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ON MIXING AND STABILITY OF LIMIT THEOREMS

By D.J. ALpous AND G. K. EAGLESON
University of Cambridge

Rényi introduced and developed the ideas of limit theorems which are
mixing or stable. These concepts are a strengthening of the idea of weak
convergence of random variables. In this expository note we point out
some equivalent definitions of mixing and stability and discuss the use of
these concepts in several contexts. Further, we show how a recent central
limit theorem for martingales can be obtained directly using stability.
Though the results are not new, the proofs seem substantially simpler than
those previously given.

Throughout this note we talk only of rv’s defined on some fixed probability
space (Q, &, P) and taking values in R'. The extension to the metric-spaced-
valued situation is straightforward.

Stable limit theorems. If {Y,} isasequence of rv’s with distribution functions
Fy,, then Y, is said to converge in distribution to Y, a rv with distribution
function F,, if for a countable, dense set of points x,

lim, ., Fy (x) = Fy(x) .

We shall write this as F, — F,.

Given that F, — F,, the convergence is said to be stable (written Y, — F,
(stably)) if, for every & -measurable set B, and for a countable, dense set of
points x,

lim, ., P(Y, < x, B) exists.

In other words, a limit theorem is stable if for all events B such that P(B) > 0,
the distribution of Y,, conditional on B, converges in law to some distribution
which may depend on B and which must, as the {Y,} are tight, be proper.

Unlike convergence in distribution, stable convergence in distribution is a
property of the sequence of rv’s {Y,} rather than of the corresponding sequence
of distribution functions. For example, let X and X’ be independent with
common, nondegenerate distribution. Let

Z, =X, for n odd

=X, for n even;

then it is not true that Z, — F, (stably).
Despite this dependence on the sequence {Y,}, the requirement that a limit
theorem be stable is quite weak. Most known limit theorems are in fact stable
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and if a limit theorem is not stable one can choose a subsequence along which
it will be stable.
The following proposition gives a number of equivalent definitions of stability.

PROPOSITION 1. Suppose that F, = Fy. The following conditions are equivalent:

(A) Y, = F, (stably);

(B) For all fixed % -measurable tv’s o, the sequence of random vectors (Y,, o)
converges jointly in distribution;

(C) For each fixed real t, the sequence of (complex-valued) rv’s {e"*»} converges
weakly in Li;

(D) Forall fixedk and Be o(Y,, - - -, Y},),P(B) > 0, lim,_,, P(Y, < x| B) exists
for a countable dense set of points x.

(A sequence {£,} of L, rv’s is said to converge weakly in L, to &, also in L, if
for all bounded . -measurable rv’s »

lim,_, E¢,n = E&y.
An equivalent condition is that for all . -measurable events B, P(B) > 0,
lim, ., E¢ I, = EEI, .

This is the concept of convergence in the o(L,, L,,) topology, familiar to function-
al analysts, and which we denote by —,_; .)

PrOOF. (A) = (B) by taking the testing sets B = I,,; and (B) — (A) by
choosing ¢ = I;.

That (A) = (C) is equally trivial. As {Y,} converges in distribution, {Y,} is
tight and, a fortiori, so is {Y,/;} for each .~ -measurable set B. If (A) is true,
then the distribution of Y,, conditional on B (P(B) > 0), converges and hence

lim,_, {; e~ dP exists.

But the {e'"'»} are uniformly bounded and hence weak-L, sequentially compact.
This is sufficient to ensure (C). On the other hand, if (C) is true, set the weak-L,
limit of {e'¥=} to be ¢(¢, ). By the tightness of {Y, 1.}, for each B(P(B) > 0)
there exists a subsequence {n,} such that
lim,_,, E(e!*"» | B) = E(I¢(t, w))/P(B)

is a characteristic function. Hence the original sequence {Y,}, conditional on
B, converges in distribution—i.e., (A) is true.

Finally, that (A) < (D) was proved by Rényi (1963). Alternatively, letting
Fn=0(Yy, -+, Y,), it is easy to see that (D) = (C) as the existence of

lim, . |, e dP

for all Be Uy, -+, implies by the usual approximation argument that the limit
exists for all Be &% , = V., %, and for general Be &, one first conditions
on ¥ .
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Some of the above conditions are more useful in a given situation than the
others. So, for example, in testing a particular limit theorem for stability (D)
is usually used. In order to obtain theoretical consequences of stability, (A)
has usually been applied, though in fact (B) is often much simpler to use.
As an illustration of this fact, we prove ihe following theorem of Katai and
Mogyorodi.

THEOREM 1. Suppose that Y, — F, (stably). Let g(x, y) be a continuous function
of two variables and let ¢ be any % -measurable rv. Then 9(Y,, o) converges
stably also.

Proor. Let 7 be another .“-measurable rv. Then by (B), (Y,, s, 7) con-
verges jointly and, by the continuous mapping theorem, so does

(9(Ys, 0), 7) -
Of course, knowledge that a limit theorem exists is hardly useful if one cannot
determine the limit distribution. If {Y,} converges stably,
lim,_.. (Y, < x, B) = Q(x, B)

exists for all .5~ -measurable B and a countable number of x; it is clear that for
each such x, Q(x, -) is a measure, absolutely continuous with respect to P. A
version, a(x, ), of dQ(x, +)/dP, can be chosen so that a(x, o) is a.s. a distri-
bution function. (The random distribution function «a is called the local density
of the stable sequence {Y,}.)

One would like to construct a rv Y*, say, which is distributed as the limit
variable Y and which is such that

P(Y* < x| & )(w) = a(x, w) a.s.

One way to achieve this is to replace the original probability space (Q, &, P)
by the new space (Q x I, . X %, P x 4), where (I, %7, 2) is the unit interval
with Lebesgue measure. Then for each w we can define Y *(w, ) as the inverse
distribution function of a(., w).

From now on, when we have a stably converging sequence {Y,} we shall write

Y,=Y* (stably)

with the convention that the distribution of Y*, conditional on .5, is given
by the local density of {Y,}. With this convention, conditions (B) and (C) of
Proposition 1 become

(B") For all fixed & -measurable rv’s o,
(Yo, 0) = (Y*, 0);
(C’) For all fixed real ¢,
ern —, o E(Ee]F).

When the local density (and so the dependence of Y* on %) is known,
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either (B’) or (C’) can be used to obtain the limit distributions. Thus we can
improve Theorem 1 to:

THEOREM 1’. Suppose that Y, = Y * (stably), that ¢ is any fixed % -measurable
rv and that g(x, y) is a continuous function of two variables. Then

9(Y,,0) = g(Y*, o) (stably).

ProoF. The proof is immediate from (B’) and the continuous mapping
theorem.

The point of the above proof is that the result is trivial when looked at in the
correct way (cf. the original proof in Katai and Mogyord6di (1967)).

REMARK. The conditions of Theorem 1 can be relaxed in a number of obvious
ways. Instead of a fixed .5 -measurable random variable o we could have taken
any sequence o, —,0. We could also have taken ¢ to be an .% -measurable
random vector and g(x, y) need only be a.s.-continuous with respect to (Y'*, o).

Mixing limit theorems. If in a stable limit result the limit rv Y * can be taken
to be independent of .5, then the limit theorem is said to be mixing (with density
F,, where F, is the distribution function of Y*). We will write Y, = F, (mixing).
Note that a limit result is mixing if, and only if, the very same limit result is
true, conditional on any .% -measurable set B, P(B) > 0. In this special case
Proposition 1 becomes:

PROPOSITION 2. Suppose that F, — F,. The following conditions are equivalent:

(A") Y, = F, (mixing);

(B"”) For all fixed % -measurable rv’s o, the sequence of random vectors (Y,, o)
converges jointly in distribution to (Y *, o), where Y * is distributed as Y , independently
of &

(C") For all fixed real t,

et n —uo, E(eitY) ;
(D) For all fixed k and Be o(Y,, ---, Y}), P(B) > 0,
lim, . P(Y, < x| B) = Fy(x),

for a countable dense set of points x.

Many of the classical limit theorems are mixing. Eagleson (1976) used (C”)
to derive some simple sufficient conditions for limit theorems to be mixing.
His results are typically for limit theorems of normalized sums of rv’s and the
conditions are in terms of the tail or invariant o-fields of the summands.

Applications. The knowledge that a limit theorem is mixing can be useful
for many reasons. For example:

(a) If a limit theorem is mixing, then the theorem remains true under an
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absolutely continuous change of measure (Rényi (1950), Rényi and Révész
(1958)).

(b) If a limit theorem is mixing, one can randomly normalize and still obtain
a limit theorem (Smith (1945), Takahashi (1951 (a) and (b)).

(c) If a limit theorem is mixing, then it can be extended to random indices
(Smith (1945), Takahashi (1951 (a) and (b)), Rényi (1960)). For a review of
mixing results and random sum central limit theorems, see Csorgo and Fischler
(1973), Fischler (1976).

(d) If a limit theorem is mixing, then the range of {Y,} is almost surely dense
in the support of the limit distribution (Rootzén (1976)).

However, most consequences of mixing require, in fact, only the weaker
hypothesis of stable convergence though, of course, in order to identify limit
distributions one must know the local density. Thus we have:

(a) If Y, = Y* (stably), then {Y,} still converges stably under an absolutely
continuous change of measure. (Use condition (A) of Proposition 1. If the new
measure has a Radon-Nikodym derivative, y(w), with respect to P, then the
new local density is y(w)a(x, »).)

(b) If a limit theorem is stable, one can randomly normalize and still obtain
a limit theorem. (This is just Theorem 1’ with a particular g.)

(c) Where mixing has been used as a condition in random indices limit theo-
rems, it may be replaced by stability (Aldous (1978)), and the limit distribution
remains the same. Fischler (1976) proves a functional limit theorem for random
indices by using the idea of a random time change as in Billingsley (1968, Section
17), but fails to identify the limit distribution.

(d) While (d) itself does not generalize to stable limit theorems there does
exist an analogue which may be deduced from results in Aldous (1977); in our
notation, if Y, = Y* (stably) with local density a(x, w), then for almost all
the points Y,(w) are dense in the support of the measure generated by the distri-
bution function a(x, ).

The martingale central limit theorem. Asan example of the use of condition
(C’) to check stability and to identify the limit rv, we consider a recent central
limit theorem for normalized sums of martingale differences of Hall (1977). It
is easy to show from Hall’s work that his central limit theorem for single mar-
tingale sequences is stable, using condition (C). Alternatively, McLeish’s (1974)
proof of the central limit theorem can be adapted to obtain the following result.

THEOREM 2. Let {X,, & ,;n = 1} be a sequence of martingale differences on
(Q, &, P), {b,} a sequence of positive norming constants, b, / oo, and set S, =

b,y X If
(@) max;g, |X;|/bn—, 0,
(b) b, * Nn X, >, ', ana.s. finite random variable,
(<) sup,, E(max;_, X;/b,’) < oo,
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then
eitSn —y g~ 1127’ weakly in L,, forallreal t.

That is, S, = F (stably), where F is a distribution function with characteristic func-
tion E(e~#7").

The same result under a slightly stronger condition than (c) was obtained by
Chatterji (1974).

To understand this result, let Y be a standard normal variable, independent
of &. SetY* = Yy. Then

E(er| F) = et
so by condition (C’),
S, = Yy (stably).

Thus, by condition (B’), for all fixed &~ -measurable o,

(Sn’ 0') = (Y% 0)
and so, if P(c = 0) =0,
S,jo = Yylo .
Taking ¢ = 5 (if y* > 0 a.s.),

Sa Ly~ NO, 1)
7

Hence, under the conditions of Theorem 2,
S /(2 X;) = N, 1).

Thus the possibility of randomly normalizing the martingale central limit theo-
rem and so transforming the limit law from a mixture of normals to the standard
normal, is a direct consequence of the fact that the original limit theorem was
stable.

Of course, from Theorem 1’, even more is true. If g is a continuous function
of two variables and ¢ is any .5 -measurable rv, then

9(S,, 0) = 9(Y7, o) (stably),
where Y ~ N(0, 1), independently of &.

REMARK. There are many results, Chatterji (1974), Gaposhkin (1972),
Morgenthaler (1955) etc., where it is shown that some sequence of random
variables satisfies the hypothesis of Theorem 1’. Of course, Theorem 1’ can be
applied to these results as well.
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