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SUPPORTS OF INFINITELY DIVISIBLE
MEASURES ON HILBERT SPACE!

By PAaTRICK L. BROCKETT

Tulane University

The supports of infinitely divisible measures on separable Hilbert spaces
are characterized in terms of angular semigroups. Restricted to R~ this
result extends results of Hudson and Mason. Restricted to R! our result
improves Tucker’s result and Hudson and Tucker’s results on such supports.
Also investigated are the supports of stable measures on Hilbert space.

1. Introduction and summary. The purpose of this paper is to investigate the
supports of infinitely divisible probability measures on separable Hilbert spaces.
Since supports of Gaussian measures have been adequately discussed, we shall
restrict our attention to measures without Gaussian component. Such measures
have a characteristic function of the form

AO) = expiCan ) + L {en — 1= O} am)

or simply p ~ [x,, M]. The measure M is called the Lévy measure of x# and
satisfies (1) M({x: ||x|]| > ¢}) < o for every ¢ > 0; (2) M({0}) = 0; and (3)
Cien<a [|X]? dM(x) < oo. Any measure M satisfying (1), (2), and (3) will be referred
to as a Lévy measure. If M is any Lévy measure and x, e H, then there is an
infinitely divisible measure p with p ~ [x,, M]. Background information on
infinitely divisible measures on Hilbert spaces can be found in Parthasarathy
(1967).

In (1975a), Hudson and Tucker investigated infinitely divisible probability
measures on R* whose Lévy measure M was absolutely continuous with respect
to Lebesgue measure and satisfied M(R) = co. Such measures were found to
have supports which were necessarily of the form (— oo, a], [a, o) or R. In a
subsequent paper (1975b), Hudson and Tucker proved that if p is absolutely
continuous (so M(IR) = co) then the support of p is of the above form. This
result was extended to R” by Hudson and Mason (1975) where it was proven
that if p is infinitely divisible on R” and if M(R") = co and M is absolutely
continuous, then the support of 4 is of the form (4 4 G)~ where A4 is a closed
set and G is a semigroup with 0 as a limit point. In this paper they posed the
problem of determining the support of general infinitely divisible measure on
R".
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In a different direction, Tucker (1975) extended his and Hudson’s results by
proving that if ¢ is an infinitely divisible measure on R* and if M(—¢,¢) > 0
for every ¢ > 0, then the support of y is one of (—oo, a], [a, o) or R. In yet
a different direction Yuan and Liang (1976) discussed supports of infinitely di-
visible measures on locally compact Abelian groups.

In this paper we prove a theorem which extends all of the above results on
supports of infinitely divisible measures. We characterize such supports in terms
of angular semigroups. Such sets have been extensively studied (see Hille and
Phillips (1957)).

Considering stable measures on Hilbert space, we use our main theorem to
extend a result of de Acosta (1975) on supports of stable measures. For stable
measures with characteristic exponent @ < 1 we show the support is a cone,
and answer a question which is implicitly raised by Kuelbs and Mandrekar
(1974).

Let us now establish some notation to be used in the sequel. By a semigroup,
we mean a set S satisfying § + § < §. If additionally 0 € S, we call S a monoid.
An angular semigroup is an open semigroup which has 0 as a limit point. A
point x will be called a point of increase of a measure p if p(U) > 0 for every
open set U containing x. All measures under consideration will be ¢-finite. The
support of a measure p will be denoted S(x). It is the collection of all points
of increase of x. The convolution of two measures « and 8 will be denoted
a x 3 and a** denotes the kth convolution power of a. The monoid generated
by S(«) is denoted G(a) and is known to be G(a) = (., S(a*¥))~. The interior
of a set 4 is denoted by A4°, and the closure of 4 by A~. Finally, /, denotes the
indicator function of the set 4, i.e., I,(x) = 0if x¢ 4, and I,(x) = 1 if x e 4.
When the measures y, converge weakly to the measure p, we write g, = u.

2. Infinitely divisible measures on Hilbert space. In this section we charac-
terize the support of infinitely divisible measures without Gaussian component
on a Hilbert space.

THEOREM 2.1. Suppose p is an infinitely divisible measure on H with Lévy repre-
sentation p ~ [x,, M].

(D) I Sjana [|%]] dM(x) < oo, then

S(#) = a + G(M)  where a=1x,—§ -~ M(x) .

———d
L flxp
(2) If Say<a |X]] dM(X) = oo, then S(p) = (A + G(M))~ where A is a closed set.
(3) The monoid G(M) has the following properties:

(a) If M(B) > O for every open set B containing 0, then G(M) has O as a limit
point,
(b) if S(M)° has O as a limit point, then G(M)" is an angular semigroup.
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To prove this theorem we utilize the following lemma due to Yuan and Liang
(1976). They prove it for locally compact Abelian groups; however, it is not
difficult to emulate their proof for the Hilbert space case.

LEMMA 2.2. Suppose p = a, x p, for all n > 1 and p, = p. Then S(p) =
Niz1 (Unz; S(22))"-

Proor oF THEOREM 2.1. Let us suppose first that § ., ||x|| dM(x) < co so
that with a as given in the theorem we have (y) = 6,(y)f,(y) where fi,(y) =
exp{§ (e!v* — 1)dM(x)}. Clearly S(¢) = a + S(y,) so it remains to show S(z,) =
G(M) to complete the proof of (1).

If M(H)=k < oo, then we have p,= 3o ,(e*M*"/n!) and S(x,) =
(Unzo S(M*™)~ = G(M).

If M(H) = oo, then let M, be the Lévy measure (equivalent to M) defined via
the Radon-Nikodym derivative

@.1) e =l e < 1m
=1 if x| = Un
and let p, = e7* 3 = (M,*7/r!) where k = M, (H). Clearly M,(H) < o and

S(M,) = S(M) since M, and M have the same points of increase. We also may
easily verify that (M — M,) is a Lévy measure so that ¢ = e, » g, n > 1 for
some measure «, defined via the characteristic function &,(y) = exp{{ (e!*'® —
1)(M — M,)(dx)}. Since @,(y) — 1 and f,(y) — fis(y), it follows that s, — g,
Thus by Lemma 2.2, S() = Mya1 (Unzs ()™ = Nyza (Unz; G(M)~ =
Nijz1 (Uaz; G(M)) = G(M). This proves (1).

Suppose now that §,,, ., ||x|]| dM(x) = co. Define M, by (2.1) and a, = x, —
§x/(1 + |IX]]) dMy(x) = Xo — §jaycam X|IXI/(1 4 [1X]) dM(x) — §jai50m X/(1 +
|IX|I") dM(x). Let g, ~ [x, M,]. Then §,,c, [|x]| dM,(x) < oo 50 S(1,) = a, +
G(M,) = a, + G(M) by (1). Since 4 = a, = p, for each n, we have, upon taking
n=1, S(u) = (S(a,) + a; + G(M))~ = (4 + G(M))~ which proves (2). Note
that in fact by Lemma 2.2 we have S(¢2) = M ;21(Unz; {8+ G(M)})™ = M j21(4a +
G(M))~ where A, is the (countable) set 4, = J,»; {a,}-

To prove (3a) we note that M(B) > O for every neighborhood B of 0 together
with M({0}) = O implies that 0 is a limit point of S(M). To prove (3b), we
merely note that G(M)° is an open semigroup containing S(M)°.

REMARK. Hudson and Mason (1975) showed that in R", by assuming M is
absolutely continuous with respect to Lebesgue measure, and also assuming
M(R") = oo, then S(z) = (4 + G(M))~. This result is extended by Theorem 2.1
since M absolutely continuous and M(R*) = co implies 0 is a limit point of
S(M)" and M(B) > O for every neighborhood B containing 0.

(It should be mentioned that Hudson and Mason actually prove much more
than just the support statement above. In fact they show in addition that under
the above assumptions on the Lévy measure M, the corresponding infinitely
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divisible measure p is actually equivalent to Lebesgue measure on S(z). Also
they prove that the Lebesgue measure of the boundary of (4 + G) is zero if G
is an angular semigroup and A is a closed set, a characterization which is in-
teresting in its own right.)

The following corollary proves the result of Tucker (1975) on support of in-
finitely divisible measures on R'. Tucker’s proof was difficult and his method
could not be extended to R*. The argument used here is vastly simpler and
shows how the results of topological algebra often simplify calculations.

COROLLARY 2.3. Suppose pu ~ [x,, M] is an infinitely divisible measure on R.

(1) If M has both positive and negative points of increase, then S(u) is either
a -+ aZ or R (here Z = {0, +1, +2, -..}).

(2) (Tucker) If M(—e,¢) > O for every ¢ > 0, then S(p) is one of (—oo,a],
[a, ), or R.

Proor. The proof follows from the characterization of topological semigroups
on R*. According to Hille and Phillips (1957), the only closed additive semi-
group in R with both positive and negative members having 0 as a limit point
is R, and the only closed semigroup in R with both positive and negative members
which does not have 0 as a limit point is @Z, the group of all integral multiples
of some fixed number a (cf. Theorems 8.6.1 and 8.6.2, page 264 of [2]). Thus
to prove (1), if G(M) contains O as a limit point, then G(M)=R and (4+G(M))-=
S(¢#) = R by whichever is applicable of (1) or (2) of Theorem 2.1. On the other
hand, if G(M) does not have 0 as a limit point, then in particular S(M) cannot
have 0 as a limit point and consequently M(R) < oo. Applying (1) of Theorem
2.1 to this case yields S(#) = a + G(M) = a + aZ.

To see that (2) holds, we use the fact that the only closed semigroups in R
with O as a limit pointare (— o0, 0], [0, c0), or R (cf. [2]). Clearly M((—¢,¢)) >0
foralle > Oimplies 0 is a limit point of G(M). Since (4 + (—o0,0])~ = (— 0, a]

‘and (4 + [0, 0))~ = [a, o) and (4 + R)~ = R, the applicable part of Theorem
2.1 implies the result.

Let us now turn to a characterization of supports of stable distributions on
Hilbert spaces. A measure p on H is called stable if for every integer k there
exists a positive constant a, and a vector b, such that p** =T, %9, . Here
T, #(A) = p(Alay). Such measures are infinitely divisible and are either purely
Gaussian, or have characteristic function p ~ [8, M] where the measure M
satisfies

dr
(2.2) M(A) = $ L(r, 9) S o(d)
where x = rs, r = ||x||, s = x/||x|| and ¢ is a measure on the unit ball B of H,

o(W)=aM({xeH: ||x|]| 2 1, x/||x|]| e W}),and 0 < a < 2. Theindex a is called
the characteristic exponent of ¢ since it can be shown that the characteristic
function of p is given by

(2.3) A(y) = exp{i(y, 1) — (5 |(x, 9)["a(ds) + iC(a, y)}
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where
Cla, y) = tan za2 {5 (y, 9)|(y, 9)|*o(ds) (a # 1)
=2/r $z(y, 8)In|(y, s)|o(ds) a =1.
See Kuelbs (1973) for the details of these formulas.

The problem to which the next corollary addresses itself concerns the structure
of S() when p is stable with characteristic exponent a < 1. The case a > 1
was considered by de Acosta (1975) in a more general setting; however the case
a < 1 wasleft unanswered. For symmetric stable measures the corollary answers
a question raised implicitly by the work of Kuelbs and Mandrekar (1974) as to
whether the support of x with @ < 1 is the linear subspace generated by S(o)
when p is symmetric.

COROLLARY 2.4. Let p be a stable measure on H with characteristic exponent
a < 1.

(a) S(¢) = a + C where C = G(M) is a closed cone in H (i.e., C + C < Cand
tC < C forallt > 0).

(b) If p is symmetric, then S(p) is a closed linear subspace of H. In fact S(p)
is the linear subspace generated by S(o) in the representation (2.2) and (2.3).

ProoF. Using dM = r~—*~'dra(ds) where o is a measure on B, one easily sees
that if « < 1, then

$in<a ||X]| @M(x) = a(B) {5r*dr < oo

so that applying (1) of Theorem 2.1 it follows that S(z) = a + G(M). It remains
to show tG(M) < G(M) for all t > 0. This, however, follows from the radial
nature of M since if x is a point of increase of M and ¢t > 0, and B, , = {y:

lly — xll < ¢}, then

] di
M(B,..) = §5 §5 I, (s 5) =

r“+1

a(ds)

o(ds) = (5 {7 IBE/t,z("/f, 5)

dr
ra+1

1 . d 1
=1 Iy, (7 9) ya{ _ o(ds) = = M(B,,,)>0.
Thus ¢x is also a point of increase of M. Now, if x is a point of increase of M*?,
then

M*Y(B

e,tx

) = § M(B, ., — y)dM(y) = § M(B, ,,_,) dM(y)
= -tl; § M(B,, .—y) dM(y)

where the last equality follows from the equality established for M(B, ,,). One
easily establishes via (2.2) that M(t4) = (1/t*)M(A4). Using this in the above
we have M*¥(B, ) = (1/1%) § M(B,y,.,—,,) dM(y) = (1/t%) § M(B . ,,) aM(tu) =
(1/t%)* § M(B,,, ,_,) dM(u) = (1/t*)*M**(B,,, ,) > O for all t > 0. Thus x is also
a point of increase of M**. By induction, we may utilize a similar argument
to show that if x e G(M) = (U0 S(M*¥))~, then tx € G(M) and G(M) is a cone,



SUPPORTS OF INFINITELY DIVISIBLE MEASURES ON HILBERT SPACE 1017

To prove (b), we recall that if p is symmetric, then S(x) = G(M) = —G(M)
is a semigroup. By (a), if + > 0 then tG(M) & G(M) and hence G(M) is a linear
subspace (note that this holds even if « > 1). Using the radial property of M
again it is not difficult to see that G(M) is the linear subspace generated by S(o)
where ¢ is the measure in (2.2).

REMARK. The above analysis carries over to studies of supports of infinitely
divisible measures on locally compact groups which are either symmetric or
satisfy { |x(x) — 1| dM(x) < oo for all characters y. The proof of this would
follow Theorem 2.1 exactly. The resulting theorem would extend the results
of Yuan and Liang (1976) on supports of infinitely divisible measures on locally
compact Abelian groups.
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