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AN IMPROVEMENT OF STRASSEN’S INVARIANCE PRINCIPLE

By P. MajOR
Mathematical Institute of the Hungarian Academy of Sciences

Let a distribution function F(x), { xdF(x) = 0, { x?dF(x) = 1 be given.
Strassen constructed two sequences X, X,, ... and Y,, Y,, ... of indepen-
dent, identically distributed random variables, the X; with distribution function
F(x) and the Y; with standard normal distribution, in such a way that the
partial sums S, = 27_,X; and T, = 3}.,Y; satisfy the relation |S, — T,| =
O((n log log n)?) with probability 1. Earlier we proved that this result cannot be
improved. Now we show however that an approximation |S, — T,| = O(n%)
can be achieved, if the Y; are independent normal variables whose variances are
appropriately chosen.

Introduction. The main result of this paper is the following.

THEOREM. Let a distribution function F(x), [xdF(x) = 0, [x’dF(x) = 1 be given.
Define

o = 2znz'chzdF(x) —[ 222 xdF(x)]2 if 2"<k<2"tl,

A sequence of i.id. rv’s X, X,, - - with distribution function F(x) and a sequence
of independent normal random variables Y,, Y,, - - - EY, =0, EYZ = o} can be
constructed in such a way that the partial sums S, = 2% X,., T, = 2% Y, n =
1,2, - - - satisfy the relation

(1.1) IS, — T,| = 0(n?)  wp. L

Both the functional limit theorem for i.i.d. rv’s and Strassen’s strong invariance
principle are easy consequences of this theorem.

Let us make some remarks to this theorem. We investigated the following
problem in several papers [3], [4], [5], [6]: Let a sequence of i.i.d. rv’s X}, X,, + - -
EX, =0, EX? =1 and a function f(x) be given. Is it possible to construct a
sequence of ii.d rv’s with standard normal distribution in such a way that the

partial sums S, = 3% _,X;, T, = 2%, Y, satisfy the relation
S, — T,
(1.2) < =0 wp. I?

f(n)
Let us assume that x2~¢ > f(x) with some & > 0, logx/f(x) >0, and f(x) is a
sufficiently smooth function. The answer is affirmative if

5 P(1X] > f(n)) < oo
On the other hand the answer is negative if
(13 S P(X)| > f(n)) =
Received October 12, 1976.

AMS 1970 subject classifications. Primary 60G50, 60B10.
Key worus and phrases. Invariance principle, sums of independent random variables.

55

[Z8 (€
\k\?‘jgﬁ
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z

The Annals of Probability. STOR ®
WWww.jstor.org



56 P. MAJOR

(see also the remarks after Theorem 3 in [4]), as the following simple argument of
Breiman [1] shows.
If relation (1.3) holds then by the Borel-Cantelli lemma
IS, — S,—i| = |X,| >f(n) io. wp. L
On the other hand
|T, — T,_,| <3f(n)  for n>nyw) wp. L

Therefore, :
|S, — T, >+f(n) io. wp. L
Now we are interested in the following question. How can f(x) be chosen in (1.2), if
no more than the existence of EX} is assumed?

Strassen [8] proved that f(x) can be chosen as (x log log x)%. We proved in [6]
that Strassen’s result cannot be improved. Since EX? < oo is equivalent to

(14) s2.,P(|X,)| > n?) < oo,

Breiman’s argument gives only that f(x) cannot be smaller than x37. Our present
result means that if the EY?s are appropriately chosen then an approximation
satisfying (1.2) with f(x) = x7 i possible. Thus Breiman’s argument yields a sharp
lower bound in this case too.

Let us explain why a better approximation can be expected if the variances of
the Y,’s are changed. Define

X =X, if |X|<n?
) =0  otherwise
and

Sy = Sho XL
Then relation (1.4) implies X, = X, for n > n(w) w.p. 1.
Thus

IS, — S, < K(w) wp.1;

therefore we may substitute S, with S, in (1.2). But doing so, it is natural to couple
X, with a Y, whose first two moments agree with those of X,. We are going to
show that this coupling can be done with an accuracy defined by (1.1). It is not
difficult to see that EX, is very small, therefore Y, can be substituted with
Y, — EY, without violating (1.1). But if we change the variance so that E Y2=1,
then (1.1) may not hold any longer. .

DX, slightly differs from ¢?. But having proved the theorem we can easily prove
the following

COROLLARY. Let a sequence a, >0, n=1,2, - - - be given that satisfies Ani
1
< a, < Bn? with some B > A > 0. Define

02 = [%, x%dF(x) — [ [, xdF(x)]’.
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Then a sequence of independent normal random variables Y|, Y;, - -, EY, =0,
EY}> = 6 can be constructed in such a way that S, and T, =2%_,Y/,n=
1,2, - - satisfy (1.1).

2. Proof of the theorem. The proof will be a refinement of that given in [6]. The
main difference is that in [6] we applied a theorem of Heyde which is actually a
consequence of the Berry-Esseen inequality. Now we use the following
strengthened version of the Berry-Esseen inequality:

THEOREM A (see [6]). Let X, X, - -, X, be iid v’s. EX, =0, EX} =
1, E|X,|® = ps. Define
Fy(x) = P(n"2Z},X, <x).
Then the inequality
Cu
|Fu(x) = ¢(x)| < ———
nx(1 + |xP)
holds true, where C' is a universal constant. (¢(x) is the standard normal distribution
function.)

Let X be a rv with distribution function F(x). Set
X"=Xx if |X,|<2?
=0 otherwise.

Let us consider a sequence X{™, X{", - - - , X of i.i.d. rv’s where X(® has the
‘same distribution as X ™. Define

g = Sk XM, k=1,2,---,2"
We consider another sequence Y{", - - -, Y{? of iid. rv’s where Y{” is normally
distributed, EY{® = EX®™, and EY{" = EX™. Put T{® =3k Y™, k=
1,2,---,2" First we show that in order to prove our theorem it is enough to
construct two sequences X", Y, k = 1, - - - , 2" satisfying the relation
2.1 P(supc|SE — TEV| > g,27) <8,
wheree, > 0,8, >0,n = 1,2, - - - are appropriately chosen numerical sequences
with the property ¢, >0, 2§, < oo. In fact, if (2.1) holds we can construct
sequences of v’s X, Y, n=1,2,---,k=1,2,- - -,2" which are indepen-

dent for different n and which satisfy (2.1) for every n. Thén we define two infinite
sequences of rv’s as follows. If k=2"+;, 1</ <2, then X, = X; ™ and
Y, = Y. The partial sums S, = 3%_,X,, T, = Z%_, ¥, can be expressed as
= 3721850 + s
T, = ST + T,
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Relation (2.1) implies that
~ ~ ~ ~ 1
zf_lp(sup0<j<2nl(52n+j - Szn) - (T2n+j - Tzn)l > 3,,(2”)2)

<24, <oo.
Therefore for 2" < k < 2"*!
IS — Tl < K(w) + 2;.;15!.2%;
that gives
@2) 1S, — Tl = O(n2).
If the probability space, where the random variables X, — s and Y, — s have
been defined, is large enough, one can define a sequence X, k =1,2, - - - of

iid. rv’s with distribution function F(x) in such a way that X, = X « on the set
{IX,| <22}; k=2"+j; 1 <j < 2" These X, and X, satisfy the relation

SP(X, #X,) =3%_,2"P(X?>2") < w0,
therefore
(2:3) IS, — S| < K(w) wp. 1
where S, = 2} _X,.
Set Y, = ¥, — EY, and T, = 2% _,Y,. If we show that
(24) T, — T,| = O(n?)
then formulas (2.2), (2.3) and (2.4) prove that (2.1) implies the theorem.

But
|T, — T,| = |Z%-1EX,| < =1l EXyl-

Thus in order to prove (2.4) it is enough to show that
n=ign_ | |EX,| —0.
Now this is a consequence of the following estimation and the Kronecker lemma
Se_k~7|EX| < 22_,(2)* ’ 251 2 x dF(x)|
<222 f|x,>2%|x|dF(x)
1 n+
<22+ D)E21 /28 cm<aT x2 dF(x) < oo.
Now we will reduce formula (2.1) to a weaker statement. Define

= (2)~ %232 |x[? dF(x).
We claim that

(2.5) ®_ ., < .
Indeed,
3,a, = =(2)" 322 |xP dF(x)
@+2)

> J22 << TP dF(x) < (4 + 2(23)2 % dF(x) < o
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One can define a sequence u, u, > 0, u, = oo, 2"log(1/a,)~" >u, >
(log(1/a,))~" in such a way that even

2.5y Suja, < o

would hold true. (We may assume that n > n, for some ny.)
Now we reduce (2.1) to the following formula

2.1y P(SuP0<k<2"/m|Sl(c'r'n - TR > enﬁ) <8,

where g, > 0, §, > 0, 38, < 0, &, > 0, m is a power of 2 satisfying the inequality
2"(u, log(1/a,))™! < m < 2"*!(u, log(1/a,))"". To show that (2.1) implies (2.1)
we need some estimation.

Applying Theorem A and Lemma 3.21 in [2] we have for any k < 2"/m

P(sUPyme s il (S — SE2) — (ES(™ — ESE)| > 28u;¥)
< 4P(S — ESQ >123u; )
Ka

< 4P(TY - ETY >32%u;%) + ——
- uilogl/a,
< exp(é(u,,)% log a,,) + K— O <K'— Zn ,
uilogl/a, uilog 1/a,

where K and K’ are appropriate constants.
Therefore we have

P(SUP0<k<2"/m Squm<j<(k+1)m|S}") - St
— (ES(™ — ESE)| > 2%u; %) < K, ia,
A similar inequality holds for the T, — ET s, too. Suja, < oo because of (2.5),
therefore these inequalities imply that if (2.1)" holds with some ¢, and 4, then (2.1)
1 3

holds with ¢, = ¢, + u, # and §, = §, + 2K'u,%a,.

Now we turn to the construction of the sequences X, Y, k=1,2,---,2"
satisfying (2.1").

Let Z,, Z,, Z,, | = 2"/m be i.i.d. rv’s with standard normal distribution. Put

T — TGy, = mi0,Z;, + mEX®™,
and
S — S 1 = mic,Fyy (6(Z,)) + mEX®, k=1,2,---,1
where F,(x) = P(S" — ES™)/ ma, < x), F~\(x) = sup(y; F(y) < x) and o}
= D%,
These' sequences have the prescribed joint distributions, therefore we may

construct the sequences X, Y, j = 1,2, - -,2" in such a way that the vari-

ables Zkm X, Skm Y™ agree with these S{ and T). These sequences will
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satisfy (2.1). To prove it we estimate the first two moments of the rv’s
\

U, =[(S5 = S&vym) = (T = T&pym) (2] > %), k=1,2,---,1
where x is the bigger solution of the equation xZexp (—x2/2) =
1 1 . .
K(u,)2a,(log 1/a,)? (K will be chosen later), and 1(4) denotes the indicator

function of the set 4. The relation
U = m%on[Fm_IGb(Zk)) -z] it |Z]<x

holds true.
We claim that

(2.6) |Fr'(#(Z) — Zi| <V  if |Z] <x,
where

sa(log 1/a,)?
1+ |z

V, = K exp(Z}/2) “

(2.6) is equivalent to
(2.7) F(Z, — V) <¥(Z) <F(Z + V).
Theorem A gives that

o, (4, log 1/a,)*

F(z, -V)—-o(Z,—-V,)<C
m(Z W) — o(Z, ) 1 +1Z = V,f

with an appropriate constant C.
On the other hand, on the set (|Z,| < x) we have

&(Z) — N2, — Vi) >3V, exp(— Z2/2),

since |Z, V,| < L.

The last two inequalities give that if K is sufficiently large then the first
inequality in (2.7) holds true. The second inequality can be proved similarly.

Now (2.6) gives that

EU} < Kymf* u,02 (log 1/a,) exp(y*/2)(1 + ¥19)™' &

< K, 2a2x~ 7 exp(x2/2) < Ky- 2'a,u; 3 (log l/oz,,)_%x‘5

< K2%,u"3(log 1/a,) >, ‘
and

|EU,) < Kmi % a,ui(log 1/a,)7(1 + |yF) " &
< K2%a, < K23 a,.
Applying the Kolmogorov inequality we obtain
P(supoc <=5, U — EU| > 2%(log 1/a,)™") < Kya,uz,
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therefore
P(supk<,|2f=1'l/}| > 2%((log 1/a,)"" + Ka,u, log l/a,,)) < K7a,,ué.
Further we remark that
P(|Z,] > x) < (2%/77%):) exp(—x2/2)
< Kuéa,,(log l/ot,,)%x‘3 < Ksu,zl,a,,(log 1/a,)”".

Therefore we have
P(sup0<k<,|S,£',',,) - T > 25((10g 1/a,)”" + Kqa,u, log l/a,,))
< P(sup0<k<,|2f=,uj| > 2§((log 1/a,)”" + Kgat,u, log1/ a,,))
+3L_ P(1Z,] > x) < K,a,u3.

This means that (2.1 holds with &, = Kgu, log1/a, +(logl/a,)"'and §,= Kga,,u,,% .
Thus the proof is completed.

PrOOF OF THE COROLLARY. Y. can be chosen as Y, = (¢,/0,)Y,. Then it is
1 . .
enough to show that n=23% _ (Y, — Y;) -0 if n — co w.p. 1. The estimate

(2.8) Sn~DAY, - Y)) <
implies this relation. But
Sn-DYY, - Y)) < Sn~Y(a, — o,)
< =n~'[max(o?, 0?) — min(a?, 0;7)]

and an easy calculation shows that the last sum is-finite.
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