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UNIFORMITY IN STONE’S DECOMPOSITION OF
THE RENEWAL MEASURE

By Domokos SzAsz
Mathematical Institute of the Hungarian Academy of Sciences

Stone has decomposed the renewal measure of a probability distribu-
tion F into two parts: a finite component with the same tail behaviour as
that of F and an absolutely continuous one which is nearly stationary at
infinity. Our theorem asserts the uniformity of this decomposition.

1. Introduction. The solution of the two lift problem [3] is based on the
uniformity of Stone’s decomposition of the renewal measure. The renewal
measure determined by a probability distribution F has been decomposed by
Stone [2] into two parts: a finite component with the same tail behaviour as that
of F and an absolutely continuous one which is nearly stationary at infinity.
Since the uniformity obtained is interesting in itself, its proof is given here,
separated from the considerations of [3].

I'am grateful 1o Professor M. Simonovits for a useful discussion on the matter.

2. The theorem. Let &,¢&,, ..., p¢, 75 -« be independent nonnegative ran-
dom variables with <7(§,) = F and (»,°) = G* (k = 1), where ¢ > 0 is a small
parameter. Define {,* = &, 4 7,°, and denote by H* the renewal measure of the
process determined by the intervals £,

HE(S) =F Zkal,clt+...+ckees 1 .

The characteristic function of a probability measure A4 will be denoted by
A1) = § e dA(x).

THEOREM. Suppose that

(i) ¢ xdF(x) =2 (0 < 2 < oo) and Fm is integrable for some n, = 0;

(i) & x dG(x) = ¢ and the family of measures {G*(dx) = xG*(dx): ¢ < &} is
 relatively compact in the weak topology.

Then for a suitable ¢, > 0 all the measures H* (¢ < ¢,) possess a decomposition
H: = H?® + Hp, where

(a) the Hy are finite and the family of measures {H,*(dx) = xHs(dx): ¢ < &} is
relatively compact in the weak topology;

(B) the Hy are absolutely continuous with uniformly bounded densities hy, i.e.,
SUp. <., SUp, A,'(x) < oo, and finally

(2.1) lim,, ./ SUP, <. SUP, 5,

1
hot(x) — 7‘ 0.
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It is easy to see that the last assertion can also be formulated as follows:

1

+ e

Hms’—»O,m'—»oo supege’ Supxaz’ hze(x) - 7 =0.

An important special case is where 7* = ey and » has a given distribution with
expectation 1. In this case (ii) holds automatically.

3. Proof. Let A™ denote the n-fold convolution of the probability measure
A with itself. By the virtue of (i), F"0 can be written in the form Fo =
PF, + gF,, where p > 0, p + g = 1 and the density of F, is continuous and
vanishes outside a finite interval. Denote F¢ = F xG* and let (F¢)™ =
PFy % (G9)™0 + gF, « (G*)™ = pF* 4 qFy. Following Stone’s arithmetic, let

He= [+ F oo )] Do gh(F)®
and

(.1) Hy = [pHy # (G)™0] % Fyx Do (F) ™00
Then H* = H 4 Hy (cf. [2]). Now (a) follows easily because H(R') = n,p~!
and (ii) imply the relatively compactness of the F¢ (F¢(dx) = xF¢(dx)) and
consequently that of the F,* (Fy(dx) = xF;(dx)) as well.

The core of the proof is the following lemma. Denote Lt = Y 7., (F¢)™®,

LEMMA 1. For every finite interval I,

limy, g o0 SUPecer SUPyny | LT + X) — ﬂ =0.
- - ny2
PRroor. For simpler notations suppose in what follows that n, = 1. Asstlime
that u and 4 are integrable and u(x) = § e*#i(f) dt. It is easy to see that the
inversion formula

3(0) itan 1
u(y)L:(d +x=2nL+2 e "j(t)Re —— dr
§ u(y)Le(dy + x) pR ) () T
is valid if # = 0 (cf. [1], page 221). Let
o () = 1 if [y <a
=pa+p—Dh) if asllsa+p
=0 if |yl=a+op 0<p<a.

Putting u~(y) = 4,_, ,(y) and u*(y) = U, ,(y) we have
(3:2)  Sw ()L + %) = L(x — a, x +a) < §ur())LAdy + %) .

Since 4, ,(f) = (wpt*)~}(cos at — cos (a + p)?), the inversion formula can be ap-
plied to u* (and to u~ as well). Thus
§ut())Ldy + x) = 24P 4 2 cos (1)@ (1) Re — - dr
A+e 1 — Fe()
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where 47 is integrable. We use this relation in the more convenient form
. 2a
)Ly + 0 — =L

1

_ oA — 2ea -
(3.3) T + 2 { cos (#x)d*(f) Re 1——F°—(t)dt
Ay 1 1
+ 2 cos (tx)d*(r) Re <1 I -1 0 > dt

(Clearly F°(7) = F(t).) The first term on the right-hand side will be arbitrarily
small if we choose p and ¢ small enough. Let us fix a small p. Then by the
Riemann-Lebesgue lemma the second term can be made as small as we want
if x is large enough. Finally observe that #* is bounded and so the desired
negligibility of the third term will follow if we prove

LeEMMA 2.

lim,_, | lRe (1 _lﬁe(,) -- _lﬁ(t)>ldt —0.

Accept the lemma for the moment. Our argument can also be applied to u-
and then by the inequality (3.2) we obtain the assertion of Lemma 1.

Proor or LEMMA 2. We use the arithmetic identity

1 S i (S

. - ~ = — =J°.

1—F 1—F (1—F)y1-F
By the assumptions, lim,_,, F*(f) = 0 uniformly in ¢ > 0. Thus for |?| large,
[Re J*| < 4|F| (say) which—together with the integrability of F—gives (for a
suitable #,) §,,,, [Re /| < f, where 8 > 0 is arbitrary but fixed. Now we prove
that there exist £, > 0 and ¢, > 0 such that for ¢ < ¢,

1

34 Re — ~_ |dt< 8.
(3.4) Sz [Re | dr < 8
To do this we need a lemma that will be proved later.

LEMMA 3. There exist ¢*, t* > 0 such that for every ¢ < e*, [f] < r*
" 22
1 — F()P > 2.
= PPz

Suppose that ¢* and ¢* are chosen according to this lemma. Then for |f] < r*
and ¢ < &*

Re 1 _ Re(1 — Fy)

1 — F1) 11— Fer)p?
and for 7, < r* and ¢ < &*
Veisey 72 Re (1 — Fe(1)) dt < §§,5, 7)™ — 1 — isin 1y] dt dF«(y)
=y Smétoy s7*e* — 1 — isins|ds dF¥(y) .

Re (1 — F<(1))
t2

IA

2
'ﬁ
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Since the measures’ yFe(dy) are relatively compact and §s7’le® — 1 —
isin 5| ds < oo, we can apply the Lebesgue theorem and obtain (3.4).

To finish the proof of Lemma 2 let us fix # and 1, as above and observe that
F(t) = 1if t £ 0. Then

1 — Pz |t — £ — A1 -G,

and since the second term on the right-hand side tends to O uniformly for
|#| € [, t,], We can conclude that F+(1) is uniformly bounded away from 1 for
t, < |tf| £ t,, if ¢ is small enough. Consequently lim,_, J*(r) = 0 uniformly for
t, < |f| £ t,. Hence Lemma 2.

Proor oF LEMMA 3. We start from the elementary inequality

(3.5)  |F(t) — 1 —i(A + e)t| < § | — 1 — itx| dF(x)

IA

t2 {3 €
> §iargaiei—1 X* dFE(xX) 4 21] §jpiza-1 [X] dF(x)

Note that the conditions of the theorem imply that the measures Fe(dx) =
xF*(dx) are relatively compact in the weak topology. Consequently if #* is
small enough, then because of

§oizaiei—1 1X] @FE(x) = §jgzaen -1 [X] dF(x)

the second term on the very right-hand side of (3.5) will be less than 4|¢| for all
|f| £ t* and ¢ < ¢, where § is any prescribed positive number. Moreover,

r - =
> § oz -1 X* dFe(x) < |1] —%FE[O’ o) + [t|FF [c]t|™, o)

whenever 0 < ¢ < 2. If ¢ is sufficiently small the first term on the right-hand
side will be less than 8]¢| for any ¢ < ¢, and the same will be true for the second
term if ¢ is already fixed and |¢| < ¥, where #* is small enough. Now Lemma
3 follows by taking the second power of (3.5).

Return to the proof of the theorem. Using Lemma 1 and the nice prop-
erties of F, one can see first that F, « L¢ is absolutely continuous with a density
satisfying
1

0

=0.

1im,, g 4/ oo SUPeger SUPgzar _Zz’d— (F, » L*)(x) —
X

This easily leads to (2.1) if we observe that {pH. x (G)"0: ¢ < ¢} is a rela-
tively compact family of measures each of total mass n.

Finally we prove the uniform boundedness of the A,”’s. But it is a simple conse-
quence of the fact that for every finite 7 we have lim sup,_, sup, L*(/ + x) < oo,
which comes from (3.2) and (3.3).
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