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AMARTS INDEXED BY DIRECTED SETS'

By KENNETH A. ASTBURY
Ohio State University

We prove that an amart indexed by a directed set decomposes into a
martingale and an amart which converges to zero in L, norm. The main
theorem asserts that the underlying family of s-algebras satisfies the Vitali
condition if and only if every L; bounded amart essentially converges.

1. Introduction. Let (R, &, P) be a probability space and let J be a directed
set filtering to the right. rand u denote elements of J. Throughout this paper
functions, sets, and random variables are considered equal if they are equal
almost surely. Let (%,),, be an increasing family of sub-g-algebras of #. A
simple stopping time of (), is a function r : Q — J, taking only finitely many
values, such that {r = f} e &, for all teJ. Let T be the set of all simple stop-
ping times; under the natural order T is a directed set filtering to the right. o, 7,
and p denote elements of T.

Let (X,),, be a family of random variables adapted to (F Deess 1.6, X2 Q@ —
R is & ,-measurable for each e J. For r ¢ T define the random variable X, by
X, = X, on {r = t} and define the o-algebra & by & ={4de F |4A0N{r =
t}e &, forall r e J}. The family (X,),., is called an amart for (F s TEX,| <
oo for all teJ and the net (E(X,)).. converges to a finite limit. Clearly, the
class of amarts is closed under linear combinations and contains the class of
martingales. We show in Section 2 that the L, bounded amarts form a lattice.
In Section 3 we show by example that supermartingales need not be amarts.
A potential is an amart such that lim,., £(1,X,) = 0 for all 4 ¢ Utes & o

Edgar and Sucheston have given a Riesz decomposition of an amart indexed
by N into a martingale and a potential, for both real-valued [6] and vector-
valued [8] amarts. The real-valued Riesz decomposition can be extended to
amarts with directed index sets by the usual arguments for exteriding norm con-
vergence. (See Theorem 4.1.) However, in Section 2, we provide a direct proof
of the Riesz decomposition which is also valid for vector-valued amarts.

In Section 3 we prove the main theorem: the family (F )1y satisfies the
Vitali condition if and only if every potential essentially converges. A weaker
form of the Vitali condition (allowing an overlap of the covering sets) is known
to be equivalent to the essential convergence of all L., bounded martingales. (See
[9], pages 168-170.) From our main theorem and the martingale convergence
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268 KENNETH A. ASTBURY

theorem we obtain that the (strong) Vitali condition is equivalent to the essential
convergence of all L, bounded amarts. For the case J/ = N, the resulting amart
convergence theorem was proved by Austin, Edgar, and Ionescu Tulcea [1]; a
stronger result was published at the same time by Chacon [3]. In Section 4
we obtain similar results for the descending case. ((F),., is a decreasing
family.)

2. The Riesz decomposition. We now prove the Riesz decomposition for
real-valued amarts. For the sake of generality, we use in place of the L, norm
the following equivalent norm ||. ||, which, in the vector-valued case, is equivalent
to the Pettis norm. (See [8].) We define

IX]| = supye - [E(L,X)] -
If X is & _-measurable, then
[ X]| = supye .-, |E(1,X)| .
The conditional expectation contracts this norm:
IECX|Z N = supye- [E(LLE(X|F )| = sup,. ., [E(1,X)| < |1 X]-

LemMa 2.1. Let (X,),., be an amart for (,),., and let ¢ > 0. Then there

exists © € T such that
czrzt=|lX,— B(X,|F)|S¢.

Consequently for any p e T, the net (E(X.| & o))cer is Cauchy.

Proor. By the amart property choose 7 € T such that

0,0 2t=|EX,) — EX,)| <c¢.
Let 0 = r = #. For any 4 ¢ &, define the following simple stopping time
p=rt on A
=0 on A°.
Then
E(1,(X. — E(X,| 7)) = E(1,X.) — E(1,X,) = E(X,) — E(X,).
Since p > ¢ we have |E(1,(X, — E(X,|>")))| < ¢, and the first conclusion of the
lemma follows. Finally for ¢ > = > #, p we have
IEQX|57) — E(X,| )| = |IB(X. — E(X,|5)|.5,)
é “Xr - E(Xol“?-)” § €. D

pu—

THEOREM 2.1 (Riesz decomposition). Let (X,),., be an amart for (7).,
Then X, can be written uniquely as X, = Y, + Z, where (Y.)ies is @ martingale for
(F Dtess and (Z,),., is a potential for (F,),.,. Furthermore, (Z.).cr converges to
zero ih L, norm.

PRrooOF. By the lemma and the completeness of L,, we know that for every
peT, the net (E(X,|#,)).., converges in norm We denote by n-lim the
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limit in the ||<|| norm. For each p e T define
Y, = nlim_, E(X.|5,), zZ,=X,—-Y,.
We now establish that (Y,),.r is a martingale. Let ¢ < p; then
E(Y,|.5,) = E(n-lim,  ; E(X,|5,)|57)
= n-lim, ., E(E(X.|F,)| )
= n-lim_ , E(Xfl‘g-a) =7,.
Therefore (Y,),., is a martingale, and (Z,),., is an amart. For ¢ > r we have
EZ,|F,)=EX,—Y,|F.)=EX,|F,) —EY,|ZF,)=EX,|F,)—-Y,.
Hence
limaeT ”E(Zal‘g-f)” = 0 M
For all 7 ¢ T we have
1Zdl < 12 — E(Z,| ) + |E(Z, | ) -

Applying Lemma 2.1 yields lim . ||Z,]| = 0. In order to establish uniqueness,
assume that we have another decomposition X, = ¥, + Z, with the required
properties. Then for all 4 e &, we have

E(1,Y) = lim, ; E(1,Y,) = lim,, E(1,X,) = lim,., E(1,Y,) = E(1,7,).
Hence Y, = ¥, for all reJ. []

The Riesz decomposition extends some known martingale convergence pro-
perties to amarts. We recover a result of Edgar and Sucheston [6]: if (X,),., is
an amart and sup,.; E|X,| < oo, then (X,),., converges in probability. We also

obtain that if (X,),., is a uniformly integrable amart, then (X,),., converges in
L, norm.

CoROLLARY 2.1. Let (X,),., be an amart for (F,),.,. Then exactly one of the
following conditions holds.

(i) lim, , E(X.*) = lim,,, E|X,| = oo;
(i) (X,*)ies and (|X,|).., are amarts for (5,),.,-
Proof. By Theorem 2.1, X, = Y, + Z, where (Y,),., is a martingale and
(Z.):, is a potential. Furthermore
_|Zr| é _Zr_ = Xr+_Yr+ é Zr+ = |Zf| >
and (E(X.*) — E(Y.*))..r converges to 0. Since (Y,),.,is a martingale, it follows
that (E(Y.*)).., is an increasing net and, hence, converges to either co or a finite
limit. The limit of (E(X.*))..r determines the limits of (E(X,")),.r and (E|X,|)
according to the identities X* = X + X~ and |X| = X+ + X-. []
Similarly, if (X,),., and (Y,),., are amarts for (% ,),.,, then the limits of
(E(X, V Y)..r and (E(X, A Y)))..r can be obtained from:
X, vY =X + (Y, — X)*
X, AY, =X, —(X.— Y,)*.

teT
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In particular, the class of L! bounded amarts is a lattice. For the case J — N
this is due to Austin, Edgar, and Tonescu Tulcea [1] implicitly, and Edgar and
Sucheston [6] explicitly.

We conclude this section by extending the Riesz decomposition to the case
of vector-valued amarts. Let & be a Banach space. The adapted net (X,),., of
strongly measurable random variables X,: Q — & is an %-valued amart for
(F )iy Iff X, is Pettis integrable for all 7 e J, and the net (E(X.)).cr converges
in the norm of &. An #-valued potential is an &-valued amart such that
(E(1,X}));., converges to zero in the norm of & for all 4 e U:.,* .. For more
complete definitions see [6].

THEOREM 2.2 (Riesz decomposition for vector-valued amarts). Let & have the
Radon-Nikodym property and let (X,),., be an &-valued amart for (&), such
that lim inf, . ; E|X,| < co. Then X, can be written uniquelyas X, = Y, + Z, where
(Yi)es is a martingale for (57,),., and (Z,),., is an &-valued potential for (F )iy
Furthermore, (Z.). ., converges to zero in Pettis norm.

PrOOF. The proof is the same as the real-valued case. To complete the proof
we show that for each p € T the Cauchy net (E(X, | »)):er does converge in
norm. lim, ., E(1,X,) = p(A) exists uniformly in 4 € .5 ,; hence y is a count-
ably additive measure on .%,. (This argument appears in [4].) In order to
establish that x has finite variation let 4,, 4,, ---, 4, ¢ &, be disjoint and let
M = liminf, , E|X,|. For any ¢ > 0 choose t € J such that

IE(IA‘Xt)—p(Ai)| < ¢/n for i=1,2,...,n,
and
EX|<M+e.
Then
2ia [ (A) = Tin [m(A) — E(lAin)I + 2 [E(1,, X))
Set+ EX| =M+ 2.

Therefore variation 4 < M. (Thisargument appearsin [8].) Then (E(X, | eer
converges to the Radon-Nikodym derivative of y in ||-|| norm.

3. Essential convergence and the Vitali condition. For the remainder of this
paper we consider only real-valued amarts. We recall that the essential supre-
mum and essential infimum of a family of random variables (X,),., are the unique
random variables ess sup,., X, and ess inf,., X, such that for all random vari-
ables X we have:

(i) X, < XforallteJ <= esssup, ; X, < X,
(i) X, = X forall teJ = essinf, ., X, > X.

The family of random variables (X,),., is said to essentially converge iff

esslim sup,.; X, = esslim inf, ; X, ,
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where
ess lim sup,,, X, = ess inf,, (ess sup,;, X,)

ess lim inf,. , X, = esssup,., (ess inf,;, X,) .
Analogous definitions exist for families of measurable sets (A4,),. -
The following proposition, due to Austin, Edgar, and Ionescu Tulcea [1] in

the case J = N, shows that amarts are a considerable generalization of martin-
gales.

PRrOPOSITION 3.1. Let (X,),., be a family of random variables adapted to (F Dies
If (X,),c, essentially converges and E(ess sup, ., |X,|) < oo, then (X,),., is an amart
for (F ees-

PROOF. (X,)..r also essentially converges, say to X, and esssup..r |X.| =
ess sup,., |X,|. By the dominated convergence theorem (which also holds for
directed index sets), we have (E(X.,))..r converges to E(X), a finite number. []

Our next result depends upon the structure of the g-algebras (F )ies The
family (.5),., satisfies the Vitali condition if the following holds. (See [11],
page 99.)

Vitali condition. For every Ae 7, for every family of 4,¢ F, (teJ) such
that 4 C ess lim sup, ., 4,, and for every ¢ > 0, there exist finitely many indices
tyyty -+, t,eJand sets Bie #, (i=1,2, -+, n) such that

Bi;Ati fOr i=1,2,"-,fl,
B.nB,=@ for i+]j,
and
P(AU- B) = ¢
We remark that if J is totally ordered, then the Vitali condition holds. (See[11],
page 100.)
THEOREM 3.1. The family (F,),., satisfies the Vitali condition if and only if

every potential essentially converges (to zero).

Proor. If. Let Ac & and 4,¢ & (teJ)besuch that 4 C esslimsup,.,; 4,.
Define
< = {{(t;» B))}ic1,....n|n nonnegative;
r,eJ, B.e F,, B, < A, for i=1,2,..--,nm
B,n B,= ¢ for i=+j}.
For Ge & we will write |J G for U g.; B. Now we define recursively the
sequences G, € ¥ and r, real as follows:
G, =9 and Fy = SUPge 4020, P(U (G\Gy)) 5
G, isanyelement of ¥ suchthat G,2G,, and
P(U (Gi\Gi-y)) = 370 and e = SUPge 4 g2¢, P(U (G\G))) -
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Therefore for G 2 G, we have

N 2 P(U (G\Gi)) = A(U (G\G)) + P(U (G,\Gy))

= P(U (G\GY) + 35y
hence

371 Z SUPge 4626, P(U (G\Gy)) = 7, -
Thus r, < (3)'r, < (3)*-
Let G = Ui, G, and denote \J,, 5.5 B by U G. Define C,e ., and the
adapted net of random variables (Z,),, , by

Ct = At\U(u,B)ea;uSt B ’
Z,=1,.

t

We show that (Z,),,, is a potential. Let k be any positive integer. Choose 7 ¢ J
such that 7 > rforall (1, B)e G,. LetceT,r = i. rtakes finitely many values,
say t, t,, -+, t,. Define

G =g, U{@ {r = L} N Czi)}i=1,2,...,,,
It is easy to check that G, £ Ge ¥ and Z, = 1y, Hence

ne

EiZ|=PU(G\G) =rn < (@)t

Therefore (Z,),., is a potential and, by hypothesis, (Z,),., essentially converges
(to zero because lim,,, E|Z,| = 0). Hence

@ = esslimsup,, C, 2 esslim sup,,, (4,\U G)
= (esslimsup,., A)\UG2A4\UG.

Therefore 4 £ |J G, and for every ¢ > 0 we can find a finite subclass of G which
satisfies the requirements of the Vitali condition.

Only if. Let(Z,),., be a potential. By Theorem 2.1 we have lim, ., E|Z,| = 0.
Let @ > 0 and 4 = esslimsup,.,{|Z,| > a}e .~. Given ¢ > 0, choose ftel
such that
t2f=E|Z|<ec¢.

Define 4, e &, by
A, ={|Z,| > a} for t =7
=9 elsewhere.
Clearly 4 C ess 11m sup;., 4,. By the Vitali condition there exist finitely many
indices ¢, t,, ..., 1, € J and sets B, ¢ ﬁ'l (i=1,2, .-, n) such that
B, C 4, for i=1,2,...,n,
B.nB, =@ for i+j,

and
PA\U, B) S e
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Choose ¢,,, € J such that ¢,,, > ¢, foralli = 1,2,...,n. Define reT by
T=1 on B, for i=1,2,-.--,n,
=t elsewhere.

7 = f and hence
e 2 E|Z| 2 N1 Ellp Z,) 2 aP(Ulz B) Z a(P(4) — ).

Taking ¢ arbitrarily small yields 4 = @ for all @ > 0. Therefore (Z,),, essen-
tially converges to zero. []

We now state our results in terms of amarts. A family of random variables
(X)), is said to be L, bounded iff sup,.; E|X,| < oo.

THEOREM 3.2. The family (- ),., satisfies the Vitali condition if and only if
every L, bounded amart essentially converges.

PrOOF. Only If. By Theorem 2.1, an L, bounded amart (X,),., decomposes
into a potential (Z,),.,, which essentially converges by Theorem 3.1, and a
martingale (Y,),.,. Now

sup,.; E|Y,| = lim,,; E|Y,| = lim,_; E|X, — Z,| = lim,, E|X,| < sup,., E|X,| .
Therefore .(Yt),s ; is L, bounded and essentially converges by the martingale
convergence theorem, due to Krickeberg [10]. (See, e.g., [11], page 99.)

If. Theorem 3.1. ]

L, bounded supermartingales which do not essentially converge are known
to exist, even when the Vitali condition holds. Therefore Theorem 3.2 implies
that supermartingales exist which are not amarts. We give a simple example of
such a supermartingale. We also give an example of a supermartingale which
converges to zero in L, norm and essentially, but is not an amart, even though
the Vitali condition holds.

ExampLE 3.1. Let (R, &, P) be the unit interval (0, 1] with Lebesgue meas-
ure. Let s(i)=1+42+ -.- + i. Define the directed set J by

J = {(l,])ll,je N, 1 é]é 2:(1‘)}
with the ordering
(7)) > (mon) i i>m.
For each (i, j) € J define &, ;, to be the sub-g-algebra of .~ generated by the

intervals
<k—1 k:|, lékézn(i)~

28() > 2:(1")

The family of g-algebras (. ; ;). ;s Satisfies the Vitali condition because each
pair of such o-algebras is comparable, even though their indices may not be
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comparable. Define the adapted family of random variables (X, i )i fes DY

1 .
X(i,j) =1 on (jzm') ’ zaj(i):l

= i elsewhere.
21

In order to establish that (X, ;) ., isa supermartingale let (i, j) > (m, n) and

let A be an atom of .~
4= <’< -1 _E_J
2a(u) 2‘(""

(m,n):
1 1

21 2oom
1 11

23(m)+m+1 2M+1 2‘("‘)

L 1 gu,x

=ﬁ§“7’ = m.n))'

Then
1
E(1,X,,,) < 20 +

=

Hence (X; ;)),j ., is @ supermartingale. It is L, bounded; in fact, it is bounded
by 1 and converges to 0 in L, norm. It is not an amart because for each @i jed
there exists r > (i, j) with X_ = 1, namely ¢ defined by
, k—1 k ”
t=(+ 1,k) on <-2‘“—“”W:l’ 1 < k g 20040

Proposition 3.1 or a direct argument easily establishes that (Xii,5) s, 5y es does not
essentially converge.

EXAMPLE 3.2. Let (2, &, P) be the unit interval (0,1] with Lebesgue measure.
Let s(i) =1 +2 + ... 4 i, Define the directed set J by

J={())]i,jeN,1 )< 2uch-1)
with the ordering
(Lj)>(mym)y it i>m.
Define recursively the family (F 4.7, pes Of sub-c-algebras of & by:
Fany = F q, Is generated by the intervals 0,4, (3]

o

F w,j Is generated by .7, = and the intervals
<k—l kJ, 1k < 2o

2@ Dma)
The family of s-algebras (5, ;). ;. , satisfies the Vitali condition because each
pair of such g-algebras is comparable, even though their indices may not be
comparable. Furthermore all of the o-algebras 7, ., for (i, j) = (m, n) are
identical on the interval ((1/2), 1] and consequently every supermartingale is
eventually a decreasing net of random variables on ((1/2™), 1]. Hence every
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supermartingale essentially converges. Define the adapted family of random
variables (X ;)i ;s by

Xipy=2 on (jz;s_(i)l ’ zz{u‘J

= .1_ elsewhere.
21,

In order to establish that (X ; ;). ;. is a supermartingale let (i, j) > (m, n). On
the interval ((1/2™), 1] we have

1 1
X(i,j) = .27. < 27 = X(m,n) .

On the interval (0, (1/2™)] consider an atom of >, .

A= (’f_:_l , L] :
223(m) 223(m)

Then
| 1 1
E(IAX(i,j)) § 2 W ?W
1 1 1
= Qsir+s(i=1) + i p(m
1 1 1
= 2s(mt+l+s(m) 2m+1 Dasim)
1 1
= 2m Yam < E(l, X m) -

Hence (X; ;). ;. is @ supermartingale. It is L, bounded; in fact, it converges
to 0 in L, norm. However, it is not an amart because for each (i, j) € / we can
define e T, r = (i, j) by

t=(+1,k) on <k___._l_ _LJ , 1 < k < 2murn-a+

22si+n D+
. 1
—(@+1,1) on <§TI1J

Then X, = 2** on (0, 1/2*'] and hence E(X.) = 1.

4. The descending case. In this section we assume that (")), is a decreas-
ing family of sub-g-algebras of > i.e., if t < u then >, 2 5 ,. A poten-
tial is an amart such that lim,_, E(1,X,) = 0 for all Ae > = N,.,*, Al
other definitions remain the same.

For the case / = N, Edgar and Sucheston [6] have shown that if (X)), is
an amart then (X.).., is pointwise convergent, and uniformly integrable; hence
(X.):er is L, convergent. We extend the L, norm convergence to amarts with
arbitrary directed index sets by using a standard argument.

ProrosiTion 4.1. If (X,),., is an amart then (X.). . converges in L, norm.
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PrROOF. Let (X,);., be an amart and assume that (X).., does not converge
in L, norm. Then (E(X,)),., converges, say to M, and (X.). ., is not L, Cauchy.
We can choose 7, < 7, < 7, < - - - such that

r >0 |B(X) — M| < L
1

and
(X:)iex ismot L, Cauchy.

Then (X_ ). is an amart for (), but (X, ),.y is not L, convergent. This
contradicts the known results for J = N. [J

The L, limit of an amart is .5 _-measurable and the L, limit of a potential is
zero. Clearly, every amart can be written as the sum of its L, limit and a poten-
tial. Therefore in the following theorem it suffices to prove that (i) and (ii) are
equivalent.

THEOREM 4.1. The following are equivalent.

(1) The family (%,),., satisfies the Vitali condition.
(i1) Every potential essentially converges (to zero).
(iii) Every amart essentially converges.

Proof. (ii) = (i). Let 4, .5 (teJ). Forre T define 4. = .., (4, "N {r =

1})e # .. Letd = limsup ., P(4.). Choose 7, < 7, < 73 < --- such that

sup.,. P(4,) <6 + _11 and P(A4.) =6 — zl .

For z,7"eT, ¢ = ¢’ there exists pe T, p = 7/, namely

o=t on A.e.F.
=1 on A‘eF,C F.,

such that
A, =AU (A N A.)=A4.U A, .

Applying this repeatedly, for any m, ne N, m < n, one obtains that there exists
peT, p =, such that 4, = Jr_, 4 By the definition of r,, we have
P(Um 4.) =0 + 1/m.

For each me N, define C,, = Ui, 4.,. Then (C,),.x is a decreasing se-
quence of sets and d < P(C,) < 0 + 1/m for all me N. Define C = Nncx Cn-
P(C) = d. Denote set symmetric difference by A. Then

g

PCAA4, )< HCAC,) + P(C,AA,)

T m m m
Let teJ. For any me N, choose g,,0,, --- €T satisfying the same conditions

as 7, 7, --- aswellasg, =7, (i= 1,2, --., m)and g,,,, = t. Defining D e &
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analogously to C, we have D e %, and
P(CAD) < P(CAA, )+ P4, AD)

m m m

Since m is arbitrary, it follows that Ce #,. Therefore Ce & .
Define the adapted family of random variables (Z,),., by Z, = 1 4gnces Then
Z. =1, ¢ and E|Z| = P(4, n C°). Forr = r, we have

P(A4, 0 C) 4+ 6 — L < P(4.n C) + P4, )
m m

< P(A4.0 C) + P(4, 0 C)+ >
™ m
S PA U4 )+
™ m

= P(4,) + 3 , some p =7,
m

Therefore (Z,),., is a potential and, assuming (ii), (Z,),., essentially con-
verges (to zero because lim, ; E|Z,| = 0). Hence, (esslimsup,, , 4,) N C° =
ess lim sup,., (4, N C°) = @, and esslimsup,., 4, € C. Given ¢ > 0 choose
Az‘,,, such that P(C\A,m) < ¢ and define t;,eJ (i=1,2, ..., n) to be the range
of r,, and B,e &, (i=1,2,.--,n)by B, = 4, n {r, = t;}.

(i) = (ii). The proof is the same as that of Theorem 3.1 (only if) with the
modification: define ¢,,, = 7. []

We now give an example of a descending amart which fails to essentially
converge.

ExampLE 4.1. Let (I, 2%, m) be the interval [0, 1) with Lebesgue measure.
Define the directed set J by
J={( )i jeN,i23,2<)<2)

with the ordering (i, j) > (m, n) iff i > m. Let G, ; = [0, 1/2%) u [(j — 1)/2,
J/29). Let .7 and &, ; be the sub-g-algebras of .~ generated respectively by
ITand G Define

4,4

(4,5)°
(Q,ﬁ-,P) = H:=3(I’g’m)

ﬁ'(i’j) = (H},’_:ls f) X g(i,j) X (H:=i+l g)

Ay = (ITa=s 1) % G(i,i) X (H:=i+11)
X, =1

@9 Ai,4) °

For fixed i and for sets (possibly empty) B; ;,, € & . ; (j =2, 3, - -+, 2%) with

(4,5
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B c A

w5 = B, N B, = @ (j # k) we can write

B(i,i) = (Hit;l3 1) X G(i,j) X (C(i,j)) ’ C(i,j) € H:=i+1 g

where the C; ;, are pairwise disjoint because the G ;, are pairwise overlapping.
Hence ¥%,P(C, ;)< 1 and Y%, P(B; ;) < m(G, ;) = 1/2--'. Therefore if
reT, r = (n,2), then

(,5) H, )

. 1 1
E|Xr| = Z(i,j)eJP(A(i,j) n {T = (l’.])}) é ?:nZTI — —2‘7"__2 9

and (X,),., is a potential. (X,),., does not essentially converge because
ess lim inf, , X, = 0 and esslimsup,., X, = 1,.
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