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A WEAK INVARIANCE PRINCIPLE WITH APPLICATIONS
TO DOMAINS OF ATTRACTION

BY GORDON SIMONS! AND WILLIAM STOUT?
University of North Carolina and University of Illinois

An elementary probabilistic argument is given which establishes a
‘“‘weak invariance principle”” which in turn implies the sufficiency of the
classical assumptions associated with the weak convergence of normed sums
tostable laws. The argument, which uses quantile functions (the inverses
of distribution functions), exploits the fact that two random variables
X = F-Y(U) and Y = G-YU) are, in a useful sense, close together when F
and G are, in a certain sense, close together. Here U denotes a uniform
variable on (0, 1). By-products of the research are two alternative charac-
terizations for a random variable being in the domain of partial attraction
to a normal law and some results concerning the study of domains of
partial attraction.

1. Introduction. This paper presents a new method for establishing conver-
gence in law of normed sums of independent identically distributed (i.i.d.)
random variables. A distinctive feature of this method is that no use of trans-
forms is made (except the distributional form of stable laws is taken for granted).
The method is probabilistic. It depends completely on the establishment of an
appropriate invariance principle. T he invariance principle introduced here is
analogous to the almost sure invariance principles appearing in the literature
(cf., Strassen (1964, 1965), Csorgd and Révész (1975), Komlos, Major and
Tusnady (1975) and Philipp and Stout (1975)) except almost sure convergence
is replaced by convergence in probability or, what is equivalent in this setting,
convergence in law. For this reason, the terminology “weak invariance prin-
ciple” will be used. The weak invariance principle encapsulated in Theorem 2
below is based upon very elementary notions of probability. This contrasts
sharply with the typical almost sure invariance principle, which depends on the
existence and properties of Brownian motion and frequently on some form of
Skorokhod embedding. Our weak invariance principle is designed to demon-
strate the sufficiency of the classical assumptions associated with the weak con-
vergence of normed sums to stable laws. Perhaps more sophisticated weak
invariance principles can be found which would apply more widely within the
scope of the central limit problem.
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Our main result, Theorem 2, is concerned with random variables which are
within the domain of partial attraction of some infinitely divisible law (implied
by assumption A2 below) but outside the domain of partial attraction of a nor-
mal law (i.e., satisfying assumption Al). The latter restriction is essential to
our approach. It implies that our theory does not concern itself with the con-
vergence of normed sums to the normal law. But it does apply to all other
stable laws. In this regard, it should be pointed out that Root and Rubin (1973)
have already established the normal convergence criterion by probabilistic
methods. The effect of our work is to bring probabilistic methods to another
area of the general central limit problem.?

By-products of our research are two alternative characterizations (see A1’ and
A1) of the class of distributions which are within the domain of partial attrac-
tion of a normal law. We believe these are new. They may be of independent
interest. We also obtain some results about domains of partial attraction.

In order to introduce our method, unencumbered by technical details, we
present a special case in Section 2. Sections 3 and 4 present the method in fuller
generality. Section 5 discusses the assumptions being made and their significance
in more detail than what seems to be appropriate for Section 3.

2. Domain of normal attraction of the Cauchy law. The following theorem
describes a very specialized weak invariance principle but, at the same time,
with a minimum of computations, yields an interesting convergence in law
result.

Let X be a Cauchy random variable (centered at zero and) scaled so that

PrX|>x)~L1 as x— oo,
x
and Y be a symmetric random variable satisfying

Pr(|Y|>x)~% as x—oo.

THEOREM 1. On some probability space, there exist two sequencesof'i.i.d. random

variables X, X,, --- and Y., Y,, ... whose members are distributed as X and Y,
respectively, and which satisfy
(1) T Y= 2 X+ o, (n) as n— oo .t

Since n~! 377, X; is distributed as X, the following corollary is immediate.
CoroLLARY 1. IfY,, Y,, ... arei.i.d. and distributed as Y, then

ntyr Y, -, X.

® After the acceptance of this paper, the authors became aware of a relevant preprint by P.
Major, entitled An improvement of Strassen’s invariance principle. It gives a probabilistic
proof of the central limit theorem in the case of a normal limit using quantile functions.

* The notation Z» = 0,(cs) means Zy/ca — 0 in probability.
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Proor ofF THEOREM 1. Let U, U,, --. be i.i.d. uniform variables on (0, 1),
and let F and G denote the (right continuous) distribution functions of X and Y
respectively. Set

Xo=F(U),  Yo=G7(U), iz1.

Here F~!is defined formally by

) F~Yu) = min {x: F(x) Z 4}, ue(0,1).
Since
3) FYu) < x iff u< F(x),

the distribution function of X, is F. Let
Z,=Y,—X, (i=1) and Z=2,.

Equation (1) is identical to n~* 337, Z, —, 0 as n — oo, which, by the classical

i=1

degenerate convergence theorem, is equivalent (since Z is symmetric) to
4 nPr(|Z] >n)—0 as n—oco;
(3) n~'Var ZI(|Z| £ n)— 0 as n-— oo .

Since Var ZI(|Z| < n) £ 2 {3 v Pr(|Z]| > v)dv (see (10) below), condition (4)
implies condition (5).
It is almost immediate that

F~Y(u) = I +o() G Y(u) = 1 +o(l) as u—1,

2(1 —u)’ 2(1 — u)
and
F-u) = _Lzu"(ﬂ, G-(u) = _LJ# as u—0.
Hence,

GYu) — Fuy=0((1l —u)y™) as u—1, and
=o(u) as u—0.

In as much as Z = G~Y(U,) — F~(U,), condition (4) follows immediately: for
any fixed ¢ > 0 and sufficiently large n,

Pr(|Z|>n)§Pr< ¢ >n>+Pr<i>n>=2e/n. 0
1 -0, U,

It is a simple matter to replace X by any nonnormal stable (random) variable
in Theorem 1. That is, the classical conditions for a random variable Y to be
in the domain of normal attraction of a (nonnormal) stable variable can easily
be shown to be sufficient using a theorem similar to Theorem 1. Rather than
do this, we establish an even more general weak invariance principle in Section
3. Itisapplicable to the study of domains of (not necessarily normal) attraction
of stable laws.
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If one were to try to prove the classical central limit theorem using the above
approach, one would have to establish

2t (Z; — EZ)[nt >0 as n— oo.

But this would require Var Z to be zero, which is of course too strong. It is
from considerations such as this that we were led to work with random variables
which are outside the domain of partial attraction of a normal random variable.
This is our starting point in Section 3.

3. The weak invariance principle. The weak invariance principle described
in Theorem 2 below basically says that, under appropriate assumptions, it is
possible on some probability space to define two normalized sums of i.i.d. ran-
dom variables

a(n)™' 37, X, and b(my 'y, Y.,
with specified distributions for the X’s and Y’s, so that the difference
(6) Sy =0(m) XL Yy —a(n)” T X,
is virtually nonstochastic. Specifically, it is shown that
» = h(n) + o,(1) as n-— oo

for appropriate constants 4(n). We shall begin with a discussion of assumptions.
Let X be an unbounded random variable. A positive nondecreasing® function
a(+) on R* (the positive reals) is said to be a norming function for X if

(7) lim sup, .., x Pr (|X| > a(x)) < o,
(8) lim inf,_, x Pr (|X| > a(x)) > 0,
and

%) a(x + 1)/a(x) — 1 as x— oo .

Quite clearly, (7) implies that a(x) — oo as x — co. In Theorem 2, we assume
that a(+) is a norming function for X, that 5(+) is a norming function for Y, and
that a(-) and b(+) are related by the following two conditions:
Cl. a(.)/b(+) is a slowly varying function.
C2. For each Be (0, 1) as x — oo,
xPr(£Y > B7(x)) — o(1) < xPr (X > a(x))

xPr(+Y > Bb(x)) + o(1)

A IA

and
XPr(+X> B la(x)) — o(l) < xPr (Y > b(x))

XPr(+X > Ba(x)) + o(1).

IA A

5 The assumption that a(+) is nondecreasing does not appear in our original manuscript (Simons
and Stout (1975)). It is a mild restriction, as we use it, and it simplifies some of our discussions.
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Here, in C2 (and below in A3 and A3’), the interpretation is that the statements
in C2 (A3 and A3’) are true with all pluses preceding the random variables and
with all minuses preceding the random variables. It is further assumed that X
and Y satisfy the following three assumptions which are described for X:

Al. lim SUp, M < .
X2 Pr (|X] > x)
A2. sup,,, DUX > 4% o 5y 4L .
Pr(|X] > x)

A3. For no positive B &= 1 does the vector

<Pr(iX>x) Pr(+X > x))
Pr(|X| > x) ’ Pr(+X > Bx)

have a limit point (¢, 1) with 0 < ¢ < 1 as x — co.

Assumption Al simply means that the random variable X is not in the domain
of partial attraction of a normal variable. (See Paul Lévy (1954), page 113, for
a proof.) Integration by parts yields

(10) EXI(|X| < x) =2 {§vPr(|X]| >v)dv — x*Pr (|X| > x).
Consequently, Al is equivalent to

(2o Pr(|X| > v)dv
x*Pr (| X| > x)

Al’. lim sup, .., < oo

In Section 5, it is shown that Al is also equivalent to each of:

Al". For some ¢ > 0, x™ {5 v Pr (|X| > v) dv is an increasing function of x on
R*.
A1, For some ¢ > 0 and some M > 1

x2*‘Pr(|X|>x)§My2“Pr(|X|>y), y>x>0.
It is useful to know that assumption Al implies
(11) Foreach 4 > 1, inf,,,Pr(|]X| > 4x)/Pr(|X| > x)>0.°

This is immediate from A1””. Another way of stating (11) is to say that the func-
tion Pr (|X| > x) is of dominated variation (see Seneta (1976), page 99), i.e.,
lim inf

x—00

Pr (|X| > Ax)/Pr(|X| > x) >0 for some A4 > 1.
Thus A1 implies Pr (]X| > x) varies dominatedly. But it says somewhat more;

¢ The fact that Al implies (11) is implicit in the work of C. Heyde (1969). He derives from
Al an inequality like that of A1’ but with ¢ = 0. It is weaker than A1’”/, but it immediately
implies (11). In an earlier paper, Heyde (1967) assumes both Al and a weakened version of (11).
It is now known that the latter is redundant.
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e.g., the function Pr (|X| > x) = x7%, x = 1, varies dominatedly, but such an
X does not satisfy Al.7

Assumption A2 implies that the norming fuction a(+) is of dominated variation
(see Seneta (1976), page 99), i.e.,

lim sup, .., a(Ax)/a(x) < oo for some 4> 1.
This can be stated equivalently as
(12) sup,, a(Ax)/a(x) < co foreach 4> 1.
To be precise, the identity

Pr (|X| > {a(4x)/a(x)}a(x)) _ {Ax Pr(|X] > a(4x))}
Pr (|X] > a(x)) Afx Pr (|X] > a(x))}

immediately shows that (7), (8) and A2 imply (12).

The statement of A3 is made somewhat cumbersome in order to make it ap-
plicable in a wide variety of situations involving unbalanced tails. For instance
when the first component of the vector in A3 converges to zero, no conclusion
is required concerning the asymptotic behavior of the second component, and
it would be seriously restrictive to require one. (The ratio might even assume
the form “9” for large x.) Although somewhat stronger than A3, assumption
A3’ below is often true in applications and captures much of the spirit of A3:

A3'. Givenany Be (0, 1), the ratio Pr (=X > Bx)/Pr (X > x) is (defined and)
bounded away from 1 for large x.

Note that both A2 and A3 imply that, in certain senses, Pr (|X| > y)/Pr (| X| > x)
is small for y > x.
Before continuing, one should also observe that, because of the identity

r _{rPr(|X| > a(r))} {Pr(IXI > (a(S)/a(r))a(r))} ,
s {sPr(|X] > a(s))} Pr (1X] > a(r))

the conditions (7), (8) and (11) give rise to the useful implication:

(13) a(r,)/a(s,) is bounded away from zero —=r,/s, is bounded
away from zero for arbitrary positive sequences r, — co

and s, — oo .

THEOREM 2. Suppose X and Y possess norming functions a(+) and b(+), respec-
tively, and that they each satisfy assumptions A1—A3. Further, suppose conditions
C1 and C2 are satisfied. Then on some probability space there exist two sequences
of i.i.d. random variables X, X,, - -- and Y,, Y,, - - - whose members are distributed

7 The fact that Al says somewhat more than that Pr (|X| > x) varies dominatedly explains why
the equivalence of A1, A1’ and A1’/ does not follow from Theorems A.2, A.6 and A.7 of Seneta’s
(1976) appendix, which appears to be the case at first glance. Certain unspecified parameters
appearing in these theorems must be pinned down precisely.
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as X and Y, respectively, and which satisfy

»_ Y, X

14 Zie Yo _ Dia X g o0,(1 as n

(14) w0+ 0(1) — o0
for some sequence of constants h(n).

If X is a stable variable of index a € (0, 2) and a(n) = n¥#, it immediately
follows from (14) that Y is in the domain of attraction of X.

The proof of Theorem 2 depends on Lemma 2, which, in turn, depends on
an important fact about slowly varying functions, described in Lemma 1 (see
Seneta (1976), page 2). We now state these lemmas for easy reference, delaying
the proof of Lemma 2 until after the proof of Theorem 2.

Lemma 1. (Uniform convergence theorem for slowly varying functions.) If B(+)
is a slowly varying function on R*, then the required convergence

(15) B(Ax)[B(x) — 1 as x— oo
occurs uniformly in A on each fixed finite interval [c,d], 0 < ¢ < d < oo.
LEMMA 2. Assume the hypotheses of Theorem 2. Fix &, 7 > 0 and let

¢, = min (F(a(n)), G(¢b(n)))  and ¢,=1—"1,

where F and G are the distribution functions of X and Y (appearing in the statement
of Theorem 2) respectively. Then for each o > 0, there exists a large integer N such
that for n > N and u € (c,, ¢,) (possibly empty),

<F“(u) _ G Y(w) )2 < 5(5:@)_)2‘

a(n) b(n) /= \ a(n)
ProoF oF THEOREM 2. Define the sequences X;, X,, --- and Y}, Y,, - -+ in
terms of i.i.d. uniform variables U,, U,, --- (on (0, 1)) by letting
X, = FY(U) and Y, =GU), i=1

where F and G are the distribution functions of X and Y, respectively. Set

Y, X,
i L d and Sn = ;("= Zni .
n b(n) a(n Z 1

It must be shown that for a sequence of constants A(n)
(16) S, — h(n) -, 0 as n-—oo.

An intuitive argument suggesting why each Z,, and hence S, (except for cen-
tering) is small with probability close to one is perhaps helpful before we plunge
into technical details. Suppress the index i. There are three possible ranges
for U. Either U is close to 1 or 0, U is moderately close to 1 or 0 or U is not
close to 1 or 0. The first case happens with small probability and, hence,
causes no problem. In the second case, F~'(U)/a(n) ~ G-Y(U)/b(n) and, hence,
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Z, = 0. In the third case, both F~}(U)/a(n) and G-(U)/b(n) must be small and,
hence, Z, = 0. Thus, as desired, Pr(Z, = 0) ~ 1. The actual argument pro-
ceeds by truncation and centering. Although somewhat easier, our argument,
in essence, amounts to verifying the conditions of the classical degenerate con-
vergence theorem. (See Loéve (1963), page 317.)

For each n, express the unit interval as the union of five subintervals I, < I, <
I, <1, < Iy where I, = (0, ¢,], I, = (¢, ¢,), I, = [cy €3], I, = (¢35, ¢,) and [, =
[ci, 1), where

q=7jn, ¢ = max (F(—¢a(n), G(—b(n))) ,
¢, = min (F(§a(r)), G(Eb(n), ¢, =1—y/n.
| I, ‘ I, ’ I, | 1, b r ’ )

| ! | |
0 c, c, c, c, 1

The constants 5 and &, which will be chosen later, are intended to be small and
positive. Certain of the intervals may be empty or overlap. For instance, if
¢, < ¢, I, is empty and the two intervals I, and J; overlap.
The first step involves truncation. Let
S, =Y. 7z, and Sy =S,—3S,.,
where
zZ, =2, if Ue(l,ulul),

=0 otherwise.
The Z)’s and, hence, S,’ are bounded random variables. Fix ¢ > 0. Then

Pr (S, — ES,’| > 2¢) Z Pr(|S, — ES,| > ¢) + Pr (|S;| > ¢)

< e?Var§, + Pr(Ur,[U. e, + L)])
<e¢mVarZ) + nPr(Ue(l, + L))
=e¢*nVarZ), + 2y.

It will be argued that

(17) nE(Z;)* — 0 as n— oo,

so that

(18) lim sup, ... Pr (|S, — ES,'| > 2¢) < 27.

Even though » > 0 and ¢ > 0 are arbitrary, this does not prove (16) since the
value of ES,’ depends on 7. However, if &(n) is defined as a median of S,, then
(16) follows from (18) and what Loéve ((1963), page 245) calls a symmetrization
inequality. Thus, truncation has reduced the task to showing (17).

Now

WE(Z' Y — nie (F7®) _ GTHW)Y
E(Z)) = ”§°1< a(n) b(n) ) du

< n(slz + 813 + Sl,)(F;(l’E;l) . GI;(I’E’;) )2 du .
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The integrals over 1,, I, and I, must be treated separately. The integral over I,
is treated like the integral over /, and, hence, will not be discussed. We shall
discuss the integral over I, first.

(500 _ G Y,
a(n) b(n)
F—l(u) 2 G—l(u) 2

20 (G )+ oy ) 1

e ey ) gy )T

< 255, (0 au 4 2 g, (S0 4
a(n) b(n)
We shall only discuss the integral
I(n) = §2E%00) (F'l(u) >2 du ;
a(n)

the integral involving G can be handled the same way. Specifically, we shall
show that

IA

(19) lim sup,, ,, nl(n) — 0 as £]0.

This will be sufficiently strong (to prove (17)) providing it can be shown that
for each small but fixed & > 0,

Fi(n) _ G-(u)Y; I
(20) n§I4< an b, )du—>0 as :

Now, recalling (3) and using (10),

nl(n) =

EXI(|X| < &a(n))

( )

< 2

a’(n)

Since X satisfies assumption Al it satisfies A1’ and A1", Using A1”, then A1,
it follows for some small y > 0 and some large M that :

fee™ v Pr (|1 X| > v)dv.

21 _ &y g Pr (|X] > ) do
a(n)
< MEmPr (|X| > a(n)) .

nl(n) <

Since a(n) is a norming function for X, (19) follows from (7).
It remains to prove (20). Using Lemma 2, we have, for each small 6 > 0
and all sufficiently large n,

1) an Fa _(1'5;‘) — Gb_(:;‘) )2 du < on {,, (F__(1’5§‘l>2 du

< (F~Y(u))* du .

s C
_2()1
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By (7) and A2,

sup, n Pr (| X| > Aa(n)) - 0 as A—oo.
In turn, this implies

sup, n Pr (|X| = Aa(n)) —» 0 as 4 — oo.
Thus, for some large 4,

¢, = n/n = Pr(|X| = Aa(n)) = F(—Aa(n)),
and

(22) =1 —gn<1—Pr(X| = Aa(n) < F(da(n)).

Consequently, recalling (3),

on _ on an _
iy S5 00 du S 0 G (F )
(23) — " EX*(—Aa(n) < X < Aa(n))
aX(n)
< O EXU(|X| < Aa(n)).
a¥(n)
But, by assumption Al and (22), there is a large L such that
(24) f(”) EXI(|X| < Aa(n)) < 64*LnP(|X| > Aa(n)) < 64°Ly .
a¥(n

Since § > 0 can be made arbitrarily small, (20) follows from (21), (23) and (24). ]

PROOF OF LEMMA 2. Suppose the lemma is false. Then there exists a > 0
and u, € (c,, ¢,) such that

I A

for each n in some infinite index set .4~ This will be contradicted by showipg
that

(26) one is a limit point of {FT_I)(_(I;EZI_(’_(”_; , ne ///} .
a(n)\G~Y(u,

Since u, > c,, either u, > F(¢a(n)) or u, > G(¢b(n)) for infinitely many ne ./~
We consider only the case where u, > F(éa(n)) for infinitely many ne .47 the
argument in the other case being very similar. By making .4 a smaller index
set if necessary, we assume

u, > F(¢a(n)) forall ne. s .
Thus, recalling (3),
(27) F~Y(u,) > éa(n) — o as n—oo in A
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Again, by deleting indices from /" if necessary, we assume that F~Yu,) > a(1)
for all n e 47 so that there exists a positive integer r, for which

(28) a(r,) < Fu,) < a(r, + 1), ne AN,

In the remainder of the proof, all statements concerning n will suppose ne .4
Clearly r, — co as n — oo. In fact, r,/n is bounded away from zero since

éa(n) < F(u,) < a(r, + 1)

(see, (27), (28) and then (13)). Likewise, r,/n is bounded away from infinity
because

(29) u, < ¢, =1— n/n < F(Aa(n))
for some large A4 (see, (22)), and hence, (using (3))
a(r,) < F~Y(u,) < Aa(n)

(apply (13) again). Since a(+)/b(.) is slowly varying and r,/n is bounded away
from zero and infinity, it follows from Lemma 1 that

(30) Ara)b(m) _,
a(n)b(r,)
Thus (26) holds providing
M — 1 as n-— oo
b(r.)

(see, (9) and (28)). But this must hold if, for an arbitrary Be (0, 1), one has

(31) lim inf,_, ¢ (%) > p
b(r,)

and

32 li e < B,

(32) im sup, ) S

wherec, = G™*(u,) — 1. (Note b(r,) — oo and, because of (9), b(r, + 1)/b(r,) — 1.
The sequence c, is introduced for a technical reason: U > u, does not imply
the strict inequality G-}(U) > G~%(u,), but it does imply the strict inequality
G~(U) > ¢,. Here and below, U is a uniform variable on (0, 1).) Rather than
show (31) and (32) directly, we shall show that

Gu,) ABO(R) | aoq €V BT(r, + 1)

(33) Bb(r,) B7(r, + 1)

—1 as n—»l,

which are equivalent to (31) and (32) respectively (x A y = min (x, y) and
XV y = max(x, y)).
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Now

r,Pr(Y >c¢,) =r,Pr(GYU) > G'(u,) — 1)
r,Pr(U>u,)=r,(l —u,)
r, Pr (F~Y(U) > F~(u,))
r,Pr(X > a(r, + 1))

’l 1 {(r. + 1)Pr (Y > B~%(r, + 1)) — o(1)}

(34)

v v v

v

n

as n-— oo,

on account of (28) and condition C2. But the quantity r,(1 — u,), appearing
in (34), is bounded away from zero because r,/n is bounded away from zero

and u, < 1 — y/n (see, (29)). Hence, r, Pr(Y > c,) is bounded away from zero
and (34) yields

(35)  Pr(Y > B7b(r, + 1)) S Pr(Y>c)(1 +o0(l) as n—oo.

In turn, this implies

Pr(Y>ec,vB(r,+1) 4
Pr (Y > B7%(r, + 1))

Thus, either the second limit in (33) holds or the ratio Pr (Y > B'B~'(r, +
1))/Pr (Y > B~'b(r, + 1)) has unity as a limit point for some B’ > 1. By assump-
tion A3 (for Y), this would require the ratio Pr (Y > B~'(r, + 1))/Pr (Y| >
B-'(r, + 1)) to have zero as a limit point. But r,Pr(|Y| > B~'(r, + 1)) is
bounded away from zero (see, (8) and (11)), and consequently, r, Pr (Y >
B~b(r, + 1)) has a limit point equal to zero. Since r, Pr (Y > ¢,) is bounded
away from zero, as noted earlier, (35) implies that B~'5(r, + 1) > c, infinitely
often. By deleting indices from .#”if necessary, one can make B~*(r, + 1) > ¢,
for all ne .#. With this modification, the second limit in (33) holds. The
proof of the first limit in (33) is similar but easier. The inequality analogous
to (35) is

as n-—>oo.

Pr(Y > GY(u,)) < Pr(Y > Bb(r,))(1 +o(1)) as n— oo

and, in the analogousargument, one concludes that r, Pr (Y > Bb(r,)) is bounded
away from zero. []

In some applications, it is helpful to be able to replace “a(+)/b(+) is slowly
varying” (i.e., condition C1), which appears in Theorem 2, by conditions more
directly verifiable from F and G. Before stating these conditions, we make the
following general observation: if §(.) is any slowly varying function and 5(+)
is any function of dominated variation, then B(&(+)) is slowly varying. This
follows immediately from Lemma 1. Recall that the norming functions a(-)
and b(-) are of dominated variation by virtue of conditions (7), (8) and A2 (cf.,

(12)).
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COROLLARY 2. Theorem 2 remains valid if conditon C1 is replaced by the three
conditions

(36) B(x) = Pr([Y] > x)/Pr (|X| > x) is slowly varying in x;
(37) xPr (Y| > b(x)) is slowly varying in x; and
(38) a positive function y(+) on R* is slowly varying whenever

x Pr (| X] > r(x)a(x)) is slowly varying in x .

ProoF. Since f(b(+)) is slowly varying (because of (36) and the foregoing
discussion) and
(39) B(b(x)) = {x Pr (Y] > b(x))}/{x Pr (|X| > r(x)a(x))}
when y(+) = &(+)/a(+), condition Cl1 follows from (37) and (38). []

Observe that the conditions (37) and (38), entering into Corollary 2, are asym-
metric in X and Y. Quite clearly Corollary 2 would remain valid if (37) and
(38) were replaced by
(40) xPr(]X] > a(X)) isslowly varyingin x,
and

(41) a positive function y(.) on R* isslowly varying whenever
xPr(|Y]| > y(x)b(x)) is slowly varying in x.

4. Domains of attraction. Theorem 2 is specialized in this section to the study
of stable (random) variables.

Recall that a random variable X is said to be stable if for each n there are
independent random variables X,, X;, - - -, X, with common distribution that of
X, centering constants e(n) and scaling constants a(n) > 0 such that

n X,
42 L=l e(n
(42) Tkt — )
has the distribution of X. It is well known that, corresponding to each properly
scaled nonnormal stable variable X, there exists a pair (a, p), 0 < a < 2,0
p = 1, such that

(43) Pr(JX| > x) ~ 1/x=, Pr(X >x)~p/x* as x—oo.

Moreover, for such a random variable, a(n) in (42) must assume the form nVe.
Observe, by direct substitution, that a(x) = x¥ is a norming function for any
random variable X satisfying (43). Any stable variable X which (as a result of
proper scaling) satisfies (43) will be said to be of rype (a, p).?

THEOREM 3. Let X be a stable variable of type (a, p) and Y be an unbounded

8 If the word fype were to be used as Loéve does ((1963), page 202), then each pair (a, p) would
correspond to exactly one type of stable law. This fact explains our terminology.
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random variable with a distribution of the form
(44) Pr(|Y| > x) = p(x)/x*, x>0,
(45) Pr(Y > x)/Pr (Y| > x)—>p as x-— oo,

where 0 < a < 2,0 < p < 1, and B(x) is a slowly varying function. Then, on some
probability space, there exist two sequences of i.i.d. random variables X,, X,, - - -

and Y,, Y,, - -. whose members are distributed as X and Y, respectively, and which
satisfy

i Ys _ 2 X
(46) b(ri) = nl/la + h(n) 4 o,(1) as n— oo

for some positive function b(x) and some sequence of centering constants h(n). More-
over, (46) holds for each choice of b(x) satisfying

(47) x—,@ (6(x)) — 1 as x— oo.
b%(x)
Theorem 3 yields an obvious but well-known corollary.

COROLLARY 3. Under the hypotheses of Theorem 3, there exist constants b(n) > 0
and g(n) such that

n Y.
48 ZimYe ooy, x,
(48) a9
where Y,, Y,, - - - arei.i.d. random variables distributed as Y. Moreover, (48) holds

for each positive function b(x) satisfying (47).

Corollary 3 is the strongest possible result in the direction it is stated. That
is, a random variable Y is in the domain of attraction of a stable random variable
X of type (a, p) (0 < @ < 2,0 < p < 1)iff Y satisfies the assumptions stated in
the corollary. We have tried unsuccessfully to obtain the converse of Corollary
3 by probabilistic methods. Of course, a proof of the converse based on Fourier
transforms is well known.

PRrOOF oF THEOREM 3. We are going to apply Corollary 2. Conditions (36)
and (38) are immediate, and condition (37) follows from the fact that (44) and
(47) combine to give

xPr (Y] > b(x))—1 as x—oo.
This limit also implies (7) and (8) for the function &(+). Since (47) implies
br(x + 1) _ B(b(x + 1))
be(x) B(b(x))

condition (9) holds for b(+) (and, hence, b(+) is a norming function) if A(b(+)) is
slowly varying. But 5(b(+)) is slowly varying because j(+) is slowly varying by
assumption, b(-) satisfies (7) and (8), and Y (as will be shown) satisfies assumption

as X -— oo,
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A2. (See the discussion preceding Corollary 2.) Clearly a(x) = x¥* is a norm-
ing function for X. Thus it remains to verify assumptions A1—A3 for X and
Y and condition C2. Of these, the only nontrivial conditions to check are A1—

A3 for Y. It is easier to check assumption Al’ than its equivalent Al. Showing
Al’ for Y amounts to showing

lim sup, ., iff”);:_zfg((’vx))ﬂ < oo

But this is immediate from a theorem appearing in Feller ((1966), page 273).
Concerning assumptions A2 and A3, (44) yields

Pr(Y]|> 4x) _ B(4x)

Pr(lY|>x)  AB(x)
From this and the fact that (x) is slowly varying, A2 is immediate for Y. Using
(45), the proof of A3’ (and hence A3) for Y is similar. []

5. Discussion of the assumptions. A major objective of this section is to
explain the significance and, to the extent possible, the raison d’étre of the as-
sumptions made in Theorem 2 (our main theorem). Recall that these assump-
tions restrict attention to random variables which have norming functions and
satisfy assumptions A1—A3 and conditions C1 and C2. We will try to make a
strong case for all of these requirements with the exception of assumption A3.
Roughly speaking, assumption A3 requires a distribution function not to have
locally nearly flat spots arbitrarily far out in its tails. Feller (1968), in a some-
what related context, has found it necessary to make a similar restriction. We
have ambivalent feelings as to the necessity of A3.

The theory developed in Section 3 is predicated on the use of norming func-
tions to normalize the sums appearing in (14). While other scalings might be
considered, our decision to work with norming functions has two good reasons.
To begin with, our methods are not suited for studying the classical central
limit theorem (see the discussion at the end of Section 2), and consequently
the usual normalization by 1/n? is inappropriate. Secondly, norming functions
provide exactly the right amount of scaling when one is working with random
variables which are in the domain of attraction of a nonnormal stable variable;
i.e., they are the right things to consider if one wants to study domains of
attraction.

The following theorems explain why assumptions Al and A2 are quite natural
when norming functions are used to normalize sums. In both theorems it is
assumed that X, X, X,, ... are i.i.d. that T, = X, + X, & ... + X, and that
X has a norming function a(x).

THEOREM 4. There exists a sequence of numbers c,, such that {(T, — c,)/a(n)}z_,
is tight iff X satisfies assumptions Al and A2.

THEOREM 5. If X satisfies (11) (which is implied by A1), then for every sequence
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of numbers c,, the sequence of random variables (T, — c,)/a(n) (n = 1) has no de-
generate weak limit point. Specifically, for each A > 0,

(49) liminf, . Pr(|T, — ¢,| > Aa(n)) > 0.

Tightness for the sequence {(T, — c,)/a(n)}s_, guarantees that every subsequence
has a weak limit point. Thus, by Theorems 4 and 5, Al and A2 guarantee that
such limit points must exist and be nondegenerate (for properly chosen c,’s).
Further, Theorem 4 implies that A1 and A2 are necessary for tightness provided
one normalizes by norming functions. Thus, Theorems 4 and 5 show that
assumptions Al and A2 are well suited to the study of domains of attraction.

There are interesting connections between Theorems 4 and 5 and the subject
of domains of partial attraction. Doeblin (1940) shows that an unbounded ran-
dom variable X belongs to no domain of partial attraction if

lim,_ liminf, . Pr (|X]| > Ax)/Pr(|X] > x) > 0.
In contrast, it can be shown that assumption A2, which can be expressed as
lim,_, limsup, ., Pr (|X]| > 4x)/Pr(]JX| > x) =0,

implies that X is in some domain of partial attraction. Theorems 4 and 5 make
this clear when, in addition, assumption Al holds and a norming function exists
for X. Moreover, they tell how to properly scale 7, under the additional
assumptions. '

Theorem 2 says something about domains of partial attraction. Let &7, de-
note the collection of all nondegenerate infinitely divisible random variables Z
such that X is in the domain of partial attraction of Z. According to the theory,
Ty is empty, Z, consists of one type of random variable, or <7, consists of a
nondenumerable set of types (Doeblin (1940), Gnedenko (1940)). The following
result follows easily from Theorems 2, 4 and 5.

THEOREM 6. If X and Y satisfy the hypotheses of Theorem 2 for some choice of
norming functions a(+) and b(+), then &', = <.

The proof of Theorem 6 (which will be deferred until later) shows that, for
random variables which satisfy assumptions A1—A3, norming functions provide
the normalizations appropriate for the study of domains of partial attraction.

Condition C1, which says that a(.)/b(+) is slowly varying, is necessary in
Theorem 2—at least for the way we constructed our random variables. Specifi-
cally, if (14) holds and the vectors (X}, 1)), (X,, Y,), - - - are i.i.d., then a(+)/b(+)
must be slowly varying.

In proving this claim, we shall assume, without loss of generality, that the
random variables in (14) are symmetric and A(n) is identically zero. (A standard
symmetrization argument reduces the problem to this case.) Then (14) becomes

ZZ‘=1 Yi J— Z?:l X’L + op(l) as

n— oo.

b(n) a(n)
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Thus

X — oo,

LS Y, _ NEX
50 = + o,(1
. o) e T

where [c] denotes the integer part of c. In view of (9), which holds for a(+) and
b(-), it suffices to show that a([-])/b([+]) is slowly varying. For fixed ¢ > 1,
(50) yields:

[=t] X Z[ait] Y.

0o (1) + Zz_l L t=1 i

i a([x1]) b([x1])
_ (XD {ZE A+ -+ B ) Y 2 atan Ya

b((x1)) B(x)) b([x1])
— b([x]) Zz[illlt] X; 1 Zz[it[]z][tlﬂ Y,
mﬂh{ﬂhb-+%)y+ b([x1))

as x — oco. Thus

(51) (1 _ b([x])a([Xf])> a([x][1]) D X,
a([x])b([xt])/ a([xt]) a([x][])

_ DEan Ye | 2Elma X 1

b([x1) apxy

Since the random variables in the left hand side of (51) are independent of the
random variables in the right hand side with the exception of the negligible
0,(1) term, the two sides, after proper centering, must converge to zero in prob-
ability. Consequently,

<1 _ b(["])“(["’])) alxl) Lo as x— oo ,
a([x])b([xt])/ a([x1])

or else Theorem 5 would be contradicted. Finally, since a([x][])/a([x?]) is
bounded away from zero as x — oo (this follows from (12)),

as X-—>oo.

BIDAXD) 1 s xs e

a([x])b([x])

i.e., a([+])/b([+]) is slowly varying.
Finally, we claim C2 is a necessary condition (for the way we define our ran-

dom variables in (14)). In order that (14) hold, it is necessary (c.f., Gnedenko
and Kolmogorov (1965), page 128) that

r(

for each ¢ > 0. Thus for each Be (0, 1),

X Y
a(n)  b(n)

>e>—>0 as n-— oo

(52) nPr (X > a(n)) < nPr(Y > Bb(n)) + o(1) as n— oo,
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which (because of (9)) can be upgraded to
(53) xPr (X > a(x)) < xPr (Y > Bb(x)) + o(1) as x—oo.

The other inequalities in C2 are derived similarly.

In spite of the fact that the assumptions of Theorem 2 are chosen with an
eye toward the study of domains of attraction, they do not imply Pr (|X| > x)
and Pr (Y| > x) are regularly varying functions. (If X is in the domain of
attraction of a nonnormal stable variable, Pr(|X| > x) is a regularly varying
function.) This is demonstrated by the following example.

ExaMPLE. Let X be symmetric with
P(|X|>x):w, x> 3.

Clearly X satisfies A1”” with ¢ = 1 and M = 3. A2 is immediate. Consider
A3’. We have

P(|X]| > Bx) _ 1 2 4 sin (log (Bx))

P(X|>x) ~ B 2 +sin(logx)

Elementary calculations show that the above ratio is bounded away from one
if Be (0, 1), establishing A3’. Also, a(x) = x is a norming function. But as
X — oo,

2 + sin (log xf)

2 + sin (log x)

clearly does not approach one for each fixed # > 0. Thus, P[|X| > x] is not
regularly varying. Clearlya Y can be constructed with distribution close enough
to that of X such that Cl1 and C2 hold, as well as A1—A3, but with P[|Y]| > x]
not regularly varying. []

The following lemmas are useful for proving Theorems 4 and 5. In both, it
is assumed that the sequence X, X, X,, ... isi.i.d., that T, = X, + ... + X,
and that a(x) is a norming function of X.

LEMMA 3. There exist a sequence ¢, | 0 and constant C < co such that for each
A = 1 and each sequence of numbers c,,

(54) nPr (|X| > 64a(n)) < CPr(|IT, — c,| > Aa(n)) + ¢, .
LemMA 4. If Al holds, then for some sequence of numbers c,, and some M > 0,
(35) Pr(|T, — c,| > 4Aa(n)) < MnPr (|X| > Ada(n)), A>0.

Proor oF LEMMA 3. For simplicity, the proof will be given for the special
case ¢, = 0; the general case offers no additional difficulty. Let

E, = [|T, — X,| < 34a(n), |X,| > 64a(n)], i=1,.--,n.

Observe that |T,| > 34a(n) on each E; and that |T, — X; — X,| > 34a(n) on
each intersection E; n E,, i = j. Thus, by a Bonferroni inequality and the fact
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that the X,’s are i.i.d.,
Pr(|T,| > 34a(n)) = Pr (Ui E) = 21 Pr(E) — Figisjsa Pr(E: 0 E))
= nPr(|X| > 64a(n)) Pr (|T,_,| < 34a(n))
— () Pr* (1X] > 64a(n) Pr (|T, | > 3da(n))
Let y, = nPr (|X| > a(n)). Then, for 4 = §,
(56) nPr (|X| > 6a(n)) < Pr (|T,| > 34a(n)) + 1, Pr(|T,_,| > 34a(n))

+ 7’n2 Pr (lTn—2I > 3Aa(n)) *
Now, for 4 = 1,

(57)  Pr(T,.| > 3da(n)) < Pr(|T,| > 2Aa(n)) + Pr (1X| > Aa(n))
< Pr(T,| > 24a(n)) + 7.jn,

and similarly,

(8) Pr (T, > 3Aa(n)) < Pr (|T.| > Aa(n)) + 27,/

Since 7, is bounded away from infinity (cf., (7)), the desired conclusion follows
from (56), (57) and (58). Observe that the choice of ¢, and C does not need to
depend on the value of 4. []

PRroOF oF LEMMA 4. Fix 4 > 0 and let
X,. = X, I(|X,| £ Aa(n)) and X=X, - X, i=1,...,m;n=1.
Then

(39) Pr (|2 Xol > Aa(n)) < Pr (Ui, [|1Xi] > Aa(n)])
< nPr (|X| > Aa(n)).

Assumption Al says, for some large C, that
EX?I(|X| < Aa(n)) < CA%a*(n) Pr (|X| > Aa(n)) .
Consequently, by Chebyshev’s inequality,

(60) Pr (| Dt (X — EX,)| > Aan)) < "X ;z(é)f‘”("»

< CnPr (|X| > Aa(n)).

From (59) and (60), we obtain
(61) Pr(|T, — Xr, EX,;| > 24a(n)) < (C + 1)nPr (| X| > Aa(n)) .

This would prove the lemma were it not for the fact that the centering > »_, EX,,,
depends on the value of 4. If ¢, is chosen to be a median of 7, then (55) fol-
lows from (61) and a symmetrization inequality (see Loéve (1963), page 245). []

ProoFf oF THEOREM 4. By (7), we have that
nPr(|X] > da(n)) < D Pr (|X] > Aa(n))/Pr (|X| > a(m))
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where the constant D does not depend on 4. Thus, the “if”” part of Theorem 4
immediately follows from Lemma 4 and assumption A2.
Conversely, suppose {(T, — c,)/a(n)};_, is tight. It is not difficult to show A2
(cf., (8)) if
lim sup,_,, n Pr (|X| > Aa(n)) -0 as A— oo,

But then A2 follows from Lemma 3. It remains to show that tightness implies
Al, i.e., that X is outside the domain of partial attraction of a normal variable.
If X has a finite second moment, the central limit theorem says T, — ET, should
be scaled by the factor 1/n? in order to obtain tightness. But when X has a finite
second moment

(62) nPr(|X| > ent) -0 as n— oo, e>0.

Since lim inf,_, n Pr (|X| > a(n)) > 0, a(n)/n* -0 as n — co. This precludes
tightness for {(T,, — c,}/a(n)} no matter how the ¢,’s are chosen. The same kind
of contradiction arises if X is any random variable in the domain of partial at-
traction of a normal variable. The details can be worked out from the normal
convergence criterion. (See Gnedenko and Kolmogorov (1954), page 128. The
limit (62) corresponds to the first condition of their Theorem 2. In turn, if B,
is a suitable scaling factor (i.e., factor to multiply by), then lim inf, a(n)B, = 0.

This implies {(T, — c,)/a(n)};-, cannot be tight.) Thus, tightness implies Al. []

ProOF oF THEOREM 5. Inequality (49) only needs to be demonstrated for
A = }. For such 4, (11) implies

(63) Pr (|X| > 64a(n)) = ¢ Pr (|X| > a(n)), nx=1,

for some ¢ > 0, depending on 4. Since (8) holds, (49) follows from (63) and
Lemma 3. [J

ProOF OF THEOREM 6. Suppose Z ¢ &7,. Then there exist sequences of con-
stants ¢, and d(n) > 0 such that, on some subsequence n’ — o,

T, —c,
(64) Ay -1 Z,
where T, = X, + -+ + X, (n = 1). Let a(+) be a norming function for X and
consider the ratios a(n’)/d(n’). Since Z is not a degenerate random variable it
follows from Theorem 4 that a(n’)/d(n’) is bounded away from zero. In turn,
(64) implies that {(T',, — c,.)/a(n")}is a tight sequence of random variables. Thus,
for some a > 0 and real 8 and for some subsequence n"” — co in {n'},

T, — Cprr
__&(—nﬁ)_— —,aZ + B.
Buta = 0isimpossible by Theorem 5. Thus @ > 0. Moreover, by (14), we have
2ia Y gy S az 4 8.

b(nll) a(nll)



314 GORDON SIMONS AND WILLIAM STOUT
Thus, Z € &y, and we have shown that &, c &,. By the same argument,
Z, ¢ Zy. Hence, Z, = Z,. []

It remains to prove the equivalence of Al’, A1” and A1".

ProrosiTION 1. Assumptions A1’ and A1" are equivalent.

Proor. Al’ is equivalent to

h(x) = xPr(X|>x) e
(v Pr(|X| > v)dv x

1\

0, X > X,

for some ¢ > 0 and some x, > 0. The value x, can be taken to be zero. For if
0 < x £ x,, then

xPr(lX|>x) ¢ _ 2Pr(jX|>x)—c¢

h(x) 2 =
{¢vdv x x

>0

when ¢ is small enough. Since A(x) is the derivative of
H(x) = log {x~¢ {¢ v Pr (| X]| > v) dv}

whenever Pr (|X| = x) = 0, it follows that Al’ is equivalent to saying that H(x)
is increasing. Thus Al’ is equivalent to A1”. []

PROPOSITION 2. Assumptions A1’ and A1"" are equivalent.

PROOF. Assume Al’. Then A1” holds as well, and, for some large M and for
each y > x > 0,

My Pr (|1 X]| > y) = {4 v Pr(|X| > v)dv

> (%)e {6vPr(|X]| > v)dv

> <L> §¢ v dv Pr (|X] > x)
x
= 4yx*Pr(|X] > x).
Thus Al’ implies A1"”". Conversely, if A1”" holds, then for each y > 0,

yer(X|>y S YV Pr(lX] > y)
YxPr(|X] > x)dx = {§x71. My Pr (| X| > y)dx

€
=_—>0.
M >
Thus A1"” implies Al’. ]
It is clear from the way that ¢ arises in the proof of Proposition 1, that the
M appearing in assumption A1’ can be taken to be as small as 2/e. Also, it is

easily seen that the ¢ appearing in assumptions A1” and A1’ has to be smaller
than two.
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