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AN L, BOUND FOR THE REMAINDER IN A COMBINATORIAL
CENTRAL LIMIT THEOREM!

By Soo-THONG Ho AND Louls H. Y. CHEN
University of Singapore

For n =z 2 let Xuij, i,j =1, -+, n, be a square array of independent
random variables with finite variances and let = = (za(1), - - -, 7a(n)) be a
random permutation of (1, ---, n) independent of the Xu:;’s. By using

Stein’s method, a bound is obtained for the L, norm (I < p < ) with
respect to the Lebesgue measure of the difference between the distribution
function of (W, — EW,)/(Var W,)t and the standard normal distribution
function where Wy = 57_, Xui-, ). This result generalizes and improves
a number of known results. In particular, it provides bounds for Motoo’s
combinatorial central limit theorem as well as the central limit theorem.

0. Introduction. For n > 2 let Xuijs I j =1, - -+, n, be a square array of in-
dependent random variables with finite variances and let 7, = (m,(1), - - -, 7,(n))
be a random permutation of (1, - - -, n) independent of the X,:;’s. This paper
is concerned with the normal approximation to the distribution of W, =
21 Xniz,- A special case of W, is the statistic &, = 37, ¢, ;, Where
Cuijs i, j =1, ..., n, is a square array of real numbers. A further special case
is the statistic 7, = 2i-1,b,. ; where a,;and b,,, i =1, ..., n, are two se-
quences of real numbers. Both statistics &, and 7, arise in permutation tests in
nonparametric inference. (See, for example, Fraser (1957) and Puri and Sen
(1971).)

The literature concerning the limiting behavior of £, and 7, dates back to
1944 when Wald and Wolfowitz first established the asymptotic normality of 7,
with some strong sufficient conditions. These were weakened by Noether (1949)
and later simplified by Hoeffding (1951) who also considered the more general
statistic £,. Motoo (1957) showed that a Lindeberg-type condition is sufficient
for the asymptotic normality of £,. The same condition was also shown to be
necessary in the case of 7, by Hajek (1961). More recently Robinson (1972)
obtained necessary and sufficient conditions for the moments of 7, to converge
to those of a normal distribution. Kolchin and Chistyakov (1973, 1974) con-
sidered a different 7, where 7, is no longer uniform but attributes equal prab-
abilities to only those permutations with one cycle.

It seems that so far only limit theorems have been proved for the statistics &, and
7,- In this paper we use Stein’s method (1972) to obtain an L, bound, where
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1 < p £ oo, for the difference between the distribution of (W, — EW,)/(Var W)}
and the standard normal distribution. It is interesting to note that our result
contains bounds for the remainder in the central limit theorem as well as that
in Motoo’s limit theorem (1957), where the nature of dependence in each case
bears no relationship with the other.

The notion of an L, bound for the normal approximation was first introduced
by Erickson (1973). Since ||+|5 < [|+|[z7|+|h, it suffices to consider only the L
and the L, bounds. Our way of obtaining an L, bound is inspired by Stein’s
proof of the Berry—Esseen theorem for i.i.d. random variables, which the second
author learned from Professor Charles Stein in 1970. Since this proof has never
been published, we shall present it (with some simplification) in the next sec-
tion. (We wish to point out that this proof differs from that in Stein’s 1972
paper.)

In the sequel all notations will be the same as in the preceding sections.

1. Stein’s proof of the Berry-Esseen theorem. Let X, X,, ---, X, be a se-
quence of independent and identically distributed random variables such that
EX,=0, EX? = l/nand § = ntE|X,[* < co for i = 1,2, ..., n. The Berry-
Esseen theorem states that for every real z,

(1.1) IF(2) — @(2)| < Cpjn*

where F is the distribution function of }7_, X,, ® the standard normal distri-
bution function and C an absolute constant.

Stein’s proof proceeds as follows. Let W, = Y7, X,, W,_, = >72! X, and ¢
be the common distribution of X,’s. Let .7 be the set of real valued functions
defined on the real line such that if f belongs to 7, then either (1) f(w) = w or
(2) f is a bounded function which is the indefinite integral of a bounded meas-
urable function f’. Then, for any function fe. 7, we have

EW,f(W,) = 2Zia E[Xif(Zjaei Xj + X)),

which by independence and symmetry
= nE[X, (S35 X, + X)) = nE§ sf(W,_, + ) du(s)

which again by independence and the fact that EX = 0

= nE § s[f(Waoy + 5) — f(Wa)] dp(s)

= —RE LS f(Woly + 1) drdp(s) + nE § s 5 SV, + ) drdpgs),
which by Fubini’s theorem

= —nE\", f'(W,_, + ) o sdpu(s) dt + nE & f'(W,_, + 1) {5 sdp(s) dt

=Ef§ f'(W,_, + HK(1) dt,
where ’
(1.2) K(f) = n {2 sdp(s)  t>0

= —n{_ sdu(s) t<0.
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Hence we obtain the identity

(1.3) EW,f(W,) = E\ f((W._y + OK() dt .

It is clear that K(r) is a nonnegative function such that K(—oo) =0 and
K(+o0) = 0. By letting f(w) = w, (1.3) yields

(1.4) { K(t)dt = EW,* =1

showing that K is a probability density function.
To do the approximation, we choose f to be the unique bounded solution f,
of the differential equation ’

(1.5) ['w) — wfw) = h(w) — ©(2)
where £, is the indicator function of the set (—oo, z]. Then (1.3) yields
(1.6) F(z) — ©(2) = ES /(W) — f/(Waoa + D]K(0) d1.

What remains now is to bound the right-hand side of (1.6).
We need a few lemmas. First we note that f, is given by

(1.7) fiw) = @W)[1 — @@))/p(w) if w=z
= O(2)[1 — DP(w)]/p(w) if w>z

where ¢ is the standard normal density and that

(1.8) { |1|K(r) dt = jB/2n?
and
(1.9) § 15| di(s) < pjmt -

The following lemma can be found in Stein (1972) and is therefore stated
without proof.

LeEMMA 1.1. Let f, be defined as in (1.7). Then for all realwandz,0 < f,(w) < 1
and | (W) < 1.

Let a and b be two real numbers such that a < 6. We define, for every real
x>0,
0.0 = —4b—a) —x wsa—x

(1.10) =w—3a+b) a—x==wbhb+x
=4b—a)+ x b+x<Zw.
Clearly g, is the indefinite integral of the function g,/(w) = I(a — x < w < b + X)

and hence belongs to 7" for every x > 0.
Now we prove a concentration inequality using the identity (1.3).

LEMMA 1.2. For all real a and b such that a < b, we have

Efa< W, ,<b)<b—a-+2pn.
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Proor. First we deduce a simple inequality. We have, by (1.8),

Sie> gt K(1) dt < (nH]B) § > /0t |(1K(0) dt < (n]B) § |tIK(t) dt = § .
This and (1.4) yield
(1.11) Vuspnt K(f) dt = § K(1)dt — 5, K()dt 2 1 — = 4.
Let f(w) = g.4(w) with f'(w) = I(a@ — f/n* < w < b + B/n*) where g+ is de-
fined in (1.10). Then we have
E{ f(Woy + 0K(t)dt = E§ K@ — jnt < W, , < b + pJn})K(r)dr
= EfIa< W, , <b)[(|t| < B/nb)K(1)dt,
which by independence and (1.11)
= 4Ea < W, <b).
This together with (1.3) yield
Ela < W,_, < b) < 2EW, f(W,) < 2E|W,f(W,) < b — a + 2p/nt
where it is noted that |f| < 4(b — a) + B/n* and E|W,| < (EW,*)t = 1.
The next lemma is simple and is stated without proof.
LemMa 1.3. Let f, be as in (1.7). Then
[f/(w 4 5) = f/(w + 0] < (1] + [s)(Iw] + 1)
+Iz—t=w=<z—5s< )
+lz—s<w=Zz—0s>1).

We are now in position to prove (1.1). By (1.6), Lemma 1.3 and independ-
ence, we have

sup, [F(z) — ©(2)| < §§ (1] + [S))(E[W._i| + 1) du(s)K(?) dt
+ WIS HE(z —t< W, <z — s) du(s)K(1) dt
+ 8 I(s > NEz — s < W, | < 7z — t)du(s)K(1) dt
which by Lemma 1.2, (1.4), (1.8), (1.9) and independence
< 6}p/nt .
Hence the theorem.

2. L, versus L, bounds. In Stein’s proof of the Berry-Esseen theorem, a
crucial step is the derivation of a concentration inequality of the correct order
(Lemma 1.2). One would hope that this method could easily be extended to
cover the independent and nonidentically distributed case. Unfortunately this
is not so. We have not been able to obtain the correct Berry-Esseen bound for
this case by Stein’s method. However, a somewhat weaker concentration in-
equality can be obtained for independent but nonidentically distributed random

variables with second moments. Using this inequality, one could obtain an L,
bound of the form

(2.1) Cinfoo{e + Ty EXI(X| > ¢))
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for the normal approximation where I denotes the indicator function. This
result is implied by more general results known in the literature (see, for ex-
ample, Osipov (1966) and Feller (1968)). In our present problem, which is
more general than the independent and nonidentically distributed case, we can
only expect to obtain an L, bound similar to (2.1).

In obtaining an L, bound, the question of concentration inequality does not
arise. As a result, Stein’s method works more smoothly. This fact has been
pointed out by Erickson (1974). In Ho (1975), the following L, bound in the
normal approximation is obtained for independent and nonidentically distributed
random variables X, X,, - - -, X,,,

(2.2) inf,,, {4 D EXCI(X)| > ¢) + 4% 20 EIXPI(X] <€)}

It has been pointed out in Loh (1975) that uniform truncation at arbitrary ¢ (in
fact at 1) is as general as arbitrary truncation considered by Feller (1968).
Note that the absolute constants in (2.2) are considerably less than those in
Erickson (1973). This is due, in part, to the following improvement of a lemma
due to Erickson (1974) who obtained an upper of 3 instead of 1 for the second
inequality. The following lemma will also be needed in the next section.

LemMMA 2.1. Let f, be as in (1.7). Then for all real w, we have

(2.3) §1f(w)dz =1
and
(2.4) VIff(w)ldz< 1.

Proor. (2.3) follows immediately from (1.7) by direct computation. For
(2.4), let L(w) = {|f,/(w)| dz. It can be shown that L(w) = 2G(w)H(w) where
G(w) = w(w) + ¢(w)and H(w) = 1 — w[l — O(w)]/p(w). Since L(w) = L(—w),
one may without loss of generality assume w > 0. For w > 0, we have
1 — O(w) = wig(w) — (3 t7%(1) dt = w'g(w) — w[1 — ®(w)]and so we have
the inequality [1 — ®(w)]/¢(w) = w(l + w?)~'. By differentiation and this in-
equality, we can show that for w = 0, H(w) < (1 + w’)™', G'(w) = O, and
H'(w) £ 0, and that for w = 1, [G(w)/(1 4+ w?)]’ < 0. These imply that L(w) <
2G(x + 0.1)H(x) < 1 forx < w < x + 0.1 where x = 0,0.1,0.2, ---, 1.5 and
that L(w) < 2G(w)/(1 + w?) < 2G(1.5)/(1 4+ 1.5%) < 1 for w = 1.5. Hence the
lemma.

3. Statement of the main theorem and corollaries. From now on we shall
drop the subscript n for brevity but shall pick it up whenever we need it.
Throughout this paper, a random permutation of (1,2, ...,n) is an n-
dimensional random vector which takes on each permutation of (1,2, ..., n)
with probability 1/n!.

Let X,;, i,j=1,2, ---, n, be asquare array of independent random variables
such that EX;; = ¢;;and Var X;; = ¢}, < oo. Alsoletr = (n(1), =(2), - - -, a(n))
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be a random permutation of (1,2, --., n) which is independent of the X;.’s.
Further, let W = ¥r_ X, ..
Define
l ., l ., l ¢ son
o= — 2 %16, Cj=— 2taCy, C_.=— 2t 231G
n n n
dij _ Cij — ¢ —j +c__ )
1
da? = 1o1d3; and 02=7Z;‘=1 1103

Then EW = nc__ and it will be shown in Lemma 4.3 that Var W — &2 + a2
Further, define

Yo = (Xy — nle_)j(d + ot
and

1
Le) = L m ey > o
2,0out, n — Ln(l)

1
Ls, in,n — 7 Z Zy 1 EI llial(l ] ) .

L

Now we state the main result.

THEOREM 3.1. Forevery0 <e<1,1< p=< o andn = 2, we have

18 g
IF — @], < 24{c + 3L,(c)} + (7 n 405) Rt

where F is the distribution function of (W — nc__)/(d* + o}t and ® the standard
normal distribution function.

The following corollaries are simple consequences of the main theorem. Un-
less otherwise stated, all notations will be the same as defined above.
COROLLARY 3.1. For everyl < p< ocoandn = 2, we have
IF — @, < 18/n + 96(2)tL} ., + 72L

2,in,n *

CoroLLARY 3.2. If X,; = EX,;, = Cij» then for every 0 < e <1, 1 £ p< o
and n = 2, we have

IF = @, <24 {e + > To, Fr e M(ey] > o)

where e;; = (¢,; — nc__)/d.

CoRroOLLARY 3.3. Suppose that for every ¢ > 0,
1
~eo— Liea Dia EYo (Vo) > ¢) = 0.

Then, for every 1 < p < oo, we have
m, . ”Fn - (I)Hp =0.
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To obtain Corollary 3.1 from the main theorem, let ¢ = xL},, , and use
Chebyshev’s inequality to get L,(¢) < e 'Ly ;5 » + L3 our,»- Then minimize the
resulting bound with respect to x. The setting of Corollary 3.2 is due to
Hoeffding (1951) who proved that lim,_, (1/n) 27, X7, |e;;|” = 0 for r > 2 is
sufficient for the asymptotic normality of W,. Motoo (1957) weakened Hoeffding’s
condition to the Lindeberg-type condition

. 1
11m’n—voo7 2t 2% eiijl(lenij| >e¢) = 0.

Hajek (1961) showed that the Lindeberg-type condition in the case where e,;; =
a,;b,; is both necessary and sufficient. The sufficiency of Motoo’s Lindeberg-
type condition follows from Corollaries 3.2 or 3.3. It also follows from Co-
rollary 3.2 that the bound 48;% can be obtained for ||F — @, by letting ¢ = 7
where 7 = (3/n) X1, 2., |e,;|*. For p = co and under some appropriate con-
ditions, the Lindeberg-type condition in Corollary 3.3 is shown to be also nec-
essary in Chen [2] (Corollary 5.1). Finally we wish to thank Professor Charles
Stein for suggesting to the second author in 1970 the possibility of obtaining
an L., bound in the special case of Corollary 3.2 using his technique.

4. Proof of Theorem 3.1. In applying Stein’s method, an appropriate identity
for W has to be derived. To this end, we use the following construction due
to Chen (1975) who has considered the Poisson counterpart of this problem:
I, J, K, L, M are random variables each uniformly distributed on {1, 2, ..., n},
and

7 = (a(1), =(2), - - -, ©(n)),
o = (o(1), p(2), --+» o(n) »

= (7(1), ©(2), - - -, t(n))
are random permutations of (1, 2, - - -, n) such that
(4.1) {I,J,K,L, M, =, p,t} isindependent of X.’s,

(4.2) (I,K) and (L, M) are uniformly distributed on
{(G,k):i+k,i,k=1,2,...,n},
(4.3) J, (I,K), (L,M) and <t are mutually independent,

and

(4.4) J, (I,K) and p are mutually independent,
(4.5) I and = are mutually independent,
o(a) = t(a) a =+ I, K, t7}(L), =7(M)
=L a=1
(4.6) =M a=K

=t(l) a=r71YL)
=r(K) a=1t(M)
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and
r(a) = p(a) a + I, o (J)
=p(l) a=p7'(J)
where p(p~(a)) = p7Y(p(a)) = @ and 7(z7¥(a)) = t7}(z(a)) = a.
The reason for the introduction of all the notation (4.1) to (4.7) is the very

important fact that V' (defined below) is “nearly” conditionally independent of
X,y given t. Such conditional independence will be used in Lemmas 4.1, 4.9

and 4.10.
Now let (Q, ZZ, P) be the probability space on which all the above random

vectors are defined and let
%" be the o-algebra generated by 7 and X;;’s,
Z the o-algebra generated by p and X,’s,

and
¢ the o-algebra generated by the X, ’s.
Also let
1
Z= n i 21 Xij ’
W=2iaXew, W = 3lisr Xizy >

— *
U= Z?:l Xip(i) ’ U* = Zi#l Xip(i) ’
— X
V —_ Z?:l Xir(i) ’ V - Zi#I,K Xip(i) )
AV = V — V*x*
= Xy + XKr(KJ + Xt‘l(L)L + Xr—lmw - Xr‘l(L)r(I) - Xr_l(M)t(K) .

By using the properties of conditional expectations, it can be shown that
(4.8) nE’X,, = E*W = Z.

Also, using the fact that p and {X,,} have the same joint distribution as r and
{X.;}, we have, for every fe -7, where 7 is defined as in Section 1,

(4.9) EZf(W) = EZf(U) .

Now, let fe . Then, using (4.8), (4.9) and the basic properties of con-
ditional expectations, we have

E[(W — 2)f(W)]
= EWf(W) — EZf(U)
= nE{[E7 X1.p)| (W)} — nE{[E” X,] f(U)}
= nE[X;.q, f(W)] — nE[X,, f(U)]
= nE{X,[f(W* + Xp,) — (U)]}
= nE{Xy,[f(W* + Xp;) — fINH(e™() = 1) + o7'(J) # D]}
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which by the fact that p='(J) = I implies 7 = p
= nE{X [ fiW* + X;;) — UM '(J) # D)}
which by (4.7)
= ”E{XIJ[f(Za#,p-l(J) Xootar + Xp; + Xp_l(J)p(I))
- f(Za#I,p‘l(J) Xap(a) + XIp(I) + Xp'-luu)]l(p_l(']) * 1)}
= n(n — I)E{XIJ[f(ZaaeI.p—l(J) Xap(a) + X + Xp-l(.npm)
- f(ZaaéI,p-l(J) Xap(a) + lem + Xp—l(J)J)]
X [E"9o = (p™(J) # DI(p™J) = K)]}
= n(n — DE{X ;[ f(Zarr.0-10) Xapar T+ Xy + Xp—l(J)p(I))
- f(Za#I,p—l(J) Xap(a) + lem + Xp-lwu)][l(p_l('l) * 1)](10_1(',) = K)]} ;
which by noting that 7 # K and that 3., ;-1 Xapw = V** on {07(J) = K}
= n(n — DE{X [ f(V** + X1, + Xgon)
— f(V** + Xpory + Xe)H(p™'(J) = K)}
which by (4.6)
= n(n — DE{X,[f(V** + X;y 4+ Xgxo) — f(V** + Xpp + X)) = M)}
= n(n — DE(X,,[ f(V** + Xiy + Xgz) — f(V** + Xip + XU = M)}

Since V** = V — AV, which depends only on 7, I, K, L, M and X,;’s, it fol-
lows from (4.3) that J is independent of (V**, I, K, L, M). Thus,

(4.10) E[((W — Z)f(W)] = (n — DE{X;y[ f(V** + X;y + Xg1)
- f(V** + XIL + XKM)]};
which by interchanging / and K, L and M

= (” - l)E{XKL[f(V** + Xgr + Xn{) _f(V** + Xew + XIL)]}
== 3 D E{(Xyy + Xe) LSV + Xy + Xr) — fV* + Xop + X}

which by interchanging 7 and K
—1
= =D By + XU + K + Xes) = V5 + Xy + X))

—1
= =D B + Xew — X = XUV + Xy + X

- f(V** + XIL + Xx.w)]}
= Ef§ fI((V** + 0)K(¢) dt;

where

—1
(4.11) K(r) = (—’14—)— (Xpw + Xip — Xpp — Xea)P(8 Xip 4 Xuws Xpw + Xie1)
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and
ot ce,d)y =1, if e<t<d;
=1, if d<it=Zec;
=0, otherwise.

It is clear that K(¢) is a nonnegative function. Hence, we obtain the identity
(4.12) E[((W — Z)W)] = E§ f/(V** + DK(1) dt .

For the remaining part of the proof of the theorem, we shall break it up into
twelve lemmas.

LEMMA 4.1. For every fe o7, we have
E[(Z — EZ)f(W)) = - E[(W — EW)[(W)].

ProoOF. We have

E[(Z — EZ)f(W)]
= B[S0 D3a (X — )W)

= [T Zieno (X — cf )] + BT (Koo — )W)

= BT (B B (X — )f0N) + L ELOV — B pom)

where it is noted that for every i, }},,.,, X,, is conditionally independent of W
given 7 and that the first term on the right-hand side of the last equality vanishes
by virtue of the fact E= 37.,_,, (X;; — ¢;;) = 0. Hence the lemma.

LEMMA 4.2. We have
E[(W — EEW)W] = o*.
ProoF. From Lemma 4.1 we have, by letting f(w) = w,
E[(W — E*W)W] = nE[(Z — EZ)W]
= nE[E*(Z — EZ)W]
= nE[(Z — EZ)E*W]
= nE[(Z — EZ)Z]

=nVar Z = o? .
Hence the lemma.

LEMMA 4.3. We have Var W = d* + ¢
PROOF. By letting f(w) = w in (4.12), we have

(4.13) EW* — EZW = E\ K(1) dt .
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Also, by (4.8), we have

(4.14) EZ = E[E*W] = EW

and

(4.15) EZW = E[E¥ZW)] = E[ZE*W] = EZ*.
Combining (4.13), (4.14) and (4.15), we have

(4.16) Var W = E{ K(t)dt 4 Var Z

0.2
= E{K(rydr + 2.
n

Now, by letting f(w) = w in (4.10), we obtain
(4.17) E§K(tydt = (n — DE[X,(X;y + Xgr — Xi1 — Xgw)]
which by independence

= (n — DIE(X7y — cly) + Ecy(Cry + €k — €11 — Cxy)]

( 1 |:0.z 42 ’
= (n — —_ _— .
) n + (n — I)J
Combining (4.16) and (4.17), we prove the lemma.
From now on, we shall assume without loss of generality that EW = 0 and

Var W = 1.

In this case Y,; = X,; and we obtain from Lemmas 4.1, 4.2, (4.14) and (4.16)
the following:

(4.18) EZf(W) = % EW — EW)f(W);
(4.19)  E|W — EW| < (E(W — E*W))i = (EW — EW)W)i = o ;
and
(4.20) | = E\K(t)dr + 2.
n

We shall need (4.18), (4.19) and (4.20) later. In particular, Lemma 4.3 and
(4.20) imply

*<1 and E{K(n)di<l.

The next lemma is a concentration inequality which we shall need in obtain-
ing the L, bound.

LEMMA 4.4. Let a and b be real numbers such that a < b. Then, for every
e > 0, we have

E S g l(a < V¥ < D)K(t)dt < 3(b — a) + 2.
PRrOOF. Let f(w) = g,(w) as defined in (1.10) so that
flw)y=Ia—2e<wZ b+ 2).
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Then we have
E§ f/(V** + DK(1)dt = E{ I(a — 2 < V** 4+ t < b + 2e)K(1) dt
= Ef s l(a < V** < b)K(1)dt .
Thus, by (4.12), we obtain
E §ysa (@ < V** < 0)K(t)dt < E[(W — Z)f(W)]

= E|(W — 2)f(w)l,
which by the definition of f

< [3(b — @) + 2]E|W — 2|
< 36— a) + 2,
where by (4.15) it is noted that E|W — Z| < (EW?* — EZ*} < (EW?*} = 1.

LEMMA 4.5. Let ¢ and d be two real numbers such that ¢ = ¢, + ¢, and d =
d, + d,. Then for every ¢ > 0, we have

Sia>2. (d — €)1, ¢, d) dt < 8[cM([e;| > €) + ¢, (|ey] > )
+ &U(|d| > €) + dM(|d) > e)]
where §(t, ¢, d) is defined as in (4.11).

Proor. Consider three defined ranges of values (— oo, —2¢), [—2¢, 2¢] and
(2¢, o0) for each of ¢ and d and evaluate the integral in the left over each of
the nine possible regions in which (¢, d) lies. This yields

s (4 — €Pg(t, ¢, d) dt < 2[eU(Je] > 2¢) + d(|d] > 2¢)] .
By direct computation it can be shown that for every pair of real numbers (u, v),
(4 + VI + v] > 2¢) < Auh(Ju] > ) + (0] > <)] .
Combining these two inequalities, we prove Lemma 4.5.
LeEMMA 4.6. For every ¢ > 0, we have
E § 50 K(t) dt < 8L, (¢) .
Proof. By (4.11), we have

—1
E S1t|>2e K(t) dt = n 2 E S}t1>2e (XIM + XKL - XIL - KM)

X Pt Xyp + Xigws Xowe + Xg,) dt
which by Lemma 4.5
S 2n — DE[XT I(| X,y| > €) + Xio (| Xy > ¢)
+ X7 I X, > €) + X%y I(| Xgy| > €)]
= 8(n.— )E[X}, I(|X;y| > ¢)]
< 8Le).

Hence the lemma.
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LemMMA 4.7. For every ¢ > 0, we have
E§ <o K(2) dt I(|AV] > 6¢) < 28L,(¢) .
Proor. By (4.11), we have

E § <0 K(2) dt I(JAV| > 6¢)
S (n— DeE[| Xy + X — X, — Xy I(|AV] > 6¢)]
= (n — DeE[(1Xonl + [Xiel + |Xpz] + [ Xeu)(IAV] > 6¢)]
= (n — DeE[(|Xou] + [Xen)I(|AV] > 6¢)]
+ (1 — DeE[(|Xx.| + [XM(JAV] > 6¢)]
which by interchanging / and K, L and M in the second term and noting that
AV remains invariant
= 2(n — D)eE[(|X;u| + |XguM(JAV] > 6¢)]
= 2n — DeE{[|Xp|((| X1n| > ) + 11X, < €))
+ Xl Xxcl > €) + K| Xie| < €)M(JAV] > 6e)}
= 2(n — DeE[| Xy [[(|Xpx| > €) + [XgulH(|Xu| > €)]
+ 4(n — )eE[I(JAV]| > 6¢)]
= 4n — DEX] (1 X1y > €) + 4(n — DEEI(| X o] > )
+ L Xgexr] > €) + K| Xomrizy2] > €) + I Xm100u| > €)
+ (| Xomryen] > €) + M Xmriem0] > )]

Wecanshow thateach of the six pairs(Z, =(1)), (K, 7(K)), (r=%(L), L), (r7{(M), M),
(z7(L), (1)) and (z= (M), =(K)) are uniformly distributed on {1, 2, 3, .-, n}.
Hence

E § 55 K(2) dt I(|AV] > 6¢)
= An — DEXT, I(1X, | > €) + 24(n — 1)E@EL(|X,y| > ¢)
< 28(n — 1)EXT, (| X;1y] > €)
< 28L,(¢)

and this proves the lemma.

LEMMA 4.8. For f, defined in (1.7), we have

(4.21) [E[Zf.(W)] < %
and
(4.22) S IELZA M de < 2.

Proof. By (4.18), we have
[ELZL.(W)]| = % [EL(W — EEW)f(W)]|
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which by Lemma 1.1 and (4.19)
<Llew_pw<2,
n n
This proves (4.21). Next,
1 _
§ |E[Zf.(W)]| dz = - V[E[(W — EFW)f(W)]| dz

< E[W — EW].§ |[(W)|d2],

which by Lemma 2.1
< EW—EW|sZ,
n n

and this proves (4.22). Hence the lemma.
For the next two lemmas, we let

A={c(l)# L,7(K) + M, z(I) # M, =«(K) + L},
H=cpy + cxr — €10 — Cxy
and
G= X + Xy — Xpp — Xy
so that we have | K(¢) dt = ((n — 1)/4)G*.
LeEMMA 4.9. For every ¢ > 0, we have
E[V| s K(1)d1] = 1 + (1 + 4e)o .
Proor. First we write
E[|V] § e K(2) dt]
(4.23) S E[|V — EV| 50 K(1) dt] + E[|EV| § 52 K(7) d1]
= E[|V — EV| 50 K(1) dt (A)] + E[|V — E*V| {4150 K(1) d 1(A°)]
+ E[|EV] § 450 K(1) d1] .
Next we bound each of the three terms on the extreme right of (4.23). Since

{ K() dt depends on (X,,, Xy, X;;, Xgy) it follows that ¥ — E*V is condition-
ally independent of /(A4) and { K(¢) dt given 7. Thus,

E[|V — EV| § e K(1) di [(4)] < E[|V — EV| { K(r) dr I(4)]

(4.24) = E([E7|V — EV|][E* \ K(r) dt I(4)]}
< E{(E*|V — E-V|][E* § K(1) dr]}
<ElV—EV|=EW—EW|<o

where the fourth step follows from E* § K(r) dt = E § K(t) dt < 1, the fifth from

the fact that (=, W) has the same distribution as (z, V') and the last from (4.19).
By (4.11), we have

E[|V — EV| § s K(1) dt 1(47)]
< (n — 1)eE[|V — EV||G|I(A°)]
< (n— De(E(V — EV))YEG(A%)):
= (n — V)e(E(W — E-W)W)YE[G*E"¥ L1 [(A%)])} .
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Now

ENELM[(L) = | — ELKLAJ(4) =1 — (n—2)(n _’1!3)[(” —2)I!
_ 4n—6 4
T an—1) = n

A

and

" LpGr = E\K(nydr < 1.

Thus, by Lemma 4.2, we have

(4.25) E[|V — EV| 00 K(7) di I(A)] < 4eo .

By the independence of = and § K(7) dt, we have

(4.26)  E[|EV| s K(7)dr] < E|EV|E { K(1)dt < E|V|E { K(1)dt < 1

where it is noted that E|V| = E|W| < (EW?! = 1 and that E { K(r)dr < 1.
The combination of (4.23), (4.24), (4.25) and (4.26) proves the lemma.

LemMA 4.10. For f, defined in (1.7), we have

(4.27) [ELA/VIE § K(0) de — Ef/(V) § K(t)de| < 1%
and
(4.28) VIELL/(V)E § K(d)di — Ef/(V) § K(t)dr| dz < 269

n
ProOOF. We have
|Ef/(V)E § K() de — Ef/(V) § K(1) di]
_n—1

= L~ |EL(V)EG — Ef(V)G|

(4.29) = L LB VEGHIA) + [(AY])

— E[/(NGT(4) + [(4)]]]
n—

4

= LIELA(V)ESGH(4)] — ELL/(V)G(4)]]

n —
4

where it is noted that EG* = E*G* by independence of 7 and G.
Since V is conditionally independent of /(4) and G given r, we have

E[f/(V)GL(A)] = E([Ef/(V)IEGCUA)} = E[f/(V)EGU(A)] .

+ 2= LB f/(n)EGI(4)] — ELf2(V)GH(49]

This implies that the first term on the extreme right of (4.29) vanishes.
By the conditional independence of ¥ and H*/(A°) given r, we have

E[fJ(V)H[(A)] = E([Ef/(V)[E*H'M(A)]} = E[f/(V)E"H (L)].
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Thus
|Ef/(V)E § K(t)dr — Ef,(V) § K(1) di|
(4.30) < Lo ELL/VEGH(AY] — ELL(V)GHA)]
=2 ; : |E[f,/(V)E*(G* — HY)I(A°)] — E[f/(V)(G* — H)(4)]]

which by Lemma 1.1

< —2‘ 1 E[|G* — H|I(4)] = n ; 1 E[|G* — HIEME LM A)]

< &;1_) E|G' — HY < 2_(”_'—‘_12 (E(G — HYE(G + H))t,
n n
where, as before, we noted that EZ-X-2¥J(A4°) < 4/n.
Now,
E(G — HY < E[E"®2%(G — HY
= E[Var"¥L1¥G] = E[o}, + 0% + o%, + o%y] = 40n
and

E(G + H) = E(G* + 3H?) = _4_1 E\ K(r)dt + 3EH?
n —

4 16

< +3EH* < ——
n—1

n—1

noting that (4.11) implies EG? = (4/(n — 1))E { K() dr and that H is a special
case of G. These two inequalities and (4.30) prove (4.27).
Next, by (4.30), we have

{ |Ef.(V)E § K(1) dt — Ef,)(V) § K(1) di| dz

< Lo L EL()E(GH — (A = ELL V)G = H)IA)) s

=7 VEL |f/(V)] dz |ES(G* — H?) — (G* — HY)|I(4)]

which by Lemma 2.1 and a consequence in (4.30)

<n—-—1 160
2

E[IG* — HAI(4)] < 7

This proves (4.28). Hence the lemma.
The next lemma is a simple consequence of Lemmas 1.1 and 2.1 and is there-

fore stated without proof.

LeMMA 4.11. Let h, and f, be defined as in (1.5) and (1.7) respectively. Then
for all real s and t such that |s| < 6e and |t| < 2¢ we have

431)  wfw) — (W + 1= 9)fi(w + 1= 9) = 8e(lw] + 1)
|h(w + 5) — h(w + 1) = I(z — 6e < w <z + 6e)
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and
(4.32) VI W) — f/(w + 1 — )| dz < 8e(|w] + 2).
Now we prove the last lemma.
LEMMA 4.12. For all ¢ > 0, we have
(4.33) ES|f/(V) = f/(V** + 0)|K(r) dt < 24[e + 3L, (c)] + 8¢(1 + 4de)o
and
(4.34) ESS |f/(V) = f,/(V** + 1) dz K(¢) dt
= 24[e 4 3L,(c)] + 8¢(1 + 4e)o .
ProoF. Since V = V** 4 AV, we have, using (1.5),
EVIL'(V) = f2(V** + 0)|K(r) dr
=E {5 VAL V) — LV + t)|K(t) dt
T E Vs [L/(V) = L1V + OI(AV] > 6e)K(r) dt
+ ESs [VA(V) = (V+t = AV)f(V + 1t — AV)|I(|AV| < 6:)K(1) dt
+ E g |1 (V¥* + AV) — B (V** + 1)|[(|AV| < 6€)K(¢) dt ,
which by Lemma 1.1 and (4.31)
S 2E (., 5. K(t)dt + 2E §, ., I(|AV| > 6€)K(1) dt
+ 8¢E [z (IV] + 1)K(2) dt
+ E§pg (2 — 66 < V** <z 4 66)K(1) dt
which by Lemmas 4.4, 4.6, 4.7 and 4.9
S 24[e + 3L,(¢)] + 8¢(1 + 4e)o .
This proves (4.33).
Next, we have
EYISIA'(V) = £/(V** + 1) dz)K(r) dt
S ESusa [V IL/(V) = f/(V** + 1)| dz]K(1) dt
T E Vg [§IL/(V) = (V¥ + 0| d2)I(|AV] > 62)K(r) dt
+ ESusn [§ I/V) = (V5 + )] d2)(AV] < 60)K(r)
which by Lemma 2.1 and (4.32)
= 2E 50 K(1) dt + 2E[§ 1., K(1) dE I(|AV| > 6¢)]
+ 8¢E § 5 (V] + 2)K(1) dt
which by Lemmas 4.6, 4.7 and 4.9 again
< 24[c + 3L, (¢)] + 8e(1 + 4e)o .

This proves (4.34). Hence the lemma.
With the above lemmas, we are now in the position to bound ||F — @|,. We
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choose f in the identity (4.12) to be f, in (1.7) which is the unique bounded
solution of the differential equation (1.5). Then for all real z we have
|F(z) — @(2)| = |ER(W) — @(2)] = |Ef,(W) — EWf(W)|
= |Ef,(W) — E§ f,/(V** + )K(1) dr — EZf,(W)|
which by (4.20)

(B (9] [ E§ K@ dr + & | = E§f(7% + 0K() de — EZ[,(w)
< B Lf(V) — f2(7** + 0JK() di| + |EF/(V)E § K(yde — E§ £/(V)K() a1
+ Z B\ + [EZL(W))

where we used Ef'(W) = Ef'(V).
Thus, using Lemmas 1.1 and 2.1 together with Lemmas 4.8, 4.10, 4.12 and
the inequality ¢* < 1, we obtain

IF — @l < 24[¢ + 3L,()] + [JE + 8¢(1 + 45)] o
n
and

IF — @], < 24[¢ + 3L,()] + [1_? +8¢(1 + 48)] v.
n
These, together with |-z < [|+|} - [|+||2™", prove (3.1). The proof of the theorem
is completed.

Acknowledgment. We wish to thank the referee for suggesting Corollary 3.1
and his helpful suggestions on an earlier version of the paper.
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