A SQUARE FUNCTION INEQUALITY

By G. KLINCSEK

McGill University

For martingales $f \in L_p$ $(2 \le p < \infty)$ the inequality $||Mf||_p \le (p+1)||Sf||_p$ is proved, where $Mf = \sup_n |f_n|$ is the maximal function and $S^2 = \sum_n |f_n - f_{n-1}|^2$ the martingale square function. For integer p the estimate becomes $||Mf||_p \le p||Sf||_p$.

Let $(F_n, n \in Z)$ be a stochastic base over the σ -finite measure space (X, F, μ) , where $\bigcup_n F_n$ is dense in F and $\bigcap_n F_n$ is denoted by $F_{-\infty}$. For simplicity we denote by E_t the conditional expectation operator given the field F_t .

Consider a martingale $(f_n)_{n\in \mathbb{Z}}$ with $f_{-\infty}=0$ and $f_\infty\in L_p$, $2\leq p<\infty$. Denote by Mf and Sf its respective maximal and square function. The inequality

$$||Mf||_p \leq 2p||Sf||_p$$

is well known [1]. But, as is seen in [2], the coefficient can be improved, and this is the purpose of this note.

In the above mentioned paper, C. Herz proves that $||Mf||_p \leq C_p ||Sf||_p$, where $C_p \leq 2(p-1)$ and p/C_p is bounded as $p \to \infty$. We will get constant C_p satisfying $C_p/p \to 1$ as $p \to \infty$. The exact relation $C_p = p$ holds for integer p and our proof is strong circumstantial evidence for the following:

Conjecture.
$$||Mf||_p \leq p||Sf||_p$$
, $2 \leq p < \infty$.

The constant presented here behaves like p + k/p. First we have the following algebraic facts:

LEMMA. Let p = l + 2 + r, $0 < r \le 1$, l nonnegative integer.

(i) If
$$a, b \ge 0$$
 then
$$a^p - b^p - p(a-b)b^{p-1} \le (a-b)^2 a^{p-2} + (a-b)^2 \sum_{i=0}^l (p-1-i)a^i b^{p-2-i}.$$

(ii) If $a, b \in R$ then

$$|a|^{p} - |b|^{p} - p(a-b)b|b|^{p-2}$$

$$\leq |a-b|^{2}|a|^{p-1} + |a-b|^{2} \sum_{i=0}^{l} (p-1-i)|a|^{i}|b|^{p-2-i}.$$

(iii) If
$$q = p/(p-1)$$
 then

$$\sum_{i=0}^{l} (p-1-i)q^{p-2-i} = q^r \frac{p-1-r}{q-1}.$$

Received August 3, 1976.

AMS 1970 subject classifications. Primary 60G45; Secondary 60H05.

Key words and phrases. Martingale, maximal function, square function.

G. KLINCSEK

These relations carry the proof for real-valued martingales. The proof extends for the Banach-valued case, where one uses $a, b \in X$ (some reflexive Banach space X) and $\theta \in X'$ is the Mazur functional of b to write in (ii) instead of $(a-b)b|b|^{p-2}$ the expression $\text{Re }(\theta(a)-|b|)|b|^{p-1}$. The computation gets too elaborate to be worth while reading through.

PROPOSITION. In the above conditions

$$C_{p^2} \leq q^2 \left[1 + q^r \frac{p-1-r}{q-1} \right].$$

PROOF. We only have to consider martingales of form

$$f = \sum_{l \le n \le m} (f_n - f_{n-1}),$$

$$A_n = \int (|f_n|^p - |f_{n-1}|^p) d\mu = \int (|f_n|^p - |f_{n-1}|^p - p(f_n - f_{n-1})f_{n-1}|f_{n-1}|^{p-2}) d\mu$$

$$\leq \int (f_n - f_{n-1})^2 [|f_n|^{p-2} + \sum_{i=0}^l (p-1-i)|f_n|^i |f_{n-1}|^{p-2-i}] d\mu$$

$$\leq \int (S_n^2 - S_{n-1}^2) (|f|^{p-2} + \sum_{i=0}^l (p-1-i)|f|^i M_{n-1}^{p-2-i}) d\mu,$$

$$||f||^p = \sum_n A_n \leq \int S^2 (|f|^{p-2} + \sum_{i=0}^l (p-1-i)|f|^i M^{p-2-i}) d\mu$$

$$\leq ||S||^2 (||f||^{p-2} + \sum_{i=0}^l (p-1-i)|f|^i ||M||^{p-2-i}).$$

Hence

$$\left(\frac{||f||}{||S||}\right)^{2} \leq 1 + \sum_{i=0}^{l} (p-1-i) \left(\frac{||M||}{||f||}\right)^{p-2-i}$$

$$\leq 1 + q^{r} \frac{p-1-r}{q-1}.$$

In case of r = 1 we get

$$C_{p^2} = q^2 \left(1 + q \frac{p-2}{q-1} \right) = q^2 (1 + p^2 - 2p) = p^2$$

and for r = 0

$$C_{p^2} = q^2 \left(1 + \frac{p-2}{q-1} \right) = p^2 + q^2$$
.

Therefore the result is better than p+1 if $p \ge 3$. For the case $2 there are various ways to get <math>C_p < p+1$, for example, the following Neveu type argument.

Let t be the stopping time $t = \inf\{s, M_s f > a\}$.

We integrate $\int_0^\infty a^{p-3} da$ to get

$$\frac{2}{p(p-1)(p-2)} \int |f|^p d\mu \le \frac{1}{p-2} \int S^2 M^{p-2} d\mu$$

or

$$||f||^2 \le \frac{p(p-1)}{2} ||S||^2 \left(\frac{||M||}{||f||}\right)^{p-2}$$

which gives

$$C_{p}^{2} \leq \frac{p^{2}}{2} q^{p-1}$$
.

REFERENCES

- [1] Garsia, Adriano M. (1973). Recent progress in the theory of martingale inequalities. Lecture notes, La Jolla.
- [2] Herz, Carl S. (1975). An interpolation principle for martingale inequalities. Preprint, Mathematics Department, McGill Univ.
- [3] Neveu, J. (1972). Martingales à temps discret. Massen et Cie, Paris.

DEPARTMENT OF MATHEMATICS McGill University P.O. Box 6070, Station A Montreal, Quebec, Canada H3G 3G1