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A PROBLEM OF TWO LIFTS

By Domokos SzAsz
Mathematical Institute of the Hungarian Academy of Sciences

The following problem is solved: when are we obliged to walk upstairs
in a building supplied with two lifts (or elevators), if repairs to the lifts are
quickly carried out? Sufficient conditions are given on the distributions of
operating- and down-times under which the times when both lifts are in-
operative are asymptotically distributed as a Poisson process.

1. The problem. During his visit to Budapest University in October, 1974,
A. D. Solovyev referred to the following problem in reliability (there is a refer-
ence to a special case of it in (3) of Section 6.2 of the English translation of
[4]). A house is supplied by two lifts working independently of one another.
The functioning of each lift forms an alternating renewal process with up- or
working-time distribution F and down- or repair-time distribution G. Suppose
that G = G* depends on the parameter ¢ > 0 in such a way that the mean
(& xdG(x) > 0 as ¢ — 0. With both lifts starting in new condition at time 0,
let = = ¢* denote the time of the first shock of the system, i.e., the first moment
after time 0 when both lifts are out of order. Determine the asymptotic distri-
bution of ¢ under suitable normalization for ¢ —s 0.

The reason for formulating the problem as above is that there is little hope
of determining the exact distribution of r under general assumptions on F and
G. If either the distribution F or G is exponential then one can obtain the
Laplace transform of the distribution of ¢ in an exact form (see [3] and [8]). In
practice, repair-times are much shorter than working-times, SO an asymptotic
result may give a useful approximation. To complete the solution from a prac-
tical point of view it would then be necessary to estimate the speed of conver-
gence to the asymptotic distribution but we shall not do so here.

What we do below is to solve the problem under sufficient conditions on F
and G: our general result is in the theorem in Section 2, while a simpler version
is given in the corollary there. Section 3 contains several lemmas which are
used in proving the theorem in Section 4. The theorem we prove in fact answers
more than is asked in Solovyev’s question, for we give sufficient conditions under
which the successive shocks of the system (epochs where one lift becomes out
of order with the other lift already out of order) are asymptotically distributed
as a Poisson process. This result is not surprising in itself, for we can regard
the shocks as being obtained by thinning the sparse down-times of one alter-
nating renewal process, and it is known that thinning of a point process under
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reasonable conditions of independence leads via appropriate normalization to a
Poisson limit. Accordingly, the more difficult aspect of the problem is to for-
mulate natural assumptions concerning F and G which will guarantee the exist-
ence of this Poisson limit.

Let F and G have means 4 and ey respectively, and assume that F has a non-
lattice distribution. Then it is not difficult to show (see (2.6) below) that the
mean number of shocks in (0, 7] ~ 2eut/(2 + ep)*® for large ¢, indicating that
shocks are asymptotically like the points of a Poisson process at rate 2ep/2*. In
fact we will prove that if in the process of shocks we take ¢~* as unit then the
normalized process tends to a Poisson process of parameter 2u/2%.

2. The theorem. In what follows, some parameters will always have the same
meaning and the same range. In particular, 7 (+ = 0) means time, i means the
label of the lift so i =1 or 2, and ¢ (0 < ¢ < 1) is a parameter on which the
system depends and which will be supposed to tend to 0.

We agree to denote the point process determined by the random points 7, <
m< ... <, < --- by Il and further let

II(S) = card {k: =, e S}, II, = II([0, 7]) .

Finally denote the expectation measure of II by I, that is, TI(S) = ETI(S) and
I, = EII,.

Let &,(i) and 7,5(/) be independent positive random variables (k = 1,2, .. .)
such that

L&) =F, L) =6 k=1,2,..-.
Define £,:(i) = £,(i) + 7)) and
i) =1 if DEFCA0) + £,() < 1 < TE,C(0) for some L 1
=0 otherwise,
and
o = p (e (2) .

The first shock of the system occurs at the first moment when p,¢ = 1 but we .
are to consider the whole process p, . Obviously the intervals when p;° = 1
coincide with the “walk-up” periods.

We say that at time r the system is shocked if p.* =1 but lim, . _,p0,° = 0.
Denote by T¢ = {r,* < 7,y < ---} the sequence of shocks and by W* the point
process {w;* < wy' < ---} where w,* = e7,°.

THEOREM. Suppose that
(i) For some finite integer ny = 1 the nith power of the characteristic function
of F is integrable;
(if) — Wiy log [x — y[ dF(x) dF(y) < oo ;
(iii) For some c;, ¢, > 0, F(x) < ¢,x whenever 0 < x < c,;

(iv) | x dF(x) = 2 0<1< o0}
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(v)
SxdG‘(x):e 0<exgl

and the family of measures is relatively compact compact in the weak topology (cf.

[1D;

(Vi) There exists for every ¢ (0 < e < 1) a distribution function Né(x) such that

1 — G(x+y) _Ne
(2.1) oo < 1— Nex),

whenever G*(y) < 1 and lim, _, | x dN*(x) = 0.

Then W* tends to the Poisson process with parameter 227, as ¢ — 0, in the sense
of the weak convergence of finite dimensional distributiors and of the weak conver-
gence in space D[0, oo) (cf. Lindwall [3].

The inequality (2.1) in condition (vi) is essentially weaker than the usual con-
dition of possessing increasing failure rate, though it is of similar type.

The conditions of the theorem become much simpler in the important special
case 7° = 7.

COROLLARY. If F satisfies conditions (I)—(iv) of the theorem and G- satisfies
conditions

(vii) G¢(x) = G(s~'x), where G is a Jfixed distribution function and § dG(x) = p;
(viii) '
1=6Gx+y) N(x)
1 -6y
whenever G(y) < 1 with N a distribution function having finite expectation;

then W¢ tends to a Poisson process of parameter 22, as ¢ — 0, in the same sense
as in the theorem.

We say that a shock = of the system is of type i if lim, . _, p(i) = 0. Under
our assumptions all the shocks will be of exactly one type with probability 1.
Denote the point processes of shocks of types land 2 by U* = {u* < uy < .. -}
and V* = {vs < vf < .. -} respectively. Since W, = Ui-y, + Vi, and U* and
Ve are identically distributed we have W = 20:,,. Introduce the point pro-
cesses R* = {{°(1) + -+ + & (1) + §(1): k= 1) and H* = &) + -+ +
C*(1): k = 1) and denote #:'({) = Ep;(i). Finally define the random set B by
Bt ={x:0,(2) =1}, let B = B* n [0, 1] and B = E|B/| where | | denotes
Lebesgue measure. ’

Our approach is based on the reduction of the proof of weak convergence to
the verification of the convergence of certain unconditional and conditional
expectations. For example, U will be easily tractable if we transform it as
follows: :

(22) Ut = ER(B;) = EE(R(B;) | B) = ER(B;) = E {{ 0,(2) dRe(x)
= 1§ 5.42) dRe(x) .
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It is easy to see that

(2.3) pr(D) =1} — G) * F « H°)(x)
and
(2.4) R =Fx H.

By applying the key renewal theorem to
1= 02) = [1 — F) = H](x)
we obtain

2.5 lim,_., 5,(2) = —*¢
(2.3) i 0:(2) = - i

where we use the notations of the theorem. Now from (2.2), (2.3) and (2.4),
U = §5 (867 #442(2) dF (x)) dH(u) ,

and if we use (2.5) then we obtain

(2.6) O~ HT
(A + pey

which explains the parameter of the limit process which appears in the theorem.
This analysis already suggests that one might expect a similar result for non-
identically distributed lifts. In fact if
EE, (i) = 4, and En (i) = ep,
then the assertion of the theorem will hold and the parameter of the limiting

process will be (p; + p5)/2; 4,

3. The lemmata. As to notions in connection with point processes we refer
to the elegant survey [2]. =, will denote the weak convergence of random
vectors and also that of point processes in the sense of finite dimensional distri-
butions.

LemMa 1. Suppose thatIl* = {nf < nf < - .- < m,° < - - - }are point processes
on R* = [0, o) (¢ = 0). Then II* =, II° (¢ — 0) if and only if for every k = 1
7"y« - o5 ) =4 (75 - -5 10 e—0.
The lemma is obvious.

LemMMmA 2. If II* =, II° (¢ — 0) and II° is szmple (i.e., with probability 1 the
process has only unit jumps), then

Hte =Dl[0,) Hzo
The result has been proved by Jagers [5].
LeEMMA 3. If for every t = 0, sup, My < oo then the family {II¢} is relatively
compact in the sense that every sequence Il*r from the family contains a subsequence

=+ converging to a limit TI° ( finite dimensional convergence for intervals of conti-
nuity of the limit process).
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Proor. It is enough to prove the sequential compactness, i.e., the tightness
(see [1]) of the random variables II,* for every ¢ and then the proof can be com-
pleted by Cantor djagonalization. Tightness follows from the Markov inequality
P{IIf = k} < k1.

LEMMA 4. There exists an ¢, > O such that all measures Re (¢ = &) possess a
decomposition R* = R + R, where

(@) the R\’s are finite and weakly compact;
(B) the R,”s are absolutely continuous with densities r,* bounded uniformly in ¢ and

lim,, g s o0 SUP,<. SUP, 2y [1y(X) — %l =0.

Proor. In [7] we constructed an analogous decomposition A* = A 1 Hy
for the renewal measure H,. Since R¢ = He « F + F we can use the obtained
decomposition to have R = (A« F + F) + (Hy « F) = R¢ + Ry which also
possesses the desired properties. '

LEMMA 5. Let

0(z) = {5 e~*"s(x) dx Rez >0
and
7(2) = {7 e7** dT(x) Rez>0

where 5(x) is a continuous bounded function on [0, co) and T is a measure on [0, o0)
such that the integral defining ©(z) exists for Re z > 0. Then the Parseval-formula

3.1 {o em*as(x) dT(x) = 2% jotiz a(wyr(z — w) dw

holds whenever Re z > ¢ > 0 and integral on the right-hand side exists.

Proor. By standard smoothing. Let

0= [ (1= 5]

where a* = max{a, 0} and 0 < a < 1. Then

4u(2) = (7 e75q, () dx = (O2Y e
az
is uniformly bounded in a (0 < a < 1) and z (Re z > 0) and it is also integrable
on any vertical line Re z = ¢ (¢ > 0). Thus with s5,(x) = § g,(x — »)s(y) dy and
1(X) = § 4u(x — y) dT(y) we have

(3.2) (5 e, ()1,(x) dx = ZL

; SEE2 o000z — W)gylz — w) dw
from the inversion formula known for Laplace transforms (see [4]) for any
0 < ¢ < Rez. The functions s,(x) are uniformly bounded in « and x and for

almost every x lim,_, 5,(x) = s(x). Thus we can first take the limit & — 0 in
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(3.2) and then using the conditions about s we can also take limit 8 — 0 to
obtain (3.1).

LEMMA 6. If condition (ii) of the theorem holds and ¢(z) = (¢ e=** dF(x) then
for every ¢ > 0

(3.3) jorim 1O g7 oo

T
Proor. Consider the absolutely convergent integral
(3:4) (% (@ + )77 §p e te e dF(x) dF(y) di
= & {7 e 2 §¢ (¢ 4 )t cos [t(x — y)] dtdF(x) dF(y) .
Now
(3.5) §0(c* 4 )"t cos [t(x — y)]dt = (9o~ [¢X(x — y)* + w*]~tcosudu.
However

(3.6) §67 (@ + u)"tcosdu < (57 (@ + w)~tdu = O <log%> a>0

and by the Leibniz convergence criterion

(3.7) §en(@ + w)~tcosudu = o(1)
uniformly in w = #/2 and 0 < a < 1 and also

(3.8) ¢ (@ + w)~tcosudu = O(1)

uniformly in @ = 0 and @ > 1. Thus if ¢[x — y| > 1 then (3.5) is bounded by
(3.8), and if ¢[x — y| < 1 then by (3.6) and (3.7) it is O(—log [x — y|), uniformly
in N. If we apply these remarks to (3.4) then we obtain (3.3).

LEMMA 7. Fort =0
Wy — 2% e—0.
Proor. From (2.2) we have
Uiy, = E B, dR:(x) .
Observe that for ¢ — 0 the set B:_;, moves out to infinity where the measure R¢

is nearly stationary by Lemma 4. This observation leads to a further transfor-
mation which results in the inequality

(B-9) Uy — 27| < E (e dR(x) + R[a, o)
+ E g, Inf(x) — a7 dx 4 27N (Bioy, — 271
+ 7B,

where a (< ¢7*) will be fixed later.
We shall prove that for any fixed a

(3.10) lim, , E {5 dR*(x) = 0,
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and for every fixed ¢

(3.11) lim, , B:y, = 271

Suppose we have done it. Then all five terms on the right-hand side of (3.9)
can be made arbitrarily small.

In fact, if « is large enough then the second term will be uniformly small
(<7, say) and moreover the integrand in the third term can also be made small
(<22, say). Then fix « and use (3.10) to see the negligibility of the first
_term and use (3.11) for estimating the third, fourth and fifth terms.

Now for the proof of (3.10). By (2.2)

E { e dR(x) = §5 0,5(2) dR'(x) .
Put
o(2) = 7 e dF(x)
7(2) = §5 e dG(x) -
An easy calculation yields that for Re z > 0

(3.12) (o e*p,5(2) dx = 1 e —19)
zZ 1 — gDTs z
and
(3.13) i e dRe(x) = —2
1 — orele

Then by Lemma 5 for 0 < ¢ < Rez
dw

z—w

(3.14) 5 epi@ dR() = o qurp L oL T)) @
27i w 1l —o¢rlwl— o
where the integral on the right-hand side certainly converges by Lemma 6 if
¢> 0and z = 2¢. (3.10) will follow if we show that for some z > 0, for exam-
ple, z = 2¢, the expression (3.14) tends to 0 with ¢ — 0. However, the integral
on the right-hand side is dominated by K|o(z)[*|z|~*, where K is independent of
z = ¢ + it (cis fixed) and ¢; thus by the Lebesgue dominated convergence theo-
rem the integral tends to 0, as ¢ — 0.
To prove (3.11) we note that

By = {¢p,(2)dx.

Consequently by (3.12) we have

(3.15) (oo By, dx = . 20 = |
e 1 —gp e

Suppose for a moment that
(3.16) (o x* dGe(x) = o(1)
if ¢ — 0, and use it to obtain
1 — y(e2) = &z + o(&%)
1 — p(e2)ré(ez) = Aez + O(€) .

and
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These relations help to obtain from (3.15) that
lim,_, (¢ e=**B:y, dx = (2%~

and this is equivalent with (3.11). Finally, the proof of (3.16) follows from
condition (vi) via

(o> x* dGe(x) = (& x(1 — G*(x)) dx

< Ye, ki1 — GY((k — D]k < B 4 (1 — G*(h)) L[%(%gf_) '

In fact, if for somee¢, - 0and 0 < A, < 1
1§ X dGon(x) Z by
then the previous inequality applied to & = A, yields
(3 % dGen(x) < hit + hye, 2Nn(h)]"* — by,
a contradiction.
LemMA 8. Forany t >0
E(Wg|we =x)— 1 + 227%(t — x)
uniformly in x € [0, t].

This lemma and the next one as well are understood to be valid for a suitable
version of conditional expectations.

Proor. By the definitions and the symmetry of the processes U and V'
EWe|we = x) = E(W S |uf = e7'x, v,° > e7'x)
' = E(Ut-y, | uf = ¢7'x, v > e7'x)
+ E(Viey | uf = 7%, 0 > e7'x) .
We only prove that

(3.17) E(Usoy |uf = 7%, v > e7'x) > 1 4 273t — x)
since the relation
E(Veoy, |uf = e7'x, 0 > e7'x) — 274t — x)
can be proved analogously. To prove (3.17) we can write
E(Ut_y, |uf = 7%, v, > e7'x)
=1 4 E(§ genpemts,e—100 H(du — e7%) |uy = 7%, v > e7'x) .

Now we make a similar decompositi’on to (3.9) and conclude that (3.17) will
follow if we prove that for any a > 0

(3.18)  lim,_g E(§ penpemto,e-tara) H(AU — %) |0 = e72x, v,° > e7x) = 0
and for any ¢t > 0
(3.19)  lim,_, E(|B* N [e~ x, e71]| | u® = e7'x, v, > e7'%) = A7t — x)

uniformly in x € [0, ¢] (these relations correspond to (3.10) and (3.11)).
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The proof of (3.18) is similar to that of (3.10) but here we have to use con-
dition (iii). In fact, the difference is in the initial conditions since at ¢~!x the
first lift just goes to repair while the second one has already been in repair a
period of «,* (say) and will remain there a period of length ¢, with some distri-
bution function _Z,(y). From (vi) it follows that _#,°—,d, the degenerate
distribution at 0, as ¢ — 0, independently of the length of «°, and thus uniformly
in x. Let 9,52) = \¢ e d_Z,%(y). It is easy to see that instead of (3.12) now
we have

1 —39:2 1 9o —19)
._|_ .
z z 1 — or

z

and instead of (3.13) we have
1 — y¢ 2(1 — »&)re
o( re) = o(1 — 1), A rZr
1 —or le I —or
We can apply our Parseval-formula in a similar way as we did in (3.14) except
for the convolution of the first terms since it does not contain the integrable

lo(2)]?|z|-*. However, the convolution of the first terms can be estimated prob-
abilistically, because it corresponds to a probability of the form

P + 7 < ¢.) S P < 9.9 = ¢ (1 = A0 dF(y) = 17 (1 = N(y)) dF(y)
= {7 F(y) dN(y) -
In fact, by conditions (iii) and (vi)
§5 F(y) dN'(y) = €2 §8y dN(y) + [1 — N¥(e))] = o(1)

and this completes the proof of (3.18).

To prove (3.19) observe first that the convergence (3.11) is uniform in any
finite interval. This follows from the fact that the B:_,,’s are nondecreasing for
every ¢ > 0 and that their limit is continuous. Moreover, the following estimate
is valid:

|B:-1t+¢jc - B:-1x+¢;| = |B§—1z - Bz—lzl = |B§—1t+¢; - B§-1x+¢;| + ‘/]ace .

z

Here Bi-y, g — Bi-1o1y¢ has the same distribution as B¢_;,_,, and thus the ex-
pectation of its measure tends to 2-}(¢ — x) uniformly in x € [0, 7] by our previous
remark. Moreover by condition (vi) E¢,* — 0 as ¢ — 0, uniformly in x, and
thus the proof of (3.19) and of the lemma as well are complete.

We do not go into the proof of the final lemma because it does not require
any new ideas.

LEMMA 9. Foreveryt =0

lim,_, E(W s — Wi |w' =y) =22t —y)
uniformly in y € [0, ] and
lim,_ E(W; — W,i|we =y, Wiy =x) =1+ 227%( — x)

uniformly in 0 < y < x < ¢.
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4. Proof of the theorem. From Lemmas 3 and 7 we conclude that the family
{W*: e > 0} is relatively compact. We show that if W< =,1I°fore, —» 0 (k —
co) then II° is a Poisson process with parameter 2172,

To obtain the distribution of x,° we start from the identity

EW e = (i E(W % |wyw) dP(wye < x) .
By Lemmas 7 and 8 we can take the limit as ¢, — 0 which results in
227% = §4 (1 4 227%(t — x)) dP(n,* < x)

whenever ¢ is a continuity point of the distribution of .. The Laplace trans-
form technique applied to this equation shows that =,° has a proper probability
distribution, namely an exponential distribution with parameter 222,

Fix y arbitrarily. If 7 > y then again

E(W e |wee = » = §y E(W ok [wyee = p, Wyt = X) dP(wyk < x|ws = ¥).
Take the limit for ¢, — 0. By Lemma 9 we obtain that
W = y) = §5 (1 + 227t — %)) dP(x < x |70 = y)

and this gives that 7, — 7,0 is independent of #,° and has the same distribution.

By induction we can show that all the z,° — #%_’sare independent, identically
distributed. Thus W* —, II°, a Poisson process with parameter 222, Since the
Poisson process is simple, W = _, I’ is also true by Lemma 2. The theorem
is proved.
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