results of Hoeffding (1948), it follows that if the kernels are all square
integrable, then

(2.14) E{(T, — ET,)(T, — ET,)} = n'A, + n—A, + - - - ,

where the A, k > 1 are positive semidefinite matrices. For proving a few results
on U-statistics, to follow in the Lemmas 2.3-2.6, we assume for simplicity that
g =1, and let ¢ = E¢(X,, - - -, X,,) where ¢ is the symmetric kernel for U,. Let
then

(2.15) Bu(Xpy - Xp) = EP(Xyy -, Xy Xpyns = > Xo) 5
(2.16) G = E{¢2 Xy, -+, X)) — 6%}, h=0,...,m,
so that ¢, = 0, {, = 0 and for ¢ = 1, 4, = m*,.

Lemma 2.3, If E{¢¥(X,, - -+, X))} < oo, then
(2.17) n(n + 1)E{(T, — T,.,)}| €} > m, as., as n—oo.

Proor. Following Miller and Sen (1972), for all n > m,
(2.18)  To= ()7 Zowm § -5 § 600 s Xa) [T de(x; — X,)]

=0+ Zia(MTns

where
(2.19) Toy=n7" 20 [4(X) — 0],
(2-20) Top = ()" Zoap & Xy -+ X35
i*(Xp -+ 05 X,)
(2.21) = Pu(Xy -+ 05 X)) — Z’;=l¢h_l(x1, Cey X gy Xy 0y Xp)

+ Zl§j<k§h ¢h—2(x1s ey Xy Xy s Xy Xpygs m 00 Xh)
o4 (=1y8, for h=2,...,m.

To avoid notational complexities, we shall take the case of m = 2; the extension
to the case of m > 3 can be made in a similar but more laborious way. For
m = 2, '
(2~22) Tn - T'n-l-l = Z(Tn,l - n+1,1) + (Tn,z - Tn+1,2)' .
Hence,
n(n + 1)(T, — T,,,)"
(2.23) =dn(n + )Ty — Tosa))' + n(n + 1)(Tpp — Thyo)
+ 4”(” + 1)(Tn,1 - n+1,l)(Tn,2 - n+1,2) .
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Now,

(2'24) Tn,l - Tn+1,1 == n_l[Tn+1,1 - ¢l(x'n+1) + 0] s
so that

(2.25)  n(n 4 DE((Ta; — Ty’ | G}

=nn 4+ D + 1) T {gu(X) — 0F — T2,0]
By the Khintchine strong law of large numbers, (n + 1)=! 2241 {4,(X,) — 6} - ¢,
a.s., as n — oo, whereas {T,,,,, &,,,} is a reverse martingale sequence which

converges a.s. to its expectation 0, and hence, T?,,, also a.s. converges to 0 as
n— co. Again

' 2
(2'26) Tn,z - Tn+1,2 = ;j—l Tn+1,2 - (g)_l Z:Z;l ¢2*(Xi’ xn+l) .

Hence,

(2'27) n(n + 1)(Tn,2 - n+1,2)2 § (” - 1)_28"(” + I)T:H,z
+ n(n + 12(3) {210 65 (Xo, Xp)) -
By the Berk (1966) reverse martingale property of U-statistics, {T,,,,, ©,,,} is

a reverse martingale with expectation 0, so that E(T?,,,| ,,,) = T2,,, a.s.
converges to 0 as n — co. Whereas

E{(201 62" (Xis Xa41))'| St}
(2.28) = (") Disicisner 2°%(Xe X))
+ n(n — DN Disicichsnn 925X X5)8:*(Xos X) -
By (2.28), the 2nd term on the rhs of (2.27) is given by

8(n 4+ 1) 1
B A DL (997 Diciciznn 624X X,)
n—1 (n—1

(2.29) F () Dasicicksnn S5 (Ko X,)60* (X xk)}
= 8(n — 1)7¥(n + 1)[(n — 1)710,® + U,™], say.

Now, U, is a U-statistic, and hence, converges a.s. to its expectation which is
finite, while U,® is also a U-statistic with expectation E¢,*(X,, X,)$,*(X,, X;) = 0,
and hence, it a.s. converges to 0 as n — oo. Thus, (2.29) a.s. converges to 0
as n — co. Finally, [E{n(n 4 1)(Ty, — Tp1.)(Tns — Tuirs) | EasilF converges
a.s. to 0 [by the Schwarz inequality and (2.25)—(2.29)]. Hence, the proof is
complete. []

LEMMA 2.4. Under the assumptions of the previous lemma,

(2.30)  n(n + DE(T, — Tpp )| F s} —» M, aus.

andin L, as n— co.
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Proor. Since & ,,, C Eprins

(2.31) n(n + DE{T, — Tp11)|-F ni1}
= n(n + DE[E{(T, — Tass)’| o} | F aa] -

Now, by Lemma 2.3, E{n(n + 1)(T, — Tp11)*| Enis} — m* a8, 880 — 00, &,
is | in nand n(n + D)E{(T, — T,.1)*| s} € L. Hence, by Loéve (1963, page
409), the result follows. []

LemMA 2.5. If ¢*(X,, Xy, - -+, X,,) < oo, then for every k = m,
(2.32) SUp,si #(n + DE{T, — Tpiy)'| Enra} €Ly

ProoF. Here also, for simplicity, we take m = 2. It suffices to show that for
each j (= 1, 2), sup,y, n(n + DE{(T, ; — T,41,;)*| ©asi} is integrable. Note that
by (2.24),
(2.33) SUp,zi (1 + DE{(Tny — Thpi1))’| Cusa}

= SUP, >k [~ 2 {hi(Xe) — Tuy11)'] = SUPzi Myyr >  s8Y.

Now, by definition, {M,, &,;n = 2} is a reverse martingale, so that by the
Kolmogorov inequality, for every ¢ = 0,

(2.34) P{sup,.; M, > t} < 17°E[M}’] = t7%*,
and this implies the integrability of sup,,, M,, for every k = 1. A similar but
more lengthy proof applies for j = 2. ]
LEMMA 2.6. Under the conditions of Lemma 2.5,
(2.35) n(n + DE{(T, — Tpy)*|F ) = m¢, as., as n—oco.

Proof. Since E{(T, — Tpi1)?| F s} = E[E{(T, — Tas1)?| Casi}|F wsa] and
since %, is | in n, the lemma follows directly from Lemma 2.5 and Loéve
(1963, page 409). [l

3. The main results. To motivate the main theorem, we require to introduce
certain assumptions. Note that by the Rao-Blackwellization, for every n = 1,

(3.1)  nE[¢,(x) — FX)T < nE[F,(x) — FX)P = Fx)[1 — F(x)], VxeR’.

But, as in the example of the uniform df, the lhs of (3.1) may tend to 0 as n — oco.
So, in order to avoid this degeneracy, we assume that for every X, y € R?,

(3-2) lim, ., nE[{¢.(x) — FOOHLa(y) — F(N} = A%, ¥) ,

where there exists a subset 27 R? such that for every x,e 25, i=1,...,m,
the matrix (k(x,, X;)) is positive definite for every m = 1. We also assume that

(3.3)  E{n(n + D[$a(®) — PraaTIAGX) — Pua(®)] > D] i)

converges to 0 as 2 — oo, uniformly in n (= n,), and

(3-4)  n(n+ DE[{u(X) — fri(K)HPu(Xs) = Pnia(®o)} | F aa] = h(X1 X;) - 2.5.,
for every X,, X, € R?, where /(4) stands for the indicator function of a set A.
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We may note that (3.4) implies that
(3.5) n Y- E[{gu(X1) — Gen(X)HPu(X2) — ¢ra(X)} | ) = A(X1, Xp)  as.

whereas the uniform integrability condition in (3.3) implies that whenever
h(x, x) > 0, for every ¢ > 0,

[27-n E[¢4(X) — $oa(X)TPT [ 2520 {EL(P(X) — Pisa(X))?
(3.6) X I p(X) — ¢y a(X)| > ebb(x, X))]| F 1)} >0 ass.,
as p-—oo.

First, we present the main theorem. Later on we shall show that (3.3) and (3.4)
hold under general conditions on ¢,.

THEOREM 3.1. Under (3.2), (3.3) and (3.4), V,* = [V, *(X), X € R?] converges

weakly to a multiparameter Gaussian function W = [W(X), X € R?] whose mean
(function) is O and covariance function is h(X, y).

ProOF. Let F;;; be the marginal df of the jth componentof X,,j =1, - -, p.
Letthen Y,; = Fi;y(X;;), 1 £ j<p,i=1,andletY, = (Y,, ---, Y,),

3.7 G,(t)y=n13r c(t—Y), teEr,nz>1,
where E? denotes the unit p-cube {t: 0 < t < 1}. Also, let

(3.8) G(t) = P{Y, < t}, te E7;
(3.9) V.(t) = E{[G,(t) — G(t)]| "} , teEr.

Then, it suffices to show that ¥, converges weakly in the Skorokhod J;-topology
on D7[0, 1] to a Gaussian function W = [W/(t), t ¢ E?]. For this, we require to
show (a) that the process V, is tight and (b) that the finite dimensional distribu-
tions (f.d.d.) of V, converge to the corresponding ones of W, as n — co. For
the proof of (a), we principally follow the treatment of Section 5 of Neuhaus
(1971) where the original empirical process has been considered. We only need
to replace his Lemma 5.2 by our Lemma 2.1, and the rest follows on the same
line.

The proof of (b) is a little more complicated. By virtue of our Lemma 2.2,
for every te E?, {V,(t), & ,, n = 1} is a reverse martingale. As such, for every
m=1,0<t# ... #t,<land A=A, -+, 4,) # 0, {57, 4, V. (L), F s
n = 1}isa reverse martingale. This tempts us to use the recent functional cen-
tral limit theorems of Loynes (1970) and Brown (1971). For this, we let s5,* =
E[ X%, Z,]', where ‘

(3.10) Z, = D1 A{EIGUY) | 8] — E[Gen(t) [ ZZ0]) kz1.
Then, by the Brown (1971) modifications of Loynes’ (1970) results, we are only
to show that as n — oo,

(3.11) [Xe . E(Z2| F 44)]/s.: — 1, in probability,

(3.12) s, 2. E{Z(Z,] > e5,)| F 441}] — 0, in probability,
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for every ¢ > 0. Now, (3.11) follows from (3.4) and (3.5) while (3.12) follows
from (3.3), (3.6) and the inequality
(3.13)  (Sr VIS, u) > me} < m2m{ T, ul(u] > <) -

Let us now examine the conditions (3.3) and (3.4). Note that ¢,(x) = ¢.(x, T,)
is a bounded function and for a broad class of df’s (including the exponential
family having a set of minimal complete sufficient statistics), we may by the
usual Taylor’s expansion write

¢n(x) = ¢n(x; 4 + (Tn - 0))
(3.14) = F(x) + m0,(X) + Doy 0% O)[To; — 0]

+ Dier Dar 055X O[T — 0,1[T0s — 0,1 + R,
where |R,| < cn?,0 < ¢ < woandwv;, j=0,1,.--,9,v;,j,j=1,..-,qare
all bounded and continuous functions of x and #. For example, consider the
case of the univariate normal df with mean p and variance ¢* the corresponding
¢a(x) [cf. Lieberman and Resnikoff (1955)] for n > 2 is given by

da(x) =0, if x<X,— (n—1)is,,
(3.15) =1, if x>X,+ (n— 1)S,,
= G,{(n — 2)H(x — X,)[[(n — 1)S,* — (x — X,)'P},
if |x —X,| < (n— 1)S,,
where T, = (X,, S,2) = (n* 21—, X, n7 17, (X, — X,)’) and G, _, is the Student
t distribution with n — 2 degrees of freedom. Now, from Johnson and Kotz
(1970), we have

(3.16) G, (1) = (1) — ZO[FH(E + Dn + O],
so that (3.14) is valid in this case.
From (3.14), we have
Pa(X) — opa(x) = vo(X)/n(n + 1) + 2521 0,(%, O)(Toj — Tiaj)
(3.17) + 231055 O)(To; = Taiaj)(Tnj + Tapas — 265)
+ le#j'sq vfj'(x’ 0)[(Tm' - n+li)(TM" - 0:”)
+ Torig = 0)(Tojy — Toiyj)] + O(n7%), as.

Thus, if the {T,} form a U-statistics sequence, by the a.s. convergence results
of Berk (1966), T, — 60 a.s., as n — oo, and hence, by (3.17), we have

(3-18)  Pu(X) — Puia(X)

= D31 (Tj — Tasy)[0(%, 0) + 2 2 5010;5.(x, 0){o(1)}] + O(n™)
with probability one, as n — co. Consequently, (3.3) and (3.4) follow from
(3.18), Lemma 2.5 and Lemma 2.6.

REMARKS. Srinivasan (1970), Lilliefors (1967) and others have used the stu-
dentized Kolmogorov-Smirnov statistic (in the univariate case)

(3.19) ni{sup, |¢a(x) — F(x)]}
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as a goodness of fit statistic when F is an exponential or normal df, and in those
cases, the distribution of (3.19) is known to be independent of the population
parameters. Condition for this statistic to be independent of nuisance parameters
in the general case has been given by O’Reilly (1971). We should note that if
¢u(x, T,) is absolutely continuous then ¢,(X,, T,), i =1, --., n are ancillary
statistics, each having marginally the uniform (0, 1) df [viz., O’Reilly and
Quesenberry (1973)]. Let us now assume that the probability structure of the
problem is such that Stein’s theorem [cf. Zacks (1971, page 79)] is applicable,
and let & denote the group of transformations operating on the sample space.
Then, if g € ¥ is a monotone increasing transformation, it is easy to show that

(320) ¢'n(gXi’ Tn(gx)) = ¢n(Xi’ Tn(x)) > X = (Xv B X'n) >
(3:21) $a(9X To(9X)) — Fa(gX)) = u(Xi, Tu(X)) — Fu(X)) -

Hence, noting that sup, |[¢,(x, T,) — F,(x)] = max, o, {|¢.(X;, T.) — F.(X)|,
|9a.(Xss T,) — Fo(X; — 0)} if ¢, is a continuous function, and by (3.21) we con-
clude that (3.19) is an invariant statistic and that the distribution of (3.19) depends
on the maximal invariant function in the parameter space. Thus, if the maximal
invariant function is constant, then (3.19) has a distribution independent of the
parameters. Even when this distribution is not free of nuisance parameters,
under fairly general conditions, n¥[¢,(x, T,) — F,(x)], x € R will converge to a
Gaussian process and the percentage points of the original Kolmogorov-Smirnov
statistic [viz., n? sup, |F,(x) — F(x)|] will give a crude but distribution free upper
bound for the corresponding percentage points of the asymptotic distribution of
(3.19).

4. Some concluding remarks. First, let us consider a real valued g(x), x € R?,
such that { g(x) dF(x) = # and § ¢*(x) dF(X) < oo. Let then

(4.1) W, = § g(x)dp,(x) sothat W, =E[g(X)|%,>}, n=x=1.

By Lemma 2.2, {W,, & ,, n = 1} is a reverse martingale, and hence, under the
conditions of Brown (1971) or Loynes (1970), n*(W, — p) is asymptotically
normal. Consider then the general U-statistic

(4.2) Uy = (27 Ty 0Kip -+ Xo,) » n=m.

By Berk (1966), {U,} forms a reverse martingale sequence. Loynes (1970) cites
this and conjectured that the functional central limit theorem is applicable to
the U-statistics. He, however, fails to provide the necessary verification of the
underlying conditions needed to apply his main theorem. By virtue of our Lem-
mas 2.2-2.6, we immediately conclude that the assumptions of Loynes’ main
theorem are all met for U,, and hence, the results hold good. In fact if g(X,,
X,, - -+, X,,) is a symmetric kernel of an estimable functional #(F), then the
Rao-Blackwell estimator

4.3) U.* = E[9(X), Xy -+ -, X,) | 4,1, n=m
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is a reverse martingale and by using the results of Miller and Sen (1972), the
asymptotic normality and tightness of the pracess based on U, * can be established
under parallel regularity conditions. Similar results hold for the Rao-Blackwell
version of von Mises’ differentiable statistical function. It may be pointed out
also that if {T,,} is neither complete nor minimal sufficient but is sufficient and
transitive, {U,*, n = m} will be a reverse martingale sequence. Similar modifica-
tions can be made in the statements of Lemma 2.2 and Theorem 3.1.

Now if forn > n,and for each T, = t, the measure induced by the distribution
function ¢,(x, t) is absolutely continuous with respect to the Lebesgue measure
and we choose that version of the Radon-Nikodym derivative which is jointly
measurable with respect to the appropriate product g-algebra, then the density
function can be easily shown to be a reverse martingale by applying Fubini’s
theorem. Hence under conditions essentially similar to those in Theorem 3.1,
the asymptotic normality of the density function, approprnately standardized,
can be established.

It has been shown in Sen, Bhattacharyya and Suh (1973) that the bundle
strength of filaments under suitable conditions may be represented as Z, =
sup {x[1 — F,(x)]: x = 0}. In view of the Rao-Blackwell estimator ¢,(x) of F(x),
we consider

4.4 Z* =sup {x[1 — ¢,(x)]: x = 0}.
Then, it is easily seen that {Z, *} is a reverse submartingale sequence. Also,
4.5) P{sup, nt|¢,(x) — F(x)] > K} <e, K < oo.

Hence on using our Theorem 3.1 and then proceeding as in the proof of the
main theorem in Sen, Bhattacharyya and Suh (1973) or Sen and Bhattacharyya
(1976) it follows that the asymptotic normality results apply to {Z,*} as well.

Finally, the weak convergence of V, * for random sample sizes can also be
established by using our Lemmas 2.1-2.6 along with the results of Sen (1973) on
the weak convergence of V, for random sample sizes.
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