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EDGEWORTH EXPANSIONS FOR INTEGRALS OF
SMOOTH FUNCTIONS

By C. Hipp
University of Cologne

Let X1, Xz, -+ be a sequence of independent, identically distributed
random variables with E(X1) =0, E(Xi?) = 1, and E(Xi*) < oo, and for
n=1,2, ... let P, be the distribution of n~* 3}* | X;. If [ is a function
with bounded uniformly continuous derivative of order 4, then S fdPy has
an asymptotic expansion in terms of n~} with a remainder term of o (n-1).
This remains true even if P; is purely discrete and nonlattice.

1. Introduction and summary. Let .5 be the family of all probability measures
P on the Borel field 5% of the real line with § xP(dx) = 0, { x?P(dx) = 1, and
{ x*P(dx) < oo, and for Pe .”and n e N let P, be the distribution of =% 377_, X,
where X, - .., X, are independent random variables with distribution P. Let,
furthermore, ¢ be a measurable function satisfying

(1.1) sup {(1 + x)Y¢(x)|: xe R} < oo .
If Pe &, then P,, neN, is said to have an Edgeworth expansion (of order
o(n7Y)) at ¢ if
(1.2) 1§ ¢ dP, — § p(p({l + n7*py(1) + n7ipy(1)} di| = o(n7?),
where
o(t) = (27)~* exp(—12)
pit) = ot — 30)/6
(1.3) put) = p*%)72 + (7/24 — 50°/24)t* + (—7/4 4 50%8)t? + /8 — 50%24
o = { xP(dx)
v = { x*P(dx) — 3.
For P e 7 let & (P) be the family of all ¢ satisfying (1.1) such that P,, ne N,

has an Edgeworth expansion at ¢. Note that assumption (1.1) implies that

{ ¢ dP, exists for all ne N.

Two measures g, v on <% are called orthogonal if there exists a set 4 € <%
with p(A) = 0 and ¥(4°) = 0, where A° denoted the complement of 4. A prob-
ability measure P-on &% is called not purely singular (n.p.s.) if Pand the Lebesgue
measure are not orthogonal. A probability measure P on <Z satisfies Cramér’s
condition if

lim sup,,_,, |§ e*“P(dx)] < 1.

If P e &7 satisfies Cramér’s condition, then .%(P) contains the class ¥, of all
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bounded monotone functions. This result is due to Cramér (1928). In this case
F(P) also contains the class W, of all functions ¢ satisfying (1.1), with deriva-
tives ¢ for which x — |¢’(x)| is bounded by a polynomial. This follows from
Bhattacharya and Rao (1976), page 208, Theorem 20.1. If Pe “#isn.p.s. then
Z(P) contains the class W, of all bounded measurable functions (see Bikjalis
(1964)). In fact, if Pe S is n.p.s., then #(P) contains the class ¥, of all
measurable functions satisfying (1.1). This is Theorem 19.5 in [1].

For lattice distributions P € .&° there exist asymptotic formulas for P, {k}, k a
lattice point (see Esseen (1945), page 63). Using the Euler summation formula
one can derive ¢ € F#(P) for a certain class ¥; of smooth functions ¢. There
are, however, well-known families ¥ for which ¥ < .5 (P) holds for all P ¢ &,
i.e., even if P is a discrete nonlattice distribution.

(a) The characteristic functionsof P,, t — { e"**P,(dx), n € N, have asymptotic
expansions of the type (1.3) (see Hsu (1945)). Hence for me N the family ¥,
of functions

t— )", (a;cos a;t + b sin B;t),

a,b,a,p,eR,i=1,...,m, is contained in & (P).

(b) Von Bahr (1965) showed that absolute moments of P,, n € N, have asymp-
totic expansions of the type discussed here: The family ¥, of all functions
t—|f|%, ae(l,4], is contained in 5 (P). Here we show that for arbitrary
Pe Z (i.e., even for discrete nonlattice distributions) the set .#(P) contains
the family ¥, of all functions which have a bounded uniformly continuous de-
rivative of order 4. Note that for every function ¢ ¢ ¥, there exist 4, ¢ R with
PP(x)| = A1 + |x|*%), i =0,1,2,3, and for i = O this yields (1.1). This
means (not unexpectedly) that ¥, is a smaller class than the class ¥, one obtains
when the distribution P satisfies Cramér’s condition. On the other hand, we
have ¥, c ¥,.

If ¥ is a class of functions ¢ for which (1.1) and (1.2) hold uniformly for
¢ €W, then every pointwise limit of a sequence in ¥ belongs to .%(P) (see
Remark 2.6). Using this we can show ¢ € 5 (P) for all P ¢ & for a somewhat
larger class ¥, of functions ¢. But we still have ¥, & & (P), since ¥, n ¥,
contains only the functions x — x* and x — x* (see Remark 2.9). Note that
Z(P) is linear, and hence & (P) contains the linear space ¥,, spanned by
W, U W,. The results are formulated for classes ¥ of smooth functions ¢y where
(1.2) holds uniformly for ¢ ¢ ¥.

2. Results. Here we state the main results. The proofs are contained in
Section 3.

Let ¥, ,, be a family of measurable functions which satisfies the following
conditions:

2.1) sup {|f()I(1 + x)™: xeR, g e Wy} = M < o0,
(2.2) forall ¢eW,, , ¢ hasaderivativeoforder4, ¢“, such that
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(i) sup{|gP(x)|: xeR, peWy )} =M < oo
(ii) for every ¢ > 0 there exists a positive number ¢ such that
sup {|g@() — WD) teR, | — 1) <0, peWy )} S e
(2.3) THEOREM. Let X,, ic N, be a sequence of independent identically dis-
tributed random variables with E(X)) = 0, E(X,}) = 1, and E(X,*) < oo, and for
neN, P, be the distribution of n=* 3;r_, X,. Then

(2.4)  sup{|§ ¢ dP, — § ()p(t)(1 + n~¥py(2) + n7'py(0) dt|: p e W,y 0}

=o(n7Y),
where p, and p, are defined in (1.3).

If E(X;*) = 0 and E(X;*) = 3, a nonuniform version of Theorem 2.1 follows
from Theorem 3 of Butzer, Hahn and Westphal (1975), page 335.

(2.5) REMARK. If we only assume E(]X,|*) < oo, a corresponding result holds:
in (2.4), o(n*) must be replaced by o(n~t); in (1.3) py(f) = 0; and in (2.2) the
third derivatives ¢® are assumed to be uniformly bounded and uniformly equi-
continuous. We do not know whether similar results hold for higher order
Edgeworth expansions. The order o(n™") is, however, sufficient for computing
Hodges and Lehmann deficiencies using smooth loss functions.

(2.6) REMARK. The set ¥, ., of all pointwise limits of sequences in ¥, .
satisfies

sup{|§ ¢ dP, — § g(De(1)(1 + n=ip(1) + n7'py(0) di]: e Wy .} = o(nY) .
This is an immediate consequence of Theorem 2.3 and Lebesgue’s dominated

convergence theorem. However, @'M,M, will contain only functions having a
bounded Schwarzian difference quotient:

2.7) PROPOSITION. For every ¢ € II"M'M,, x, h e R we have

'(2.8) | —¢(x — 3h) + 4¢d(x — 2h) — S¢p(x — h)
+ 5¢(x + k) — 49(x + 2h) + P(x + 3h)| < SO[h|'M'/3 .
Proor. That (2.8) holds for ¢ € ¥, ,, follows from a Taylor expansion and

(2.2(i)). Since the set of all functions on R satisfying (2.8) is closed in the
topology of pointwise convergence on R, (2.8) holds for every ¢ ¢ ‘i",,,, we

(2.9) ReMARK. For ae (0, 4), « # 2, the function ¢ — |#|* does not fulfill
(2.8). Hence for arbitrary P e.Z” the union ¥, of all @'M,M,, M, M’ > 0, does
not cover .% (P), since it does not cover the class ¥, of all functions considered
by von Bahr.

The following example shows that ¢ € & (P) does not hold if ¢ is only piece-
wise smooth, even if P e .2 has finite moments of all orders:

(2.10) ExaMpLE. Let P be the probability measure defined by P{—1} =
P{1} = 4, and ¢() = |¢|, te R.
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Then

(2.11) lim sup, .y n|§ ¢ dP, — § P()p(£)(1 + n7'py(7)) dt| > 0,
where p,(f) = —(¢* — 61* 4 3)/12.
Proor. (i) For the sake of easy reference we state the following results: If
f = pp with p a polynomial, then uniformly for me N
§5m 0 fix) dx = a Ti flak) + o f(0) + fla(m + 1))]/2
— a[f'(a(m + 1)) = f(0)]/12 4 O(a?)
for « >0, a—0.

This is a special version of the Euler summation formula.

(ii) Let ne N be even, n = 2m, say. Let, furthermore, A, be the set of non-
negative atoms of P,. Then $4, =m 4 1 and sup 4, = nt. We know from
Esseen (1945), page 63, Theorem 5, that

sup {|P,{§} — 2nto()(1 + i n " pu)): €€ 4.} = o(n7),

where p, are polynomials, k = 3,4. Hence

§9dP, =2 Fieea, §PufE} = 2 Tien, 2n7H0(E)(1 + Zihan™*pul(§)) + 0(n7Y) .
Using (i) we obtain with a, = (n + 2)n~#
§ ¢ dP, = 2 {in xp(x) dx + 2n74a,0(a,) + 2n7{(—a,’ + 1)p(a,) — ¢(0)}/3
+ 17§25 [x|p(x)pa(x) dx + 0(n”)
= {Za [X|p(x) dx — n72¢(0)/3 + n7" {2, |x|@(x)py(x) dx + o(n7") .
This proves (2.11).

3. Proof of the theorem. The proof is based on the following proposition.
3.1 PROPOSITION. Let P, Q ¢ P with { x*(P — Q)(dx) = 0, k = 3, 4. Then
(3.2) SUPyewy . |§ AP, — Q,)| = 0(n7),
where for ne N P, and Q, are the distributions of n™* 32 X, and X;, ie N, are

independent identically distributed random variables with distribution P and Q,
respectively.

ProoF. According to Feller (1971), page 258, (3.10) (see also Trotter (1959),
pages 229-230) we have
(3.3) V¢ dP, — Q) < nsup{|§ ¢(xn~t — (P — OQ)(dx)|: te R} .
Let ¢ > 0 and choose de R such that § x*1,.,(x)(P 4+ Q)(dx) < e. From a
Taylor expansion we obtain that for re R there exists §,(¢, x,n) e R with
|Ed¢s x, n) + t| < |x|n~? such that

Pxn — 1) — T ¢ O(—)(xm i)l = nGO(E(D, x, M) — PO (—1))/24 .
This together with (2.2(i)) implies that for all x e R

sup {[P(xn~t — 1) — i PV (=H(xnY)il|: teR, P e Wy u} Sn2Mx12,
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Since lim,,.  sup {|§,(¢, x, n) + 1] |x| = d, te R, ¢ € ¥} = 0, we obtain with
(2.2(ii))
lim, . sup {|¢0 (P, x, 1)) — (=] 1eR, |x| =d, e Wy} =0.

Hence

|§ p(xn= — 1)(P — Q)(dx)|
= [§ (P(xn~t — 1) = Tl 9P (=0)fit (xn=H))(P — Q)(dx)]
< n-td*sup (|, X, 1) — PO(—D)] e R, x| S dv ¢ e Ty )
X (P + Q)|x| = d}/24 + n7*M" § x*1;,04(P + Q)(dx)/12
yields

limsup, .y n*sup {|§ ¢(xn~t — ) (P — Q)(dx)|: te R, ¢ e ¥y} < eM'[12.
Since ¢ > 0 was arbitrary, this together with (3.3) implies (3.2).

With Theorem 19.1 in [1] we obtain that for n.p.s. probability measure P ¢ &
we have
(3-4) § (1 + [x[)[P, — G,|(dx) = o(n™),
where G, has Lebesgue-density 1 — o(t)(1 + 3}, n7*?p,(t)) , and for Be <&

|P, — G,|(B) = sup{|P,(A) — G, (A)|: Aec <&, A C B}.

Hence the statement (2.4) is true in this special case. For a given P ¢ & we shall
therefore look for n.p.s. probability measures Q € & with § x*(P — Q)(dx) = 0,
k =3, 4. In the following we shall show that such a n.p.s. probability measure
can always be found if P is not concentrated on two points. To do this we
need the following lemma.

(3.5) LEMMA. Let Qe & and & = {Pe S { x}(P — Q)(dx) = 0}. Then
{ x*Q(dx) = inf {§ x*P(dx): P e &} iff Q is concentrated on two points.

Proor. For notational convenience let @ = § x*P(dx) and b(P) = | x*P(dx)
for Pe <. Ljapounov’s theorem implies that for p e & ({ (x — a/2)*P(dx))* <
{ (x — a/2)*P(dx), and equality holds iff there exists c € R with (x — a/2)* = ¢
P-a.e.

Hence (1 + a%/4)* < b(P) — 2a* + 3a* 4 a*/16 or

oP) =1+ a*,
and equality holds iff (x — a/2)* = ¢ P-a.e. Therefore, 5(P) = 1 + a* implies
that P is concentrated on the two points a/2 + ¢t and a/2 — c!. If, on the other

hand, Pe & is concentrated on two points, x,, x,, say, then Pe .27 implies
x, = —(p/q)* and x, = (p/q)}, where ¢ = 1 — p and p e (0, 1) is the solution of

a=(q—ppp*.
Then b(P) = (1 — 3pq)/(pg) = 1 + a

(3.6) PROPOSITION. If P € &7 is not concentrated on two points, then there exists
a n.p.s. probability measure Q € & with § x*(P — Q)(dx) = 0, k = 3, 4,
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Proor. Let pe (0, 1) be the solution of § x*P(dx) = (¢ — p)(pq)~%, where
g=1—p, and let P, be the probability measure defined by P{—(p/q)}} = g,
P{(q/p)}} = p. Then P e .%# and § x}(P — P,)(dx) = 0. From Lemma 3.5 we
obtain that 8= {x(P — P)(dx) > 0. Let pe(0,1) be the solution of
{ x*P(dx) = 2-%(g — p)(pg)~%, where § = 1 — p, and let t+ > O be a solution of
4§ x*P(dx) = (t + 2)(t + 3)/[#«(t + 1)]. Let X and Y be independent rv’s such
that the distribution of X has Lebesgue-density x — (2I'(f))~*|x|*"%e~'*! and the
distribution P of Y is defined by P{—(p/§)}} = § and P{(§/p)}} = p. Then the
distribution of Z = 2-#([#(r 4 1)]*X + Y), say O, is n.p.s. and satisfies Q € 7,
§x3(P — Q)dx = 0,and r = § x*Q(dx) > § x*P(dx) = 5. Leta = B/(r — s + f).
Then a € (0, 1), and with Q = a0+ (1 —a)P, we found a n.p.s. probability meas-
ure in & with § x¥(P — Q)(dx) = 0 for k = 3, 4. This proves the proposition.

Now we shall consider the case when P e .&”is concentrated on two points.
For notational convenience let

9u(P, 1) = @(t)(1 + n~tpy(r) + n~'py(1)) , teR,neN,
where ¢(t), p,(t), and p,(¢) are defined in (1.3). Let N, be the set of even positive
integers. The following result is an immediate consequence of Proposition 3.6.

3.7 PROPOSITION. For every P e &

(3-8) lim, .y, nsup {|§ ¢ dP, — § $(1)g,(t, P) di|: ¢ € Wy 4} = 0.

Proor. ForkeNletY, = 274X, 4+ X;,_,), where X, i ¢ N, are independent
random variables with distribution P. Then Y,, ke N, is a sequence of inde-
pendent identically distributed random variables such that the distribution P of
Y, is not concentrated on two points. According to Proposition 3.6 there exists
a n.p.s. probability measure Q € & with { x*(# — Q)(dx) = 0, k = 3, 4. For
neN let P, be the distribution of n=% 377, Y,, and Q, be the distribution of
n~t 3 Z,, where Z,, i ¢ N, are independent random variables with distribution
Q. As mentioned above,

(3.9) - lim,.ynsup{|§ $dQ, — § P(g.(r, Q) dt|: pe Wy} = 0.
From Proposition 3.1 we obtain with (3.9)
lim, .y nsup {|§ ¢ dP, — § @(t)g,(t, PYdt|: ¢ e Wy 4} = 0.

This together with P, = P,, and g,(t, P) = g,,(t, P), n e N, implies (3.8).
The following proposition deals with the case of odd sample sizes n and prob-
ability measures P ¢ & which are concentrated on two points.

(3.10) PROPOSITION. Let P € &7 be concentrated on two points. Then

(3.11) limgey ksup {|§ ¢ dPyyy — § P(O)9uia(t, P di]: e Wy} = 0.

PRrROOF. Let a, b € R be the two points with P{a, b} = 1, and let ¥'* be the
family of all functions ¢ — ¢((2k/(2k + 1))}t + (2k + 1)), ¢ e Wy 4, kN,
and s ¢ {a, b}.
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For some M > M, M’ > M’ we have ¥* c ¥y 3. Using Proposition 3.7
for Wy 5, instead of ¥, ,, we obtain uniformly for ¢ € ¥, .
§ ¢ dPyiy = §§ $((2k/(2k + 1))kt + (2k + 1)745)ga(t, P) dt P(ds) + o (k™) .

For notational convenience let a, = (2k/(2k + 1))}, b, = (2k + 1)~%, and let
u = a;'t + b,s, whence t = a,(u — b,s). Since P is concentrated on two points,
we have uniformly for ¢ € ¥, .,

§§ ¢(u)gu(t, P) dt P(ds)
= &, {§ $(u)gu(a(u — by 5), P) du P(ds)
= a, {§ o(w)[gul(aru, P) — a,b,sgy(a,u, P) + (a,b,)s*gsi(a,u, P)] du P(ds)
+ o(k™)
= @, § p(W)[gs(aru, P) + gii(a,u, P)[(4k)] du + o(k™").
Since § 1, <1064 95(a, 4, P)(1 + u*) du = o(k~?) for i = 0 and 2, we obtain with
(2.1) that uniformly for ¢ ¢ ¥, .,
§§ $(u)gu(t, P) dt P(ds)
= a, § P(u)[gu(acu, P) + gyi(a,u, P)[(4)]1 11001 (1) du + 0(k77)
= a;, § p(u)[go(u, P) + ugs(u, P)/(4k) + g5i(u, P)/(4k)]L 0 1g1051)(%) dut 4 0(k7Y)
a, § ()9 (4, P) + ug'(w)/(4k) + ¢ (W)/(4R)]juis10g1(¥) A4 + 0(K7)
= &, § P(W)[gu(u; P) — o(@)[(4)] uig10g1) (1) du + 0(k7Y)
= § Q@1 + 1/(4k)gu(u; P) — o(u)[(4K)]1 015106 () dit + 0 (k77
= § o) g4, P)1 1y <1061 (#) du 4 0 (K77)
= { ¢()guu(u, P)du + o(k™").
On the other hand,
§ 19aa(#s P) — gu(w, P)|(1 + w') du = o(k7Y),
and therefore we have uniformly for ¢ € ¥,
§ @ dPy.y = § P(O)Gus(t, P)dt + o(n7")
which is the assertion (3.11).

Il

PrOOF oF THEOREM 2.3. If Pe 7 is concentrated on two points, then (2.4)
follows from Propositions 3.7 and 3.10. If Pe 7 is not concentrated on two
points, Proposition 3.6 implies the existence of a n.p.s. probability measure
Q € # with { x¥(P — Q)(dx) = 0, k = 3,4. Using Proposition 3.1 it suffices
to show that (2.4) holds for Q. This, however, follows from (3.4).

Acknowledgment. Iam indebted to a referee who justified the use of Feller’s
Lemma 2 and whose comments made the paper more readable.
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