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PROPERTIES OF THE EMPIRICAL DISTRIBUTION FUNCTION
FOR INDEPENDENT NONIDENTICALLY DISTRIBUTED
RANDOM VARIABLES!

By MARTIEN C. A. VAN ZUULEN
University of Nijmegen
Some fundamental properties of the empirical distribution function
are derived in the case of independent but not necessarily identically dis-

tributed random variables. The distribution functions of these random
variables need not be continuous.

0. Introduction. Let k be a fixed positive integer and foreach N = 1, 2,
let X,y = (Xinw> Xonys **+> Xiny)» = 1,2, - -+, N, be N mutually independent
k-dimensional random vectors with joint distribution functions (df’s)

(0.1) Foy(xy, X5 - -+, %) = P(Xpy < X5 Xpuy < Xy, -+ s Xiwy = %) 5

forall —co < x, <0, i=1,2,---,k,
and marginal df’s F,y, Fo.y, « - s Fiay» 1€,
(0.2)  Fipu(x) = P(Xipy < X), forall —c0c < x< o0, i=1,2,.---,k.

All random vectors are supposed to be defined on a single probability space
(Q, =7, P). For each N, moreover, let us define the joint empirical df F of
X,ys Xons +++» Xyy by taking NFy(x,, X,, - - -, X;) to be the number of elements
in the set {X, 5! Xipw < X1 Xopy < Xy +++, Xpy < o1 = 1,2, -+, N}, for all
—o < Xx; < 00,i=1,2,...,k,and theaveraged df’s Fyand F,,,i = 1,2, . - -, k,
as

(0.3) Fry(xy, Xy vy X)) = N2 TN Fop(xy, Xay -0+, X3) 5
for _°°<xi<o°’ i=1929"’9k’

0.4 Fop(x) = NP Y Fn(), for —oc0o < x< 0.
2

We remark that F, has all the properties of a k-variate df and that its marginal
df’s are the F,,,, i = 1,2, .-, k.

The classical theory on empirical df’s deals with the case where the N random
vectors X,y, Xy, - - -, Xyy are independent and identically distributed (i.i.d.).
Our main purpose in this paper is to derive some fundamental properties of the
empirical df in the non-i.i.d. case, where the N sample elements are assumed
to be independent, but not necessarily identically distributed. In particular, we
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ON EMPIRICAL DISTRIBUTION FUNCTIONS 251

shall generalize results obtained by Govindarajulu, Le Cam and Raghavachari
(1967), Ruymgaart, Shorack and van Zwet (1972), van Zuijlen (1976a), and
van Zwet (van Zwet’s theorem is published in Ruymgaart (1974)). It is rather
striking that most of the theorems considered in the i.i.d. case remain valid in
the non-i.i.d. case without any additional condition. Apart from the fact that
the authors mentioned above derived these theorems in the i.i.d. case, they also
assumed—with the exception of van Zwet—the underlying distribution func-
tions to be continuous. It is our second aim in this paper to give a rigorous
demonstration of the fact that, even in the non-i.i.d. case, most of the theorems
considered also hold without this assumption.

Sections 1 and 2 deal with univariate and multivariate empirical df’s in the
case of continuous underlying df’s. In Section 3 it will be shown that the con-
tinuity assumption is superfluous in almost all theorems derived.

The theorems are useful for proving asymptotic normality of rank statistics
in a situation where the multivariate sample elements are allowed to have dif-
ferent df’s and where the scores generating functions are allowed to tend to
infinity near the boundary of the unit interval and to have a finite number of
discontinuities of the first kind. The theorems may also be of interest in their
own right.

The basic tools for our study are two related results of Hoeffding (1956), who
showed that in a certain sense the non-i.i.d. case in not less favorable than
the i.i.d. case, and a theorem of Billingsley (1968), page 94, on fluctuations of
partial sums of random variables. We shall present these theorems without

Pr;?lt;)ose that Z,, 1 < n < N, are independent random variables (rv’s) with
(0.5) KZ,=1)=1-PZ,=0)=p,,
and suppose that
(0.6) 0<p=N"Eiap<1.
THEOREM 0.1 (Hoeffding). If
(0.7) flk +2) — 2ftk + 1) + flk) > 0, k=0,1,...,N;2,
then
(0-8) E((X1Z,) £ T fl)@PA — p'*,
where equality holds if and only if py = p, = --- = py = p.

THEOREM 0.2 (Hoeffding). Let b and c be two integers such that
0Zb<Np£c<ZN.
Then
Tin (P (1 —p) S P < TinZ, o)< 1.
Both bounds are attained. The lower bound is attained only if py = p, = --- =
Py = punlessb = 0andc = N.
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Let &, - .., &, be random variables which need not be independent or iden-
tically distributed. Let S, =&, + ... + &, (S, = 0), and put

(0.9) M, = max,,, ||

THEOREM 0.3 (Billingsley). Suppose that there exist y = 0, « > 1, and non-
negative numbers u,, u,, - - -, u, such that

(0.10) E(S; — SJ) € (Dicep#)*, for 0<i<j<m.

Then, there exists a positive number K = K(7, ), only depending on y and a such
that for all 2 > 0,

(0.11) P(M,, 2 2) < % (Zrm)”

1. Properties of the univariate empirical df in the case of continuous under-
lying distribution functions. In this section we shall deal with the case that
k =1, so that for N =1, 2, ..., the univariate empirical df I is based on the
N random variables X,,, X,y, - -+, Xy, with df’s F,, F,y, - - -, Fy, respectively.
Moreover, for the time being we shall assume the underlying df’s to be con-
tinuous. Before stating the theorems we first have to introduce some further
notation.

We recall that the averaged univariate df N-* 3;¥_ F, . is denoted by F,. For
the set Xy, Xy, - - -, Xy, let us denote the order statistics by

(1'1) XI:N é Xz:.v é Tt é X.’V:N .

Let F be a df on (—oo, oo), which is always taken to be right continuous.
Define an inverse of this function by

(1.2) F~Yu) = inf{y: F(y) = 4}, for O<ugl,

whereas F~'(0) is defined to be minus infinity. Here by way of exception a
function is introduced which may assume an infinite value. According to (1.2),
F-(u) is nondecreasing, left continuous and satisfies F(F~%(u)) = u, for all 0 <
u < 1, with equality if and only if F is continuous. Furthermore it has the

property that F~}(F(y)) < y, for all y € (— oo, o), with equality if and only if
F is strictly increasing.

We are now in a position to formulate the first theorem, which is immediate
from the results obtained in van Zuijlen (1976a).

THEOREM 1.1. For every B¢ (0, 1), every array of continuous underlying df’s
Fiyy Fopy -+ Fyyu N=1,2, ... and for every N= 1,2, ..., we have

(1.3)  P(Fy(x) £ B'Fy(x), for xe(—oo, 0)) = 1 — 3x38(1 — f)*,
(1.4)  P(Fy(x) 2 BFy(x), for xe[Xyy, 00)) 2 1 — %Y1 — B)~*,

(1.5) P(Fy(x) 2 1 — p¥(1 — Fy(x)), for xe(—co, o))
21— g1 — By,
(1.6) P(Fy(x) S 1 — f(1 — Fy(x)), for xe(—co, Xy.y)

21— 4epH1 — p)*.
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ProoF. Immediate from the proof of the theorem in van Zuijlen (1976 a) and
the equality 7., j=* = =’/6.

REMARK 1.1. Forn = 1,2, ..., Nwe introduce the rv’s X,y = F(X,,). We
denote by F,, the df of X, ,, and by F, the empirical df based on X,, X,y, - - -,
X,y. Following Shorack (1973) we call I[:‘N the reduced empirical df of X,,,
Xyys +++y Xyy. Since the F,,, F,y, ---, Fy, are assumed to be continuous and
. are clearly constant on any interval where F, is constant, we have that the

F.y, F,y, .-, F, are continuous on [0, 1] and in view of the remark below
(1.2) that

(1.7) F,,N(t) = F,,N(F‘N'l(t)) for te[0,1], n=1,2,..-,N,
and

(1.8)  Fy() = N DY, F\(f) = NV T, FolFy () = 1,
for 0t 1.

Next, let us prove four lemmas, which may be of independent interest and
are used to derive generalizations to the non-i.i.d. case of results obtained in
Govindarajulu, Le Cam and Raghavachari (1967), and Ruymgaart, Shorack
and van Zwet (1972).

The first lemma supplies upper bounds for the central moments of }¥_, Z,,
where Z,, 1 < n < N, are independent Bernoulli (p,) rv’s defined in (0.5). We
recall that p = N' 3% p,.

LemMA 1.1. Foreverya>1}, there exists M, € (0, o), such that for N=1,2, .. .,

E|XY., Z, — Np|™ < M,Np, for 0<p<N,
(1.9) < M{Np(1 — p)}*, for N'<p<1— N1,
< M,N(1 — p), for 1—N'<p<l.

PRrOOF. Since the assertion is trivial for p = 0or p = 1and « > }, Theorem
0.1 ensures that it is sufficient to prove Lemma 1.1 in the case where p, =
pp= -+ =py=pe(0,1). First let us prove (1.9) for N'<p<1— N
Let F,;(y) be the distribution function of |}3_, Z, — Np|(Np(1 — p))~t. Then
using an inequality due to S. N. Bernstein (see, e.g., Bahadur (1966), page 578),
we have for y > 0 that

1 — Fyy(y) = P(1 23 Z. — Np| > y(Np(1 — p))H)

2
<2 exp< —) — ) .
2 + 2y/3(Np(1 — p))*
Moreover, fory = land N ' <p<1—- N, N=2,3, ..., we have

(Np(1 — p))™t < (NJ(N — 1))t < 2%,
so that then

1 — Fys(y) = 2exp<L4_)):i) = 2exp<—%).
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Hence, for N' < p<1 — N, N=2,3, ...,
Z'n_N- 2 © 1.2a © 1,%a—
E[ B2 =" = 5 ara(y) = 22 55 00 — Fiso)

=< 2a {;dy + 4a {7 y*texp <—%> dy,

so that (1.9) is proved for N' < p <1 — N-L

Let us next concentrate on the proof of (1.9) for 0 < p < N-'. For k =
0,1, ..., Nwehave P(3)_, Z, = k) < (Np)*/k! and k < e*, so that for a > 1
OKp<N,N=12,...,

E’Zﬁ;l ZzZ, — NPIM = Zﬁ:o |k - NP’MP(Zﬁﬂ zZ, = k)

e "
< Tt — N B2 < vp [ 14 3z, A

_ ezak _ ezak
=Np l:l + ke F:l = Np ZLOF

= Np exp(exp(2q)) .
Relation (1.9) for 1 — N=' < p < 1 follows from (1.9) for 0 < p < N by
symmetry. []

With Iﬁ‘N as given in Remark 1.1, we define the reduced empirical process
Xy by
(1.10) Xu(t) = N(Fy() — 1), for 0<t<1.
From this definition of X, and Lemma 1.1 we obtain:

LeMMaA 1.2. For every a > } there exists M, € (0, co) such that for every array
of continuous df’s F,, Fyy, -+, Fy o\, N=1,2, ..., everyN=1,2, ... and every
pair s, te [0, 1],

E|X (1) — Xy(s)*

(1.11) < M Nt — 5|, if 0|t—s <N,
= Mt — 551 — |t — s))~, if N'<|t—s<1—-N1?,
< M N1 — |t —4)), if 1-N'<S|t—s<1.

Proof. Let x(S) denote the indicator function of a set S and let x(S; 5) denote
the value of this function at the point 5. Without loss of generality take s < ¢.
Then,

E|X (1) — Xy(5)|™ = N-“E|[NR(t) — NF(s) — Nt + Ns|*
(1.12) = N7E| Zio 2((s, 115 Xay) — N(t — s
= NTCE| L Z, — Nt — s)*,
where Z,, 1 < n < N, are independent Bernoulli (p,) rv’s, with (see (1.7))
Prn= Fnzv(t) - F'nN(s) ’
and hence p = ¢t — 5. Relation (1.11) follows from (1.12) and Lemma 1.1. [J
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For 0 < 6 < } we define the function g, as
(1.13) q,(t) = {t(1 — 0}, for 01,

Lemma 1.3, which will be derived from Lemma 1.2, tells us what happens with
the upper bound in (1.11) if one replaces the process X, by the process X,/g,.
Throughout this paper § is defined to be zero.

LeMMA 1.3. For every a > 4 there exists M, € (0, co) such that for every array
of continuous df’s F,y, Fyy, -+, Fyy, N=1,2, ..., every N=1,2, ..., every
pair s,te [N™*, 1 — N-'] U {0} U {1} with |t — s| = N7, and every d € (0, }],
Xy(1) _ Xy(s)
(1) 9.(5)

Proor. Without loss of generality take 0 < s < ¢ < 4. The c,-inequality and
Lemma 1.2 yield for N < s <t <4, t — s =2 N7,

£ X)) _ Xy(s) Xy(1) — Xy(s) o (- 1)
q,(?) 9,(5) q,(1) 9s(5) q,(1)

R e Ol

g 220—1Ma{2a(t — s)2a3 _+_ Za(t — S)Zab}
—_ 23aMa(t _ S)zaa s

2a

(1.14) E

< Mt — s

2a

+E

2 é 22a—1 {E

because

1 1

sé< _ >§2*(t—s)", for 0<s<t<}.
a:(s)  4s(1)

For s =0, t — s = N~! implies t > N~! and although now X,(s) = 0 the proof

is still formally correct. []

LeEMMA 1.4. For every a > % there exist M* € (0, oo) and M, * € (0, oo) such
that for every array of continuous df’s F,y, F,y, «++, Fyy, N=2,3, ..., every
N=2,3,..., every6¢(0, 1] and every ¢ > 0,

X0 _ L) )

9:(t) qs(k[N) 1 —

(1.15) < M ¥(eN°)*=, for k=2,3,...,N—-2,
< M*(eN°)™, for k=1, N—-1,

P (supit—(k,ﬂ‘\’)is;\'-l

and

k
(1.16) P <SuP|t—<k/N>151v—1

X0 = Xy ()| 2 ) < MoV,

for k=1,2,...,N—1,

ProOF. We assume k 4 1 < }N; the proof for other values of k requires only
minor modifications.
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Suppose first that 2 < k < §N — 1. Then
Xy(1) _ Xy(kN7Y)
q,(1) gs(kN)
Xy(1) — Xy(kN7Y)
9(?)
1 1

1.1 (kN _

17 N (= ~ )
|Xy((k + 1)/N) — Xy((k — 1)/N)| + 4N"*

9:((k — 1)/N)

" i !
+ NN (s~ )

Since 4{Nig,((k — 1)/N)}-* < 2IN-?, the reasoning in the proof of Lemma 1.3
shows that for a > 4,

SUD;_kn-1gy-1

IA

SUP;_kv-15n-1

IA

Xy()  Xy(kN7Y)
q:(1) q5(kN7")
Application of Markov’s inequality proves (1.15) for 2 < k < 4N — 1; taking

0 = 4 we also obtain (1.16) for 2 < k < 4N — 1.
For k = 1 we note from Theorem 1.1 that for 0 < 8 < 4,

>2a S MaIN—zaJ .

(1.18) E(Supjt—kN'1|SN‘1

P<supts‘v_1w Z (5 - DV £ 25,

so that

P<suptsx-ll’l;.{'z(ti))_| Z 267 — DN) S 28

and this proves (1.15) for k = 1 and ¢ = 2!N~? and hence for all ¢ > 0.
Finally we note that for a > 4,

(1.19)  E(supigy- [Xu())* < E(IXo(N-] + 2N-4)= < M"N-*,
and the Markov inequality proves (1.16) for k = 1. [J

Combination of Lemma 1.4 with Theorem 0.3 leads to the following two
fundamental theorems:

THEOREM 1.2. For every a > } there exists M, > O such that for every array of
continuous Af’s Fy, Fpy, -+, Fyy, N=1,2, ..., every N= 1,2, ..., every 0 <
a< bx<1andeveryc >0,

P(sup, seta 0 [Xx(f) — Xy()| = )
(1.20) < M, c"“N-%(b — a), if b—a< N7,
< M, c(b — a)*, if b—a>N".

Proor. If b —a < N°', Lemma 1.2 and the c,-inequality imply that
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for a > 3},
E(SUP, sete. 1Xn(s) — (D)) S B(Xy(b) — Xy(@)| + 2N¥(b — a)y
< 22 (M N"%b — a) + 2%N*(b — a)*)
< ZM—I(Ma + 2’“)N1"“(b _ a) ,
and application of Markov’s inéquality proves the first part of the theorem. If
b —a> N7, let k and k + m be the smallest and largest integers in [aN, bN],

so that m < (b — a)N. Define S, = X,((k + i)/N) — Xy(k/N),i =0,1, ..., m.
Then S, = Q and from Lemma 1.2 we have

ES, — S < Ma<f;i>“, for 0<i

A
A

m.

J

It follows from Theorem 0.3 that for a > 1,

() (4) 2 ) £ ()

é Ma'c—za(b - a)a .

P (maxostsm

Combining this with the second part of Lemma 1.4 we find for a > 1,
P(Sup, ;epa,n1 [Xx(1) — Xy(5)| = ©)

< 2P <Supze[a,b] Xy(t) — Xy <£>‘ z 3 >

N/I=2

< 2 (T (m 1) 20 (£) 70— 0

< M ¥2etic=aN-%(h — gq)N + M,/2%+1c=2%(h — g)e
< (M *2%+2 - M2+ c-2(h — g)= .

Since a probability is bounded by 1, the result remains true for @ > § if we
take M, > 1. []

THEOREM 1.3. For every a > 0 and every d e (0, 4] there exist M > 0 and

M, ; > 0 such that for every array of continuous df’s F,y, F,y, +++, Fyy, N =
1,2, ..., every N=1,2, ... and every ¢ > 0,
(1.21) P<supte[m XI\’((t’;)‘ > c) < M, ;¢ + Mc N~

95

Proof. Define S; = X,(iN-*)/q,(iN"?), fori=1,2,...,N, S, = 0. Lemma
1.3 ensures that for a > 4,

N.

IA
A

J

Bs; — s < i, (L2, gor 05

Theorem 0.3 implies, for a > (26)7,

Xy(kN-Y)

= c) <M, e,
9s(kN7")

P (maxoskSN
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Application of Lemma 1.4 yields

XN((’))‘ > c> < 2M, e 4 2ENM*(cN)~* 4 4M*(cN*)1
qs(?

which, proves the theorem for a > (20)* and hence for every a > 0. ]

P <5“Pte[o,u

The following corollary is immediate from Theorem 1.3:

CoROLLARY 1.1. For everye > O andevery o € (0, }], there exists M = M(e, 9),
such that for every array of continuous df’s Fyy, Fyy, -+, Fyy, N=1,2, ..., and
everyN=1,2, ...,

(1.22) P(sup_wqw MFy(x) — Fy(x)| 5 M) <.
95(F 5(x))
Proof. Since F, is assumed to be continuous, we have
NHF (1) — 1 NAEy(Fu(x) — Fu(x)|

(1.23) SUPog 51 = SUP_wcscon

q95(1) 95(F (%))

Moreover, F, o F, = F,, with probability 1, so that (1.22) follows from (1.21)
and (1.23). [J

Corollary 1.1 is basic in the asymptotic theory of rank statistics in the case
where the sample elements are allowed to have different df’s. In particular this
corollary can be used to counterbalance the growth of the scores generating
functions near the boundary of the unit interval. In the i.i.d. case Corollary
1.1 is proved for the first time in Govindarajulu, Le Cam and Raghavachari
(1967). Pyke and Shorack (1968) gave a simpler proof with the aid of the Poisson
process and the Birnbaum-Marshall inequality. The result in the non-i.i.d. case
for continuous underlying df’s is already given in Sen (1970). However, it is
clear from Shorack (1973) that the proof given by Sen is incorrect. The proof
given here is different from the methods used by the authors mentioned above.

In order to formulate a corollary of Theorem 1.2 let us introduce for every
positive integer m the function 7, on [0, 1] defined by 7,(1) = 1 and

(1.24) Lw='=1fo I=1
m

§u<—i" i=12,...,m.
m

CoROLLARY 1.2. For every ¢ > 0 and every ¢ > 0, there exist N, = Ny, c)
and m, = mye, c), such that for every array of continuous df’s F,y, Fpp, -+ -, Fyy,
N=12, ..., every N= N, and every m = m,,

(1.25) P(supygicq | Xy(In(t)) — Xy(t)] 2 ¢) S ¢
ProOF. Note that Theorem 1.2 implies that for every « > 4,
P(supogicr [XlTn(1)) — Xn(1)] 2 €)
= P(max,_,, ....m SUPG-1y/mse<i/m [ Xn(Ia(t)) — Xy(1)] Z €)
P (= R Y UED)
m

=< M, c *{min (m, N)}*~=. 0

= X P <Sup(k—1)/mst<k/m

|
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Corollary 1.2 is a generalization to the non-i.i.d. case of a theorem due to
Ruymgaart, Shorack and van Zwet (1972). This result is especially useful in
the asymptotic theory of rank statistics when one wants to replace certain inte-
grals with respect to the measure induced by the empirical df by the correspond-
ing integrals with respect to the measure induced by the averaged df.

A second consequence of Theorem 1.2 is Corollary 1.3. Itis a stronger state-
ment than Theorem 2.1 for k = 1.

CoOROLLARY 1.3. For every ¢ > O there exists M = M(c), such that for every
array of continuous df’s Fyy, Fppy -+, Fyyy N=1,2, ..., every N=1,2, ...,
every0<a<b<l,

(1.26) P(SUP, cee 1Xa(t) — Xu(9)] = M(b — a)t) < ¢
ProoF. Apply Theorem 1.2 with @ = 1 and ¢ = M(b — a)t. ]

The last theorem in this section is also of much help in the asymptotic theory
of rank statistics in the non-i.i.d. case. For instance, it is useful when one
wants to replace Theorem 1.1 and Corollary 1.1, which supply bounds for the
empirical df [, by similiar statements where bounds are given for the modified
empirical df [F,*, defined as F,* = (N/(N + 1))F,.

THEOREM 1.4. For Ne{l, 2, ...}, continuous df’s Fy, Fyy, ---, Fyy and a €
(0, N), we have

(1.27) P(F(Xyy) <1 —a/N)< (1 —a/N) < e,
(1.28) P(Fy(X,x) Z a/N) < (1 — a/N)" < e

For a restricted to the interval (0, 1), we have, even if the sample elements are not
independent,

(1.29) PFy(Xyy)<l—a/N)=z1—a,
(1.30) PFyX,y)= a/N)=1—a.
Proof. Note that
(1.31) P(Fy(Xy.y) £ 1 — a/N)= P(Xy.y £ Fy"(1 — a/N))
= [V Fun(Fy~'(1 — a/N)).
Hence, from the concavity of log y and Jensen’s inequality we obtain
1 -
—]\7 hI 1°g Fn.\’(F:v_l(l - a/N))
(1.32) _ _]lvlog T Fux(Fy(1 — a/N))

- _]1\7 log P(Fy(Xy,x) < 1 — a/N) < log (1 — a/N),

which proves (1.27). Relation (1.28) follows from application of (1.27) in the
case of random variables X, = —X,y, n=1,2, ..., N. In order to prove
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(1.29) we remark that Bonferroni’s inequality implies that
P(F;\'(Xy:‘v) <1—a/N)= P(n;:;l Xy = F‘v_l(l — a/N)])
I — P(U [Xay > Fy7i(1 = a/N)))
1 — ZiL P(X.y > Fyi(1 — a/N))
1 — 2. (1 — P(X,y < Fy (1 — a/N)))
I — Zia(l = Fu(Fy7X(1 — a/N)))
1 — N 4 NF(Fy (1 — a/N))
=l—-N+N—-—a=1—a.

v

Finally, (1.30) can be proved again from (1.29) with the aid of the rv’s X;,. []

REMARK 1.2. The bounds derived in Theorem 1.4 are sharp in the sense
that one can construct examples where these bounds are attained. If F,y =
Fyy= -+ =Fyy = FythenP(Fy(Xy.y) < 1 — a/N) = (1 — a/N)". Moreover,
if F,y is chosen such that 1 — F,y(Fy"(1 — @/N)) = a@ and F,y, Fyy, -+, Fyy
such that 1 — F,(Fy(1 — a/N))=0forn=2,3, ..., N, then

PFy(Xyy)<1—a/N)y=1—a.

REMARK 1.3. The continuity of the underlying df’s is essential for the rela-
tions (1.28) and (1.29), as the following counterexample shows. Take N = 2,
a = } and for a < b,

F(x)=0 for x<a Fy(x)=0 for x<b
= 1 elsewhere, =1 elsewhere.

We conclude this section by remarking that Mehra and Rao (1975) also used
Billingsley’s Theorem 0.3 fruitfully in their study of the one-dimensional em-
pirical process, divided by certain ¢-functions, in the situation where the sample
elements do have a common df, but where they are not necessarily independent.

2. A property of the multivariate empirical distribution function in the case
of continuous underlying distribution functions. In this section k is an arbitrary
positive integer, so that for N= 1,2, . .-, the multivariate df F, is based on
the N random vectors X,y = (Xinys Xouns ** *» Xiwn)s 7= 1,2, -+, N, with df’s
Fiy, Fyy, « -+, Fyy respectively. Assuming for the moment again continuity of
these underlying df’s, we shall present a generalization of a slightly weaker
version of a theorem due to van Zwet (Lemma 4.4 in Ruymgaart (1974)). See
also Bahadur (1966). In fact van Zwet proved that, in thei.i.d. case, Theorem
2.1 below holds, without the factor (log (N + 1))* in (2.1). We conjecture that
one can dispense with this factor in the non-i.i.d. case too. This conjecture is
clearly true for k = 1, where the theorem follows from Corollary 1.3. However,
the present Theorem 2.1 is strong enough to handle problems connected with
discontinuities in the scores generating functions of rank statistics (see, e.g.,
Ruymgaart (1974), van Zuijlen (1976b)).
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By an abuse of notation we write Fy and F, for the measure induced by the
df’s, thus Fy{B} = {,dFy, F,{B} = {,dF, for a Borel set Bin R*. An interval
in R* is defined as the product set of k intervals, closed, open or half open, on
the line.

THEOREM 2.1. Let I be an interval in R* and let # = {I*: I* is an interval
contained in I}. For every ¢ > 0 and every positive integer k, there exists M =
M(e, k), such that for every array of k-variate continuous df’s F,y, Fyy, - - -, Fyy,
N=1,2, ..., every interval I and every N = 1,2, ...,

@) P(supre [Fyr) = Pufrr)) < (LB DA 5

Before presenting the proof of this theorem, we shall prove a lemma which
supplies an upper bound for sup,.. , |Fy{/*} — F,{I*}| in terms of a maximum
over a finite nuraber of sets.

By [a] we denote the largest integer in the number a.

LEMMA 2.1. Let for N= 1,2, ... the k-dimensional df’s F,,, F,,, -+, Fyy
be continuous and let I be an interval in R* with Fu{1} > 0, for N=1,2,....
Define F7}(1 + a) = oo, for a > 0, where F,y = N-* Y¥_ F, .. and let

F = {I*: I* is an interval contained in I},
@2) A=l =10 I (Fa (S £ £ (S 2tny) |
for k pairs of integers (ny, ny), with n, < n,, and

N .
ni.e{O,l,Z, [__]Jr th, for =12k,
! Fy{l}

j=1, 2} .
Then, for every w e Q, N=1,2, ..., k=1,2, ... we have
(2.3) SUPpe - [Fall*} — Fu{l*)] < max;, . s, [Fy{ly} — F{L}|
+ 2kN-F {1} .
ProOF. Let I* be an arbitrary interval in /. Define
Iv* = Nigesyiigor Iv s Iv* = Usye syiiger Iy -
Note that J,* and I* are elements of _#, U ( and that
(2.4) Fo{Iy*} — Fu{ly*} < 2kN-'F {1} .
If 7* is such that Fy{/*} — F{I*} = 0, we have using (2.4)
[Fu{l*} — Fy{I*}] = Fu{l*} — Fy{I*} < Fa{ly*} — Fy{ly*)
< Fu{ly*} — F'N{iN*} + 2kN‘1F'N{I}
= [Fu{ly*} — Fu{ly*)| 4 2kN-F {1},
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and if F,{I*} — Fy{I*} < 0, we have

IRu{I¥} — Fy{I¥)] = Fy{I¥) — Fy{I*} < Fy{ly*} — Fa{ly*)
< Fy{l,*} — Fy{ly*} + 2kNF (1)
< |Fully*} — Fally*)| + 2kN-'F {1} . 0

PrROOF OF THEOREM 2.1. If F{I} = 0, the theorem follows immediately. It
proves to be convenient to consider the cases 0 < F,{I} < 8log (N + 1)[eN
and F,{I} > 8log (N + 1)/eN, for fixed 0 < ¢ < 1, separately. Compare with
Ruymgaart (1973), page 19.

First suppose that 0 < Fy{I} < 8(¢N)~'log (N + 1), and choose M = M,(¢) =
(2/¢)t. Then

(2.5) M<10g(N -ij_vl)FN{I}y > M>< 5(1'3%{1})2>i > FA:{I} .

Moreover, since
(2.6) suppee , |Fy{I*} — Fy{I*}| < max (Fy{1}, Fy{l}),
we have from (2.5), (2.6) and Markov’s inequality that the left-hand side of
(2.1) is bounded below by
P(max (Fy{I}, Fy{I})) S Fx{l}fe) = P(F{I} S Fs{l}fe) 2 1 — <.

Next we suppose that F{I} > 8(¢N)~'log (N + 1). Application of Lemma
2.1 shows that for M > My(k) = 4k(log2)~*and N=1,2, ..., the left-hand
side of (2.1) is bounded below by

P<max;‘ve o IRy} — Pl < M<log (N -II-V I)FN{I})* _uF "}’\{71 })

(2.7) > P <max;Ne o [Fully) — Py} < 3M (log (N + 1)F,\-{1}>;>

iy <|Ftv{f‘v} > M (1og (N -|]-V l)F‘N{l})*).

Since $M(Nlog (N + 1)F{I})t = 1 for M = M; = §2%(log 2)-t, Theorem 0.2
is applicable, so that we may assume that NF +{Iy}in (2.7) is a binomial rv with
parameters N and F{I,}.

With the aid of Bernstein’s inequality (see, e.g., Bahadur (1966), page 578)
we find, using max (Fy{l,}, 1 — Fy{l,}) <1, that for N=1,2, ..., and
M >0,

(2.8) P<|FN{TN} — F L) = M <log (N + l)FN{I}>a>

1MNlog (N + 1)F {1} ) .

< 2exp(— NFL(T.] + IM(NTog (N + D)Fy(T})!
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Moreover, since Fy{I} > 8(¢sN)~*log (N + 1) > 8N-'log (N + 1) and F{I,} <
F {1}, we obtain the following upper bound for (2.8):

§M™2} log (N + 1)
122t + M

(2.9) 2exp<— > < 2exp(—EMlog (N + 1)),
for M = M4 = 12.2¢,

Noting that the number of elements in 7y is bounded above by

(7 2 = G *2) =Ew

we obtain from (2.6)—(2.9) that for M > max (M,, M,, M,, M,, Sk), N =
1,2, ...,

P(supre , [P} — P} < M (18I DEMIYY

1 — (SNOB2(N + 1)=80 > 1 — 2.5%(N  1)w-tx
1 — 2.5% pu-br

(2.10)

[\A\%

which completes the proof of the theorem. []

REMARK 2.1. If in Theorem 2.1 we take / = R*, we obtain the following
result which is a kind ot Glivenko-Cantelli theorem: for every ¢ > 0 and every
positive integer k, there exists M = M(e, k) such that for every array of k-
variate continuous df’s F,y, Foy, ---, Fyy, N=1,2,..., and every N =
1,2, ...,

(2’11) P(Sup-°°<zl,za,-~-,z,,<w ”FN(XI’ Xgy * 0 xk) - FN(XI’ Xogs =0y xk)|
< MN-Hlog(N + 1)) = 1 —¢.

3. Discontinuous underlying distribution functions. In this section we shall
establish a theorem which makes it clear that, without any additional condition,
the most important results from the foregoing sections remain valid without
the restriction of continuous underlying df’s. For related results see, e.g.,
Behnen (1976) and Conover (1973). -

An interval I C R* is defined in the introduction of Section 2; the correspond-
ing definition of the class of intervals _# is given in Theorem 2.1. Given a set
S, §° will denote its complement, y(S) its indicator function and x(S; s) the value
of this function at the point s, i.e.,

(3.1) x(S;8) =1 for se§
=0 for sesS°.
THEOREM 3.1. Let k be a positive integer and let ¥, be the empirical df based
on N k-variate sample elements X,y = (Xiuys Xouy> ++ s Xpwy)s = 1,2, ..., N,

where the X, are distributed independently according to given, possibly discontinuous
df’s F,y. Letusdenote fori = 1,2, ...,k by F,,, the ith marginal df of F,,, let
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Fiy= N3V F,y let {§,9,v=1,2, ...} be the countable set of discontinuity
points of F,y and let p,* be the height of the jump at &, of F,y. Finally let I be an
interval in R*. There exist N k-variate random vectors Y,y = (Yy,x, Yauns  + +s Yiun)s
n=1,2,..., N, where the Y, are distributed independently according to continuous
df’s G,,, and an interval I — R*, such that

(32) FN(XI’ Xy vty xk) = GN(XI + vav(l)X([&v(l)a 00); x1)9 ey X

+ Zu Pv(k)X([év(k)’ oo); xk))
and with probability one

(3.3) Fa(xy, X3 « -+, %) = Gy(x, + 2, P Ox([E,0, 0)5 Xy), « -5 X,
+ 2. A€, o0); x4))
and
[Fu{l*} — FuiI*)| |Gu{I*} — Gu{I*}]
(F{}) (Gu{I)?
where G, denotes the empirical df based on the Y, y,n=1,2, ..., Nand Fy =
N- Zn- 2N ’V'—N_ n= 1GV‘

3.49) SUPse < SUpjee S

ki

Proor. Let {U/™,i=1,2,. k,n=1,2,...,N,v=1,2, ...} be a set
of uniform (0, 1) distributed rv’s, mutually mdependent and also independent
of the random vectors X,,, n = 1,2, ..., N. Note that {§,9,v=1,2, ...}
contains the discontinuity points of each F;,y, n = 1,2, .-+, N.

Since ¥, p, " < 1fori=1,2,...,k, wecan define forn =1, 2, ..., Nthe
random vector Y,y = (Yi,x, Youws - +» Yiay) as follows:

(3'5) YimV = th’v’ + Z P mX((E (i), OO). Xi«,;]v)

+ Z py(l)U (i'n)x({s (i)}’ tnN)
fori=1,2, ..., k, so that X, is transformed stochastically to Y,y. Let G,y
be the df of Y, and let G, be the empirical df based on Y,,, Yy, - -+, Yyy. It
is clear that all the marginal df’s of G,, are continuous and hence G,y is
continuous. From definition (3.5) it is immediate that forn = 1,2, --., N.and
i= 1’23 e, k,
(3.6) Xiny + ZuP;(i)X((éums 0); Xinw) = Yinn

< Xy + 2. 22675 00); Xiny) »

and hence

(3.7) [Xiw < x] = [Yiay = X + 2, 2 OA([E7 00)5 X1

(3-8) [Xiny < %] = [Yiay < X0 + Z»PJ“X((E»”’, o0); X;)] -

From (3.7) it is obvious that (with Gy = N~! G,y), the equalities (3.2) and
(3.3) hold.

Next, let us construct from the given interval / — R* an interval I  R¥, such
that (3.4) is satisfied. Therefore, we define for i = 1,2, - -, k the functions f;
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and g, as follows:
(3.9) fix) =x+ X2, p. P[50, o0); X), for xe(—o0, 00),
(3.10) 9{x) = x + X, p.x((£,?, o0); X), for xe(—oo0, 00).
Let I = [k, I, and let for i = 1,2, ---, k, a; and b, be the endpoints of the
interval I, ¢ R, with a, < b,. Let
(3.11) a, = gfa;) for a,el,, and b, = gi(b;) for b,el’,
= fa;) elsewhere, = f(b,) elsewhere.

We define I = []%, I,, whereforei = 1,2, ..., k, I, is the interval in R with the
endpoints 4; and b, and a,¢e1, iff a,e I, b, e I, iff b, € I,. With the aid of (3.7)
and (3.8) it can be verified that
(3.12) Fy{I} = Gy{I} and Fi{l} = Gu{I}.
Since analogously we can construct for every interval /* C . an interval
Ix ¢ _# satisfying (3.12) with I = I* and I = I*, the proof is completed. []

CoROLLARY 3.1. Theorem 1.1, Corollary 1.1, (1.27), (1.30) and Theorem 2.1
also hold without the restriction to continuous underlying df’s.

Proof. The assertion for Theorem 2.1 is immediate from (3.4). For k =1,
we denote by Y., Y., the first and last order statistic of the random variables
Y.,ns Yans + - -, Yy, which are constructed in the proof of Theorem 3.1 (cf. (3.5)).
In view of (3.7) we obtain

X g Xl:N = X + Zv Pv(l)x([svu)’ OO); x) g YI;N ’
x < Xyy=x+ 5, pY%x(67s 0); x) < Yy,
so that (3.2) and (3.3) imply that with probability one

N( ) GN(‘x)
(3.13) Supzle N FN(x) = Pzzn N (‘N(x)
11— Fy(x) _ 1— Gy(x)
(3.14) supz<XN :N 1 FN(X) = S pz<YN N 1 — GN(X)
Fy(x) Ga(x)
(3.15) SUP o< p<on o) < SUP_ccrcon G’
— Fy(x) 1= Gw®)
(3.16) Sup_m<z<°° —1-—_-———FTx)- é up_oo(z(oo 1 — N(x)
(3.17) SUP_ o caceo |Fy(x) — Fy(x)| < SUP_ocacon |Gw(x) — (x)|
g5(F (%)) 95(Gn(%))

Moreover, with the aid of (3.2) one can show that

(3.18) FN(XN:N) = G-N(XN:N + 2. P67 00); Xy.y) = GN(YN:N) >
(3-19) FN(XI:N) = G-N(XI:N + 2. A€, 00); Xiw)) = G-N(YI:N) .
The proof can be completed from (3.13)—(3.19). [
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REMARK 3.1. From Corollary 1.3, the proof of Corollary 1.1 and (3.4),
it is immediate that for k = 1, Theorem 2.1 even holds without the factor
(log (N + 1))} in (2.1) and without the restriction to continuous underlying df’s.

REMARK 3.2. Of course, as in the proof of Corollary 3.1, one can show that
also the transformed versions (cf. (1.23)) of Theorem 1.2 and Theorem 1.3
remain valid without the restriction to continuous df’s.
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