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ENTRANCE LAWS FOR MARKOV CHAINS

By J. THEODORE CoX
Georgia Institute of Technology

Let S be a countable set and let Q be a stochastic matrixon S x S. An
entrance law for Q is a collection g = {zn}ne z Of probability measures on
S such that #,Q = pni1 for all neZ. There is a natural correspondence
between entrance laws and Markov chains &, with stationary transition
probabilities Q and time parameter set Z. The set <(Q) of entrance laws
is examined in the discrete and continuous time setting. Criteria are given
which insure the existence of nontrivial entrance laws.

0. Introduction. Let S be a countable set, and let Q be a stochastic matrix
on S x S. Z will denote the set of integers, with Z*(Z~) the nonnegative (non-
positive) integers. For any two functions u, v: § — R we will write

40(y) = Zees u(0)Q(x, y)»  QU(X) = Fyes A%, y)U())
whenever the sums exist. We follow Dynkin [6] in making

DEFINITION 0.1. An entrance law for Q is a family g = {¢,},.., of probability
measures on S such that '

(01) nQ = ftays, MEZL.

(We write p,(x) for g,({x}).)

The motivation for studying entrance laws is simple: there is a natural corre-
spondence between entrance laws and (time homogeneous) Markov chains &,
which have time parameter set 7 instead of Z*. To be precise, let Q = SZ,
and let & be the g-algebra on Q generated by finite cylinder sets. If gis a Q
entrance law, define & on (Q, &) by

0.2) Pw: 0, = Xy Opiy = X1, o0y Gppy = X))

= (%) Q(Xg5 X1) + -+ Q(Xpem1s X;)
forallne Z, ke Z*, and x, € S. It is a simple matter to check using (0.1) and
the Kolmogorov extension theorem that &7 is a well defined probability measure
on (Q, 7). Letting £, be the coordinate process §,(w) = ®,, it is easy to see
that the Markov property holds,
0.3) Pleun = ylénk <1l =Q¢, y) Fae.
Conversely, if Z#and £, defined on some probability space satisfy (0.3), then g
defined by
(0.4) ta(¥) = F€, = ]

is an entrance law for Q. Hence the correspondence is established.
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534 J. THEODORE COX

If Q has an invariant probability measure 7 (= will always be used to denote
an invariant probability measure of Q, if one exists) then it is a simple matter
to construct an entrance law g, just set g, = = for all n. An entrance law of
this form will be called trivial; all others will be called nontrivial. A trivial en-
trance law leads to the construction of a stationary Markov chain. The fact
that nontrivial entrance laws for strictly positive matrices exist was established
by Spitzer in [15].

Our purpose here is to investigate the set &~ = Z(Q) of entrance laws for Q.
Both Follmer [10] and Spitzer [15] refer to entrance laws in their papers, but
use them primarily as a tool in their investigation of countable one-dimensional
Markov random fields.

In [6], [7] and [8] Dynkin introduces and studies Markov processes with ran-
dom birth and death times. The entrance laws presented here correspond to his
processes with birth time — oo, death time 4 oco. We refer the reader to his
papers for results in the general case.

In Section 1 the (convex) set £ is shown to be completely determined by its
extreme points. In addition a useful method for computing the extreme points
is obtained. Section 2 attempts to characterize the existence of entrance laws
in terms of the convergence of certain hitting times. We show that nontrivial
entrance laws “come down from infinity.” In Section 3 Q is replaced by a semi-
group {p(f)}:z, and the previous results are shown to remain true in this setting.
Birth and death processes are examined in Section 4. Our results become simpler
and more concrete for these semigroups. Examples are given in Section 5 to il-
lustrate our results.

1. The representation theorem. Let s,, s,, - - - be any fixed enumeration of S,
and write |x| = k if x = 5,. We give 27 the topology of pointwise convergence,
and the corresponding s-algebra of Borel subsets. That is, if #*, #e <, then

¢ — p as k — oo means

(1.1) lim,_ . ¢ (x) = p.(x) » ne”Z, xef§.

Since 7 x S is countable this actually determines a metric topology on . This
topology is related to the usual weak convergence (=) of probability measures
in the following way: p* — g in & if and only if p,* — p, for all ne Z.

Defining addition in the natural way makes #(Q) a convex set. If g, ve
Z(0), 0 < a < 1, then ¢ € S(Q), where

(1.2) u(X) = ap(x) + (1 — @), (x) .

The set of extreme points of Q) will be denoted by Z(Q).

AQ) is also closed under “translations.” That is, if #ze Z1(Q), and v, =
Uners then v e Q). Thus if Q) contains one nontrivial entrance law it
must contain infinitely many nontrivial ones. We can now state ‘

THEOREM 1.1. Assume Q is irreducible. If peec Z(Q) then there is a unique
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probability measure 2 on &(Q) such that

(1.3) 1(X) = Soq 0u(¥) di(g),  mEZ, xeS.
Any probability measure A on & (Q) determines an element p of £(Q) via (1.3). Fur-
thermore, if pr € &(Q), then there is a sequence X,, X,, - - - of element of S such that

(1.4) (%) = lim,_,, Q"*¥(x,, x) , neZ, xeS.

ReMARKks. (1) If in addition Q is aperiodic and g e &(Q) is nontrivial, then
the sequence x, in (1.4) has the property that |x,| — co. For if not, then there
must be an element y € S and a subsequence x,, of x, with x,, = y. In this case
(1.4) becomes

ta(x) = lim,, ., Q¥ (y, x) = =n(x), Q positive recurrent
=0 otherwise

by Theorem 69 in [11]. This contradicts g e &(Q) being nontrivial.

(2) Theorem 1.1 is actually a special case of Theorem 3.1 in [7]. The method
of proof presented here (which consists of identifying the solutions of y, Q = 7
with the harmonic functions of a related operator p) is used by Follmer in [10].
The technique was first outlined by Dynkin in [6]. Preston uses different methods
to derive an integral representation theorem for random fields in [14].

LemmaA 1.2. If Q is irreducible, and Z(Q) #+ @, then there exists v € <(Q)
which is strictly positive, i.e., v,(x) > 0 forallne Z, x e S.

Proor. FixmeZ, yeS. Since Z(Q) is convex, it suffices to produce ¢ e
Q) such that ¢,(y) > 0. Assume g ¢ </(Q), choose z ¢ S such that p,(z) > 0.
Since Q is irreducible there is a positive integer N with Q¥(z, y) > 0. Hence,

tx(y) = #(2)Q¥(z, y) > 0.
Since .#1(Q) is also closed under translations, define ¢ by

SD,,L(X) = /"n+N—m(x) *
Then ¢ € £/Q) and ¢, (y) > 0. []

Let E = {[n, x]: ne Z~, xe S}, with v e Z(Q) strictly positive. Define a
function p on E x E by
(1.5) pn 1, [m, y)) = 0 metn— 1

_ QUL Y
Ya(X)

p is a well-defined transient stochastic matrix on E x E, which (intuitively)
governs a Markov chain which is a kind of reverse space-time chain for the
original Q Markov chain. The operator p certainly depends upon the choice of

¥ € .&; nevertheless our results will not.
Define a standard measure y on E by

(1.6) 1) =0, 7 # [0, x]
=w(®), 7=1[0,x].
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A function f on E will be called normalized if

(1.7) ZpenfOr(n) = 1.
A nonnegative function f defined on E such that
(1.8) Pf(n) = f(n)

will be called p-harmonic. Let 572 = 2#(Q) denote the set of normalized p-
harmonic functions, with the topology of pointwise convergence. £ is convex
and (") will denote its extreme points.

LeEmMA 1.3. There is a one-to-one onto homeomorphism ¢ between £ and 7.
If pe &2, then () = f, where
(1.9) A, x]) = #).

V(%)

Proor. Assume g e .~ and define f by (1.9). Then f is clearly nonnegative
and

PAIn X]) = Zyes p(Ins x], [ — 1, yDAln — 1, ]

=y . 2O %) | aoa(y)
! V(%) Vn-1(Y)

— Au'n—l Q(x)
Ya(X)

= f([n, x])

since 4, ,0Q = p,. The normalization (1.7) follows immediately from the fact
that g, is a probability measure on S. Hence f e 57"

Conversely, assume fe &7, and for ne Z~ define g, by (1.9). For ne Z*,
set p, = p,Q" so that p,Q = p,,, certainly holds for ne Z*. For ne 7~ we
simply reverse the steps in the previous paragraph to obtain ¢, Q = p,,,. Itre-
mains to show that each y, is actually a probability measure on S. Forn =0
this is equivalent to (1.7). For ne Z*,

2iyes aly) = Lyes 10Q™(Y)
= Dlses Zyes ﬂo(x)Q"(X, y)
=1.
ForneZ-,
ers )un(x) = Zzes .u'n(x) Zyes Q_"(X, y)

= ZyeS )unQ_n(y)
=1

since 1,0~ = p,. Hence e &, and ¢ is clearly one-to-one and onto.
To show that ¢ is a homeomorphism, it suffices to show that if g*, p#e &,
and ¢(g*) = f, and ¢(g) = f, then g — g if and only if f, — f. Now if p#* — g,
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then

_ M%)
Su([n, x]) = W

_, Ha(%)
Ya(X)
= f([n, x]) -
Conversely, this argument shows that if f, — f, and ne Z~, then p*(x) —
t.(x). ForneZ*,
1 (X) = 11°Q"(%)
= Zyes 4" (N)Q"(ys X)-~
Now we already know that u(y) — p(y) for all ye S, and g, is a probability
measure on S. Hence p* = #,, and since Q"(., x) is a bounded function on S,

Zives ' (N)Q"(D> X) = Dyes t(1)Q"(ys *)
= pa(¥) -
Therefore gt — g. []

The standard Martin boundary theorems about harmonic functions can now
be translated into theorems about entrance laws. Before doing this, we sketch
a minimal amount of the Martin theory, following Dynkin [5].

Let G be the usual Green’s function,

G(’/’ C) = Z:;o P”(ﬂ, C) ] 09 C S E .

The Martin kernel K relative to 7y is

G(1, )

K(7], C) = —"
A rG(%)
where 7 is the standard measure in (1.6). A computation using (1.5) and (1.6)
gives
(1.10) K([n, x], [m, y])) =0, m>n
= —_Q”_m(y’ X) , m<n.

Ya(X) -
Briefly, the Martin theory says that 22 is determined by its extreme points,
& (), and that these extreme points are given by certain limits of the Martin
kernel. The details of the complete theory are presented in [5]. We quote one

of the main results, stated in terms of harmonic functions instead of the usual
“boundary” terminology.

LeMMA 1.4. 52 consists of exactly those functions of the form

(1.11) . [ = Sew hdi(h)

where 1 is a probability measure on the Borel subsets of & (7Z”). This representation
is unique. If fe &(JF), then there exists a sequence x,, x,, - - - of elements of S
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such that
(1.12) S([n, x]) = lim,_, K([n, x], [—k, x,]) -
Proor. See Theorem 6 and the remark preceding it in [S]. []

We can now use the correspondence between .~ and 5# to convert Lemma
1.4 into a statement about entrance laws. Note that the map ¢ restricted to
&(Q) is a one-to-one onto homeomorphism between &(Q) and E(FZ).

ProoF oF THEOREM 1.1. We may assume Q) # @ and p is constructed
from some strictly positive v € . For n e Z- (1.3) follows directly from (1.9),
(1.11) and the fact that ¢ is a homeomorphism between &/(Q) and (57 ). For
neZ*

La(X) = Zlyes t(1)Q(ys X)
= Vatr [Ses 2(0)Q"(y, X)] di(p)

= (4@ Pa(x) dA(p)
by Fubini and the fact that (1.3) holds for s,

In a similar manner (1.4) follows from (1.9), (1.10) and (1.12), at least for
ne Z~. To show that (1.4) holds for n € Z* we use the fact that it holds for p,,
which implies that Q¥(x,, +) = p,(+). Hence,

Q" H(xp, X) = Tyes Q4(Xis 1)Q"(s X)
= Zyes t(1)Q"(s X)
= (%)
because Q”(-, x) is bounded. [J

A trivial consequence of Theorem 1.1 is the fact that Q) = {the trivial
entrance law} if S is finite and Q is irreducible and aperiodic. This follows be-
cause of the remark after Theorem 1.1 (|x,| — oo is impossible when § is finite).
If the entries of Q are strictly positive then this is an immediate corollary of a
theorem of Dobrushin [3] about Markov random fields.

Note that £1Q) = @ exactly when all the limits y, in (1.4) are not proba-
bility measures. This is in general difficult to check (but see [2]), and the fol-
lowing result due to Kesten (about Markov random fields) is simpler.

THEOREM 1.5. Assume Q has strictly positive entries but is not positive recurrent.
If there exists 6 > 0 and m = 1 such that

1 QM(x,x) =0, xef,
then Q) = . '

Proor. See Theorem 2 in [13]. [

2. Limit theorems. In this section we present several results which try to
capture the idea that a nontrivial entrance law must “come down from infinity”
in a predictable way. Throughout this section P* and E* will denote the prob-
ability law and expectation operator of a Markov chain {X.}n=o,1,... With tran-
sition probabilities Q and initial state x. ¢, will denote the first hitting time of y.
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DErFINITION 2.1. A sequence z;, z,, - - - of elements of .S will be called an entry
from infinity for Q if there is a family of probability measures {®,},.s on Z and
a sequence of integers n, — oo such that for all je Z, y € S,

2.1) lim, .. Pz, — n, = j1 = ©,()).

Intuitively, the states z, tend to some “boundary point” of S in such a way
that @, captures the (infinite) time it takes the Markov chain to reach y from
this “point.” It is a simple matter to check that if z, is an entry from infinity,
then |z,| — oo as k — oo.

We shall see that the above definition can be relaxed if Q is recurrent. We
now state the main results of this section.

THEOREM 2.2. Let Q be irreducible and aperiodic, pc £(Q), xeS. If Q is
positive recurrent, and p is nontrivial and extremal, then

(2.2) lim,__, #,(x) =0, lim, ,, ., t.(X) = 7(x) .
If Q is not positive recurrent, then
(2.3) lim,__., ¢ (x) =0, lim,_ ¢ (x) =0.

THEOREM 2.3. Let Q be irreducible. If Q has an entry from infinity, and there
is a state z ¢ S such that for all j € 7,

(2.4) lim, ., Q(x,2) =0,
then Q has a nontrivial entrance law.

THEOREM 2.4. Let Q be irreducible, aperiodic, and recurrent. If Q has a non-
trivial entrance law, then for all je Z™*, y € S,
(2.5) lim inf,,_, Q(x, y) = 0,
and Q has an entry from infinity.

The preceding two theorems will be combined into one when we deal with
birth and death semigroups. However, in the present setting, the gap between

the two theorems is real, as is shown by Example 5.1. Before proving these
results we state and prove a fact concerning Definition 2.1.

LEMMA 2.5. Let Q be irreducible and recurrent, z ¢ S, and @ a probability meas-
ure on 7. If there is a sequence z, of glements of S and integers n, — oo such that
(2.6) lim,_, Pz, — n, = j] = ©(j),
then some subsequence of z, is an entry from infinity for Q.

Proor. Fix e > 0, yeS. By assumption there are integers M and N such that

for all k,
Piflr, —n|] S M]=1—c¢

Plr, < N]=1—c¢.
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Using these estimates we obtain
Pilfr, — m| < M 4+ N2 P{fr, — m| < M + Nz, < 7,]
220 ey 5= P, — = j1P[7, =1 — ]
d=—u PHT, — n; = 1 205" Pr, =i — ]]
P[|z, — n,| < M]Pqz, < N]
1 — 2.
Hence the sequence of probability measures ¢, on Z, ¢,(j) = P*[r, — n, = j],

is tight. The standard weak convergence theorem shows that there must exist a
subsequence g, of ¢, and a probability measure ®, on Z such that

v v v v

O‘k, = (Dy .

We apply the above construction to y = s,, and then repeat the process using
s, for z and s, for y. Since S is countable, the diagonal argument can be applied
to produce a single subsequence z,,, of z, and a family of probability measures
{®,},.s on Z such that for all ye S,

lim,_, P®fr, — n,, = jl = @),
as desired. []

REMARK. Lemma 2.5 can fail if Q is transient.

ProoF oF THEOREM 2.2. The second limits in (2.2) and (2.3) follow trivially
from the fact that Q"(x, y) — m(y) or 0 as n — oo depending on whether or not
Q is positive recurrent.

Now if the first part of (2.2) fails, then for some x € S, ¢ > 0, positive integers
n, — oo, we have p_, (x) —»¢. Fix neZ, let k be large enough so that n 4
n, > 0. Then for ye S,

1)) = o0, Q"T"H(Y)
> o, ()0 (X, y)
Let k tend to infinity to obtain
ta(y) Z en(y) -
If ¢ = 1, this inequality coupled with the fact that both s, and = are probability
measures implies y, = =, a contradiction. So we may assume 0 < ¢ < 1, and

define

ou(y) = #,.(yi = iﬂ(y) )

It is easy to check that ¢ is an entrance law for Q, and that

o= (1 — &), + e .
But this contradicts the fact that g is extremal. Hence (2.2) must hold.
Similarly, assume the first part of (2.3) fails, let p_, (x) — ¢, and choose any
finite set F < S. Since Q™(x, F) — 0, (Q(x, F) = X ,cr Q(x, ¥)),

uo(F) = tew, Q"(F)
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= pon (0Q(x, F) + (1 — p_,, (%))
—1—c.
This implies z,(S) < 1 — ¢, which is impossible. []
ProOF OF THEOREM 2.3. Let z,, n,, {®,}, s be as in Definition 2.1. For ye S,
ne”Z,n+n, >0,
Q "z, y) = Liew Py, — e = J1O"(y, )
— i ®,(NC" () »)
as k — co. Define ¢ by
(2.7) ta(y) = Liew PN (ps y) = lim,_, Q" "¥(z,, y) -
We will show g e Q) by first showing each g, is a probability measure on S,
and ¢,0Q = p,,,. g is clearly nontrivial since the first equality in (2.7) shows
that p,(y) > 0asn— —oo.
Fix ne Z, ¢ > 0, let b be a positive integer large enough so that for all &
(2.8) Paf|t, — (n, + n)| > d] < ¢.
This can be done because of the existence of the entry from infinity. Let F < S
be a finite set large enough so that

(2.9) SUP.es\r Z?:o Qilx,2) < ¢
and
(2.10) 120 Q%(z, S\F) < ¢,

where S\F = {xe §: x ¢ F}. These estimates follow from (2.4) and the fact that
each Q/(z, +) is a probability measure on S. For k large enough,

Dizeswr QM2 X)
= Yleese PHX, 0 = x]
= Deeswe P[[to — (n, + n)| > b, Xopin = X]
+ Zsesw PH|ro — (m + n)| < b, Xoprn = X]
< Pif|ry — (n, + n)| > b]
+ 2Dsesw PHX,, 1 = X, —b =<7 — (n + n) < 0]
<&+ Daesr Lj=—s PHzo — (m, + 1) = jIQ7(0, x)
+ Deeswr 2ii=o sz[Xnk+n = x]P*[z, = J]
< ¢ T3040, S\VF) 4 Taeore (Thao Q5(x, O)PHX, ., = x]
< e+ €+ SUPesip 2igmo (%, 0)
< 3e,
using (2.8), (2.9), and (2.10). Hence, for k large enough,
Q"+*(z, F) = 1 — 3¢.
Since F is finite, let k tend to infinity, and recall (2.7) to obtain
. (F) =1 — 3¢,
which shows g, is a probability measure on S.
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Finally,
traa(y) = limy ., QW¥4(z,, )

= lim,_, >l,es Q™ ™(2,, X)Q(x, y)
= Ziaes (X)Q(%, y)
= 1,0(y) - 0
PrOOF OF THEOREM 2.4. In view of Theorem 1.1 we may assume that there
exists ¢ € &(Q) which is nontrivial and given by (1.4). If we assume that (2.5)
fails, then there must exist ze S, ¢ > 0, and j € Z* such that
(2.11) liminf, ., Qi(x,2) =¢.
If Q is positive recurrent, then
ta(x) = lim,_,, Qt"=9+k(x,, x)
= lim inf,__ Qi(x,, 2)Q"**(z, x)
= en(x) .
Here we have used the fact that |x,| — co. The above inequality contradicts
Theorem 2.2 (let n — —oc0).
If Q is null recurrent, and F C S is finite, then
to(F) = lim,_,, Q¥(x,, F)
= lim,_,, [Q/(x;, 2)Q@*79(2, F) + Zsesva Q(Xir X)Q*(x, F)]
< lim sup, ... [Q*~/(z, F) + Q¥(x,, S\{2})]
<1l—c¢
by (2.11). This implies z(S) < 1 — ¢, which is impossible. Therefore (2.5)

must hold.
We will now show that some subsequence of x, is an entry from infinity for Q.

This will be done by showing that the sequence of probability measures o,
a,(j) = Pz, —m = jl,
is tight, and appealing to Lemma 2.5.
Fix ¢ > 0, ye S. In view of (1.4) there must exist a finite set F C S such

that for all k,
Q(x,, F) > 1 — ¢

Letting ¢, denote the first hitting time of F this implies
Piufrp, < k] >1—c¢.
Since F is finite and Q is recurrent the;re must exist an integer b such that
Plc,<b]>1—¢, xcF.
Using these estimates we obtain
Po[r, — k < b] = Pz, < k, 7, = k + b]
= Yier Lbmo PPty = J, Xop = X]P7[7, < 0]

> (1 — 9Pz, < k]
>1—2e.
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Therefore,
(2.12) Pofr, —k <b] =1 — 2.

We now seek a similar bound below, but the method will depend on Q.
If Q is positive recurrent, then there must exist an integer j, such that
Qi(y, y) = n(y)/2 for j = j,. Using this estimate we obtain

pa(y) = limy_o, Q*¥7(xs, )

= lim,_, 335 Pz, — k = j1O"7(y. y)

= lim,_,, 350 Pz, — k = n — j1Q(y, y)

= limsup,_,, 25, Pz, — k =n — jlz(y)/2.
e 21())

lim sup, ., Pz, —k = n — j)] = T)’) .
By Theorem 2.2 p,(y) — 0 as n — —oo. This means there is a positive integer
b, such that

(2.13) liminf, . Pz, — k= —b]=1—c¢.

If Q is null recurrent, choose a finite subset F — S which contains y such that
t(F) =1 —e. Then

1 — ¢ < lim,_., Q*(x,, F)
= lim, ., Y% Yper PHrp — k = —j, X,, = x]Q¥(x, F) .
Choose j, such that Qi(x, F) < ¢ for j > j,, x € F. This implies
1 — e < liminf, ., 3ty Ypep Py — k = —Jj, X,, = x]Q¥(x, F) + ¢

or

1 — 2¢ < liminf,_, Por, — k = —ji].

—00
Since 7, < 7, this in turn implies

(2.14) liminf, ., Pofr, — k = —j] =1 — 2.

k—oo

Inequalities (2.12), (2.13) and (2.14) prove the desired tightness. Hence there
must exist a subsequence x,, of x, and a probability measure @ on 7Z such that

lim,,_,, P#[c, — k' = j] = @(j)

Lemma 2.5 now asserts that a subsequence of x,, is an entry from infinity for
0.0

3. Continuous time entrance laws. We now replace the matrix Q with a sto-
chastic semigroup {p(#)},,- The state space is still S, and (using the terminology
of [117) p(?) is standard and irreducible. We make the additional assumption that
all states are stable. In this case there is a strong Markov process {X(f)},», which
is governed by p(f) and which has right continuous sample paths (Theorem
7.41 in [11]). As usual, P* and E* will denote the probability law and expec-
tation operator of the process starting at x, and r, is the first hitting time of y.
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An entrance law for p(?) is a family g = {g,},. of probability measure on S
such that for all se R, ¢t = 0,
#sp(t) = Moyt »

& = Zp) will denote the set of all entrance laws for p(f). & is convex and
& (p) will be the set of its extreme points. We give . the usual pointwise con-
vergence topology.

Let Q be the matrix obtained from the semigroup at time ¢ = 1,

Q(x, y) = p(1)(x, y) -
(Note that Q has nothing to do with the so-called infinitesimal generator of

p().)
The following result, first noticed by Dynkin in [6], shows that all of the results
of Sections 1 and 2 (with the obvious modifications) carry over to the present

setting.

LEMMA 3.1. There is a one-to-one onto homeomorphism ¢* between £(Q) and
A(p). In particular, *(p) = v, where
3.1 v, = p, p(s — ny, seR, neZ, n<s.

Proor. Assume g = {¢1,},., € £(Q) and define ¥ = {v,},.x by (3.1). Then
v is well defined, since

Ua P8 — 1) = pt, p(m — n)p(s — m)

= Hn Qm_“P(s - m)

= fmp(s —m)
whenever n, m are integers with n < m. Eachy, is clearly a probability measure
on S, and

v, (1) = pu p(s — m)p(?)

= pap(s + 1t —n)

= ys+t ’
which shows v e (p).

On the other hand, if v € <£(p), define g by p, = v,; simply restrict the time
parameter from R to Z. It is trivial to check that g e <(Q) and ¢*(g) = v.
Hence ¢* is one-to-one and onto. We must now show ¢* preserves topologies.

Assume g*, pe Z(Q) and g — g in Q). Then, if ¢*(pF) = v*, o*(¢) = »,

() = pap(s — n)(y)
= Zses ta"(X)p(s — n)(x, y)
= Zizes #a(X)p(s — n)(x; y)
= () -
Hence v* — v in Z(p).

It is even easier to show that v* — v in < p) implies g* — g in £7(Q). This

completes the proof. []
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Note that an entry from infinity is now a sequence z, for which there is a
sequence of reals a, — co and a family of probability measures {®,},.s on R
such that

Pifr, — a, € du] = @ (du) .

Using Lemma 3.1 it is a simple matter to check that the obvious analogues
of Theorems 1.1, 2.2, 2.3 and 2.4 are true. Some additional work is required
but it is all straightforward.

4. Birth and death processes. A very nice class of semigroups to work with
is the class of birth and death processes on S = Z*, as described in [9]. For
these semigroups we will show that Theorems 2.3 and 2.4 combine into one
simple statement, and then give a sufficient condition in terms of the rates for
the existence of nontrivial entrance laws.

We assume strictly positive birth rates 8, and death rates 9, (except 9, = 0),
and define

4.1) =1, == ﬁgﬁé—ﬁ“ #(n) = T/ S5m0 T

It is well known (see [12]) that if the rates satisfy

1
B “k

then p(t) is well defined and ergodic with limiting measure #. Our main results
are:

(4.2) Dimo T < 00, k=0

oo ,

THEOREM 4.1. If p(t) has rates which satisfy (4.2), then the following are equiva-
lent:

(i) p(¢) has a nontrivial entrance law.
(ii) p(¥) has an entry from infinity.
(iii) There is a sequence of reals a, — oo and a probability measure ® on R such
that P¥[ty, — a, € du] = ®(du) as k — oo.

THEOREM 4.2. If p(f) has rates which satisfy (4.2) and in addition
1

(4.3) :f:or D41 T = 0O

Zno,@,‘”Zk”ﬁk

then p(t) has a nontrivial entrance law.

(Zf—k+lﬂ ) < o0,
Ty,

Proor oF THEOREM 4.1. (i) = (ii): Immediate from the analogue of Theorem
2.4.

(i) = (iii): Assume z, is an entry from infinity for p(f). Since z, — co, we
may (taking a subsequence if necessary) assume z, < z, < - ... Hence there are
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reals b, — oo and a probability measure @, on R such that
(4.4) Pi[t, — b, € du] = D(du) .
Our problem is to “interpolate” between the z;.
Let o, 6,, - - - be independent random variables defined on a probability space
(Q*, &*, P*) such that
4.5) P¥o, £ 1] = Pr,., = 1].
That is, o, is a copy of the time it takes the process X(7) to go from nton — 1.
By the strong Markov property, if m < n,
(4'6) P”[Tmét]zp*[am+l+ ot +0n§_t]’
which shows we are dealing with sums of independent random variables.
In view of (4.6) we may rewrite (4.4) as
(4.7) P¥[ Yk, 0, € du] = @y(du) , o, =0, — (b, —b,y), b=0.

This is a much stronger statement than the hypothesis of Theorem 3.2.9 in [4]
which implies the existence of centering constants which make Y] o,’ converge
P* a.e. This means there are constants a, (it is easy to check a, — co) such that

limk—»oo Z,'rct=1 Oy — 4y
exists P* a.e., and hence the measures
P*[ Yk _ 0, — a, € du]
must converge weakly to a probability measure on R. This is because conver-
gence in distribution and converge a.e. are equivalent for sums of independent
random variables. In view of (4.6), (iii) must hold.
(iii) = (ii): If (iii) holds then (4.6) now implies that
limk—-»oo ZZ:I Gy — (an - a'n,—l)

exists P* a.e. (a, = 0). Hence for each ye S,

lim,_ ., Xk_, 0, — (@, — @yy) — 4,
must exist P* a.e., and @, will be its (P*) distribution. This implies (via 4.6)
that
P¥[z, — a, € du] = @,(du) ,
which shows that z, = k is an entry from infinity.

(ii) = (i): Since p(?) is irreducible, it suffices to show that lim,_,, p(¢)(k,0) =0
and apply the analogue of Theorem 2.3. Using the fact that (ii) = (iii) we can
write

lim sup,_., p(t)(k, 0) < lim sup, _, PHr, = 1]
= lim sup,_,, P[r, — a, = t — a;]
=0.
This completes the proof. []
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It seems impossible to give a reasonable condition on the rates 3, and , which
is equivalent to (ii) or (iii). Nevertheless it is possible to give a condition which
implies (iii), and hence the existence of nontrivial entrance laws. We first state

LemMa 4.3. If (4.2) holds and in addition

(4-8) Do — (Dienn ﬂ'k) < oo,
.3“7?7.
then E¥[t?] < oo for N=1,2, ..., and
1
EN[ty] = 2050 —— D1 T
BaTn
1
EM[7'] = 2 Zﬁ;ol—ﬁ‘n— Diient1 T E*[ 7]
Var?¥ [7,] = ‘8% Diimnil —— ﬁk (ZFepn )
+ 2= ‘3“ - 2ii=n ,Bkﬂ'k —— (k1 ™)

Proor. The formulas for the first and second moments .an be determined by
standard difference equation techniques, or they can be derived from the integral
formulas in [12]. The formula for the variance is obtained from the first two
equations. []

Proor oF THEOREM 4.2. Condition (4.3) simply says that lim,_, E¥[r,] = oo
and lim,_, Var* [z,] < oo. In view of (4.6) this implies that > 3, E*[s,] = oo,
2w, Var* [o,] < co. By Theorem 3.2.3 in [4], 7., (¢, — E*[0,]) converges
P*a.e., and so (4.6) now implies that condition (iii) in Theorem 4.1 holds with
a, = E"[z,]. [

5. Examples. Examples of stochastic matrices or semigroups which possess
nontrivial entrance laws are not difficult to construct. Theorem 1.1 can be used
to explicitly determine .#7(Q) in some nontrivial cases, including certain sub-
critical branching processes with different types of immigration (see [2]). In[15]
Spitzer gave several examples in the continuous time setting, and Theorem 4.2
can be used to construct birth and death processes (even with unbounded birth
rates) which possess nontrivial entrance laws. See [1] for an explicit example
in the Markov random field setting.

In this section we will content ourselves with two examples; the first illustrates
the “gap” between Theorems 2.3 and 2.4, and the second shows that even a
transient process can have nontrivial entrance laws.

ExaMmPLE 5.1. Let § = Z*, let Q be defined by
Q@ j) = pi» Jj=i+1

L—p,, j=0

=0, otherwise

I
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where pp=1 and 0< p; <1, i=1 Let x,=2, x,p,=%x+k+1, a, =
bkt p;. Now let p, ., = 1/k, k = 2, and choose the remaining p; to insure

Z=Zk
that g, — 1 as k — oo.

It is a simple matter to check that Q is irreducible, aperiodic and recurrent,
that x, is an entry from infinity for Q, and that

lim inf,_ Q(k,0) =0,  limsup,_. Q(k,0) 0.

This means we can not apply Theorem 2.3. To show that there are no nontrivial
entrance laws it suffices to show that there are none of the form

ta(x) = lim_., Q"*¥(z, x)
z, — oco. We rewrite the above as
pa(x) = lim, . B3 Pz, — k = n — []Q(0, %)
and so for any finite set F C §,
pa(F) = lim,_, 535, P4z, — k = n — j10%(0, F).
This implies that
t.(F) £ liminf,_, Pty — k < n] = u(n).
This cannot hold unless u(n) = 1, in which case
(%) = limy_, 335, Py — k = n — j1QY(0, x)
< sup;z,, 070, %)
for every positive integer j,. Finally, we let j, — oo to obtain
sa(x) < 7(x), Q positive recurrent
<0, Q null recurrent.
In either case g is not a nontrivial entrance law.

ExAMPLE 5.2. Let S = Z, and let p(7) be the birth and death semigroup on
S generated by rates

=a* k<O =1l—a* k<O

where 0 < a < 1. p(?) is standard and irreducible with all states stable. The
associated Markov chain X, is transient because

0 — T 0y
PIX, never returns to 0] = [, m
=4Iz (1 — @)
>0.
Furthermore, z, = k, k = 1,2, .- - is an entry from infinity. This is because

the formulas in Lemma 4.3 are valid here, and therefore the measures P¥[r, —
E"[7,] € du] converge weakly to a probability measure on R as k — co. Imitation
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of the proof of Theorem 4.1 will prove that z, is an entry from infinity. Finally,
for each # = 0,
lim,_. p(9)(n,0) = 0.

The analogue of Theorem 2.3 cah now be applied to show that p(z) has non-
trivial entrance laws.
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