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CONDITIONAL EXPECTATION AND ORDERING

By Ep DE JONGE

Katholieke Universiteit, Nijmegen

Let (2, €, p) be a probability space and let L be an ideal in M(R, @, p)
containing xg. A one-one correspondence between the class of “order closed”
linear subspaces of L and the sub o-algebras of @ is proved. Furthermore, if
T:L—-M®, @, is a strictly positive order continuous projectionlike linear
map then T is shown to be a conditional expectation E, (. |@). It follows that if
T:L->M®, @, p is a positive expectation invariant projectionlike linear
map, then even T = E,(. |@).

1. Introduction. In [3] we generalized the concept of conditional expectation
to the Riesz space case. We are aware that many mathematicians working in the
field of probability theory are not familiar with Riesz space theory. Therefore, we
present in this paper the measure theoretical analogues of two of the main results
of [3], provided with measure theoretical proofs. Our first main result is a one-one
correspondence between sub o-algebras and certain subspaces and our second
main result is a representation theorem for conditional expectations. The main
difference between our results and the results known so far is that we do not work
with norms (although applications to, for instance, L, -spaces are immediate) but
that our results are based on the natural partial ordering in function spaces.

Throughout this paper (2, @, p) will be a fixed probability space. By M(Q, @, p)
we shall denote the collection of all measurable real-valued functions on £, where
p-a.e. equal functions are identified. For f,g € M(Q, @, u) we write f< g
- whenever f(x) < g(x) for p-almost every x € Q. The notations f \/ g and f A g are
with respect to this partial ordering. If K is a subset of M(Q, @, p), then K* will
denote the collection of all f € K for which f > 0. Furthermore, the characteristic
function of a set 4 will be denoted by x,. The theory of L,(2, @, u)-spaces will be
assumed to be known (1 < p < o0). Finally, for an element f € L (2, @, p), the
integral with respect to p will be denoted by E(f).

2. Measurable subspaces and o-algebras. In this section, let L be an ideal in
M(Q, @, p) containing the element xq. Hence, L is a linear subspace of M(, @, 1)
such that f € L, g € M(Q, &, p) and |g| < |f| implies g € L. The condition
Xe € L is a smoothness condition rather than an essential one. We observe that
/.8 € L implies f\/ g, fA\ g, |f| €L and that L (Q, &, u) C L. The following
definition gives the order analogue of measurable subspace as defined in [2].

DEFINITION 2.1. A linear subspace L, of L is said to be a measurable subspace
of L if
() f. g € L, implies f \/ g € Ly,
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() fi, fo, - - - € Ly and f,1f(p-a.e.) in L implies f € L,,

(iii) xo € Lo
The following theorem (which is a corollary of Theorem 3.5 of [3]) gives a
characterization of measurable subspaces similarly as in the work of [2].

THEOREM 2.2. Let L be a linear subspace of L. Then the following assertions are
equivalent.

(@) Ly is a measurable subspace of L.
(b) There exists an up to u-null sets unique sub o-algebra @, of & such that
LO =Ln M(Q, @0, P')

Proor. (i) (b)=>(a) is obvious. (ii) (a)=>(b). Define &, ={4 € & : x, €
L,}. Then &, is a sub o-algebra of @. This can be seen as follows. It is clear that
Xg € Ly, s0 @ € &,. Furthermore, if 4 € &, then

Xae = Xo — X4 € Ly,
so A¢ € @,. Finally, if 4,, 45, - - -+ € &, are given and if 4 = U ,4,, then

. . k
X4 = hmk-»ooXuﬁ_,A,, = lim;_,, \/,,,,IXA,, € Ly,
so A € @. Next we show that Ly = L N M(Q, &, ) holds. Note already that
L N M@, &, p) C L, is clear. For the converse direction, let f € L; be given.
For alla« €Q7, set f, = (f — axg) \V 0. Then f, € Ly . Furthermore, for a € Q*,
let
A, ={x€Q:f(x)#0} €

- (A, is defined up to a p-null set). Since

X4, =sup{xy, Anfp:n=12---}
and since
Xa, N\ o = Xa A\ 1o € Ly
for all n, it follows that x, € Ly, so 4, € @,. It is clear that
' f=sup{ax, :a €Q*},
so f € M(Q, @, p). The uniqueness of @, is clear. Thus the theorem has been
proved.

We observe that @, in the preceding theorem can also be defined by setting @, as
the smallest sub ¢-algebra of @ for which all f € L, are measurable.

3. A representation theorem. In this section let L be an ideal in L,(2, @, p)
such that x, € L. Furthermore, unless stated otherwise, T will denote a linear map
from L into M(Q, &, p) satisfying

(T1) If fEL*,f#0, then Tf >0, Tf £ O;
(T2) f,l0 in L* implies Tf,|0 in M(Q, &, p);
(T3) T(xg) = xo;

(T4 T>=T on LN T \L).
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Before proving our second main result we derive some auxiliary lemmas.
LEMMA 3.1. T(L) N L (R, @, p) is a measurable subspace of L (2, @, w).

ProOF. For brevity, write Ly = T(L) N L (R, @, p). It is clear that L, is a
linear subspace of L (%, @, u) and that xg € L, Furthermore if f},f,,- - - is a
sequence in L, such that f,1f in L (2, &, p), then Tf, = f, by T4 and Tf,1Tf by
T2. Hence

Tf =sup Tf, = sup f, = f,

so f € T(L). This shows that f € L,. Finally, let f, g € L, be given. There exists a
constant C > 0 such that

0< fVOK f+ Cxg.
Hence, since L (2, @, p) C L,
0<T(fVO0) <TIf + CT(xg) = f + CXg € L(% &, 1),
so T(f \/ 0) € L. Moreover
T(fV0)>TfVTO=f\VO
and T(T(f\V0O) —fVO =T(fV0) - T(fV0) =0, s0 T(f V0) = V0 has
to hold by T1. This shows that f \/ 0 € L,. Thus
fveg=((f-8VO0)+zg€L,
LEMMA 3.2. (a) There exists an up to p-null sets unique sub o-algebra @ of @
such that L (2, @, p) = T(L) N L (@, @, p).
(b) Forall f€ L (Q, @, n) wehave Tf € L (2, &, w).
(c) Forall A € @, andforall f€ Ly, @,p)we have
X4 Tf = T(x4f)-
PrOOF. (a) is clear from Lemma 3.1 and Theorem 2.2.
() If f € L (R, @, p), then there exist a, b € R such that
7 axq < f < bxq.
Hence '
axq = aT(xq) < Tf < bTxq = bxe

so Tf € L (2, @, p) and by (a) also Tf € L (Q, @, w).
(c) We may assume that 0 < f < xq. Now, let 4 € @, be given. Then

Tf = T(xuf) + Tuo);  TF = xaTf + x4 TS
Furthermore, x4 € T~ '(L) N L, s0 T(x,:) = x4 and
0 < T(x4of) < T(X4) = Xue
This shows that x, T(x,) = 0 which implies
x4 Tf = T(x4f)-
Next, we state and prove our second main result.
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THEOREM 3.3. Let T satisfy T1-T4. Then there exists a unique (up to p-null sets)
sub o-algebra @, of @ and there exists a probability measure v on @ such that

@ Tf = E(fy) for all f € L;

(i) p=ron @;

(i) » < p.

ProOF. Let &, be the o-algebra of Lemma 3.2(a). For all 4 € @ set

»(4) = E(T(x4))-

Then » is clearly a probability measure satisfying (ii) and (iii). In order to verify (i)
it suffices to show that Tx, = E,(x,|@) for all 4 € @ (by T2). To this end, let
A € @ and B € &, be given. Since T(x,) € L} (Q, @, p) and since p = » on & it
follows that

E,(xsT(xs)) = E,(xsT(x4)) = Eu(T(X5n4)) = »(B N 4),
by Lemma 3.2(b), (c). This is the desired result.

ReMARK. (i) In [3] we worked with directed (not necessarily countable) sets
instead of sequences. However, since L is super Dedekind complete in the present
case it follows that the results are the same.

(ii) In many cases condition T2 of Theorem 3.3 can be deleted. We present two
examples. For more detailed results we refer the reader to [3].

CoOROLLARY 3.4. Let L = L,(Q, @, p) (1 < p < o) and assume that T : L — L
is a linear map satisfying T1, T3 and T4. Then Tf = E,(f|@,) for all f € L, where v
and &, are as in Theorem 3.3.

" PROOF. We have to verify that T2 holds. To this end, let f,|0 in L and assume
that Tf, > g > O for all n, where g € L is such that g = 0. Next, let 4 €
LFQ @, p) (p~" + ¢~" = 1) be such that E,(hg) > 0 and define

¢(f) = E,(hTf)
for all f € L. Then ¢ is a positive linear functional on L, so ¢ is continuous by
Proposition I1.5.5 of [6]. Hence, there exists an ky € L, (?, &, p) such that (f) =
E,(hof). Hence
0 = lim ¢(f,) = lim E,(hTf,) > E,(hg) > 0,
which is the desired contradiction.

Finally, we present necessary and sufficient conditions so that » = p on @ has to
hold in Theorem 3.3.

COROLLARY 3.5. Let T: L— M, @, p) be a linear map satisfying

(Tly Iffe L*, then Tf € M*(Q, &, p);
(T3) T(xq) = X

(T4) T?=Ton LN T Y(L);

(T5) E,(f) = E,(Tf) for all f € L.
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Then there exists an up to p-null sets unique sub o-algebra @, of @ such that
Tf = E,(f|@) for all f € L. Conversely, if T : L — M(Q, @, p) is a linear map such
that Tf = E,(f|@) for some sub o-algebra @, of @, then T satisfies T1’, T3, T4 and
TS5 (and hence also T1 and T2).

Proor. First observe that T1’ together with TS imply T1. Next, let £,]0 in L.
Then E,(£,){0, so E,(Tf,)|0. This implies that 7,0 has to hold. Thus T satisfies
T2, so we are in the situation of Theorem 3.3. Now, the construction of » in
Theorem 3.3 together with T5 shows that » = u has to hold on &. Finally, the
converse is clear from the well known properties of the conditional expectation.

4. Concluding remarks. Already many results concerning characterizations of
conditional expectations have been published. A review of the results up to 1965
can be found in Pfanzagl’s introduction of [4]. Besides these results we mention [1]
Lemma 4, [4] Theorems 1, 2, 3 and [5] Theorem 1. All results mentioned in the
introduction of [4] as well as the results of [1] deal with operators from an L,-space
into an L,-space, while in [5] these results are slightly generalized to Orlicz spaces.
This makes our results completely different since any knowledge of norms is
superfluous in Theorem 3.3 (and hence also in the Corollaries 3.4 and 3.5). On the
other hand, Corollary 3.4 shows that many L,-space results are easy consequences
of Theorem 3.3. Another difference between our results and almost all other results
obtained so far is that the measure p is only used to define the equivalence classes
of functions. It follows that in Theorem 3.3 p can be replaced by any equivalent
measure p’ provided that L ¢ L,(p’) still holds. This makes Theorem 3.3 also
different from the results of [4]. Finally, we observe that Corollary 3.5 is also
immediate from [4] Theorem 3.
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