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APPROXIMATION THEOREMS FOR INDEPENDENT AND
WEAKLY DEPENDENT RANDOM VECTORS

By IsTVAN BERKES AND WALTER PHILIPP
Hungarian Academy of Sciences and University of 1llinois

In this paper we prove approximation theorems of the following type. Let
{Xy, k > 1)} be a sequence of random variables with values in R%, d; > 1 and
let {G,, k > 1} be a sequence of probability distributions on R% with char-
acteristic functions g, respectively. If for each k > 1 the conditional character-
istic function of X given X, - - - , X, _, is close to g, and if G has small tails,
then there exists a sequence of independent random variables Y, with distribu-
tion G such that |[X, — Y| is small with large probability. As an application
we prove almost sure invariance principles for sums of independent identically
distributed random variables with values in R? and for sums of ¢-mixing
random variables with a logarithmic mixing rate.

1. Introduction. In the last decade powerful methods have been developed to
prove strong limit theorems, such as the law of the iterated logarithm, upper and
lower class results, etc. for martingales and partial sums of independent and weakly
dependent random variables. Central to these methods are what are now called
almost sure invariance principles. These are, in our context, almost sure approxima-
tion theorems for martingales or sums of weakly dependent random variables by
Brownian motion. If the approximation error is sufficiently small then many of the
limit theorems known and usually more easily proved for Brownian motion will
continue to hold for the partial sum process under consideration.

The first to prove such almost sure invariance principles was Strassen (1964),
(1965a). In his now classical papers he used the Skorohod embedding theorem to
prove almost sure invariance principles for sums of independent identically distrib-
uted random variables and a little later for martingales satisfying certain second

moment conditions.
Csorgd and Révész (1975) proved an almost sure invariance principle for sums of

independent identically distributed random variables using a totally different
approach. Their method is based on the so-called quantile transform. It was
subsequently refined by Komlés, Major and Tusnady (1975) who obtained the best
possible error term in the approximation of partial sums of a large class of
independent identically distributed random variables.

For dependent random variables other than martingales, Philipp and Stout
(1975) developed a method to prove almost sure invariance principles for sums of
weakly dependent random variables. Their method depends on the observation
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30 ISTVAN BERKES AND WALTER PHILIPP

that the block sums of weakly dependent random variables constitute approxi-
mately a martingale difference sequence to which the Skorohod embedding theo-
rem can be applied. In this way they proved almost sure invariance principles for
sums of strong mixing, lacunary trigonometric, Gaussian, asymptotic martingale
difference sequences and for certain Markov processes.

In the case of independent random variables the quantile transform method has
a clear edge over the Skorohod embedding technique since it yields sharper
estimates of the error term in the approximation theorems. On the other hand, the
Skorohod embedding technique is simpler and it applies via martingale approxima-
tion to a wide variety of dependence structures.

Attempts to give these methods a multidimensional setting have proved only
partially successful (see Kiefer (1972)). The extension of these methods to higher
dimensions would be of interest not only for its own sake but also, as was pointed
out by Kiefer, because of its importance for the investigation of empirical
processes. .

The purpose of this paper is to develop a new approximation method which
works in any number of dimensions, in some cases even for metric space valued
random variables, and which, at the same time, applies directly to weakly depen-
dent random variables. The following two theorems constitute the basis for our
method. Denote by (u, v) the inner product of the vectors # and v.

THEOREM 1. Let {X;, k > 1} be a sequence of random variables with values in
R%, d, > 1 and let {F,, k > 1} be a nondecreasing sequence of o-fields such that X,
is %,-measurable. Finally, let {G,, k > 1} be a sequence of probability distributions
on R% with characteristic functions g,(u), u € R%, respectively. Suppose that for some
nonnegative numbers \, 8, and T, > 10%,

(1.1) E|E {exp(iKu, X)) Fi—1} — &(w)] < N
for all u with |u| < T, and
(12) G {u: [ul >3} <8

Then without changing its distribution we can redefine the sequence {X,, k > 1} on
a richer probability space together with a sequence {Y,, k > 1} of independent
random variables such that Y, has distribution G, and

(1.3) P{IXk - Ykl > ak} < ak k = 1, 2, ¢t
where a; = 1 and
(1.4) o = 16d,T; " log Ty, + NI T, + 8, k>2.

In particular, if o, < o0 then with probability 1,
SEilXe = Y] < oo,
Under a more restrictive dependence relation we obtain a sharper approximation
for random variables with values in metric space.
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THEOREM 2. Let {(S;, 0;), k > 1} be a sequence of complete separable metric
spaces. Let { X, k > 1} be a sequence of random variables with values in S, and let
{Lx, k > 1} be a sequence of o-fields such that X, is £, -measurable. Suppose that for
some ¢, > 0
(15) |P(4B) — P(A)P(B)| < ¢, P(4)
for all A € \/;,£; and B € £,. Then without changing its distribution we can
redefine the sequence {X, k > 1} on a richer probability space together with a
sequence {Y;, k > 1} of independent random variables such that Y, has the same
distribution as X, and

P{ou(Xy, Yi) > 64} < 6 k=12,---

Another approximation theorem is proved in Section 5.

Notice that in Theorem 1 there are no assumptions on the distribution or on the
moments of the random variables X,, except for the mild tail estimate (1.2) in
conjunction with (1.1) and that in Theorem 2 not even a tail estimate is required. In
comparing the two theorems we observe that if the random variables X, assume
values in Euclidean space, Theorem 1 is, in general, more versatile than Theorem 2.
Suppose, for instance, that (1.5) is replaced by

|P(4B) — P(4)P(B)| < p,.

Then Lemma 4.4.1 implies condition (1.1) with A, = 4p,. Consequently (1.5) is
more restrictive than (1.1).
The following two theorems are applications of Theorems 1 and 2 respectively.

THEOREM 3. Let {§,, n > 1} be a sequence of independent, identically distributed
random variables with values in R?, centered at expectations and with finite (2 + 8)th
moments where 0 < § < 1. Suppose that the covariance matrix T of &, is nonsingular.
Then without changing its distribution we can redefine the sequence {§,,n > 1} on a
richer probability space together with R*-valued Brownian motion X(t) with covari-
ance matrix T such that

Socid, = X(1) < 70/@) 55

By Brownian motion with covariance matrix I' we mean a (Gaussian) process
X(f) with values in R? independent increments, X(0) = O such that X(¢) — X(s)
has normal distribution with mean 0 and covariance matrix (¢ — s)I".

A sequence {§,,n > 1} is called ¢-mixing if there exists a sequence of real
numbers ¢(n) — 0 such that

(1.6) |P(4B) — P(A)P(B)| < ¢(n)P(4)
for all 4 €9k, B € O, , and all k,n > 1. Here 9 denotes the o-field
generated by the random variables §,, §, .1, -+ , &.

THEOREM 4. Let {§,, n > 1} be a strictly stationary sequence of random variables
centered at expectations with finite (2 + 8)th moments for some 0 < 8 < 1. Suppose
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that {§,; n > 1} is ¢-mixing with

(1.7) o(n) < (log n)~'%/?
and that
(1.8) 52 = E(Z,cné,) — oo.

Then without changing its distribution we can redefine the sequence {§,,n > 1} on a
richer probability space together with standard Brownian motion X(t) such that

(1.9) Z,<né — X(ay) < al%\,(log aN)_% a.s.
Here {ay, N > 1} is a nondecreasing sequence of positive numbers with ay ~ s.
The novel feature in Theorem 4 is the slow rate of decay of ¢(n) in (1.7). All the
existing strong limit theorems require that ¢(n) < n~7 for some 7 > 0. See, for
instance, the laws of the iterated logarithm of Reznik (1968), Heyde and Scott
(1973) and the almost sure invariance principle Theorem 4.1 of Philipp and Stout
(1975). Each of these results is proved under the assumption 3¢ %(n) < 00. When
specializing Theorem 4 to the case 2¢%(n) < oo then we can choose ay = o°N (for
the details see Section 4.4) and thus Theorem 4 contains Theorem 4.1 of Philipp
and Stout as a special case, except for the error term in (1.9). However, this error
term is sharp enough to guarantee that most of the classical results on sums of
¢-mixing random variables remain valid (for the details see Theorems A-E in
Section 1 of Philipp and Stout (1975)). In particular, we obtain under the hypothe-
ses of Theorem 4.1

(1.10) lim supy_, (257 log log :;',,,)_%E,,< v =1 as.

Ibragimov (1962) proved a central limit theorem under the assumption of
Theorem 4, but with (1.7) replaced by ¢(n) — 0. It would be interesting to know
whether the law of the iterated logarithm continues to hold under this assumption.

The fact that both Theorems 3 and 4 only deal with stationary sequences is
purely a matter of convenience. They both can be extended to nonstationary
sequences. Moreover, it is not difficult to weaken the mixing condition (1.6) to

(1.11) |P(AB) — P(A)P(B)| < p(n).
(See Remark 4.4.4 in Section 4.4.)

A third, more sophisticated application will deal with the approximation of
empirical distribution functions of mixing random variables by Kiefer processes.
This appeared in a separate paper (Berkes and Philipp (1977)).

2. Proof of the approximation theorems. One of the main tools used in the
proofs of Theorems 1 and 2 is a theorem of Strassen (1965b) and Dudley (1968) on
the existence of probability measures with given marginals. Before stating: this
result we give the definition of the Prohorov distance. Let A and p be two
probability measures on the class 9 of Borel sets in a metric space (S, o). Put

Ac = {x:0(x,4) <e}.
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The Prohorov distance p(A, p) of A and p is defined as
p(A, p) =inf {€ > 0: A(4) < p(A4°) + ¢ forall4 € B}.
By a remark of Strassen (1965) (see also Dudley (1968), Proposition 1) p(A, p) =
p(s A).
The following lemma is a special case of the Strassen-Dudley theorem (see
Dudley (1968) Theorem 1).

LEMMA 2.1. Let S be a separable metric space and two measures P, and P,
defined on % . Suppose that

P(Pl’ P2) <e.

Then there exists a probability measure Q on the Borel sets of S X S with marginals
P, and P, such that

0{(x,y):0(x,y) >a} <a.
The proofs of our two approximation theorems are similar and probably best
understood from the proof of Theorem 2 under the additional assumption that all
random variables X, are discrete.

2.1. Proof of Theorem 2.

2.1.1. Discrete case. The proof of Theorem 2 is particularly simple in case that
the random variables X, are all discrete. We first observe that there is no loss of
generality to assume that the o-fields £, are all atomless. If they are not then we
replace the probability space (R, ¥, P) by (2, %, P) X ([0, 1], %, A) (where the
* second factor is the unit interval with Lebesgue-measure) and redefine { X, k > 1}
and {£,, k > 1} on the new space in the obvious way. Then the new o-fields £, are
atomless and the hypotheses of Theorem 2 remain valid.

We construct the random variables Y, inductively. Let Y, = X, and suppose
that Y}, Y,, - - -, Y, _, have already been constructed and satisfy the conclusions
of the theorem. Moreover, suppose that Y,(1 < j <k) is J-measurable where
¥ = VgL Since X(1 < j <k) is discrete and has the same distribution as
Y,(1 < j <k), the Y; also is discrete. We consider the sets

(2.1.1) D=D(by, -, b)) =(Y,=0by, +, Y =b_,}

where b;,- -+ ,b,_, is in the range of Y,,- - -, Y,_, respectively. We shall
construct Y, on each such set separately. Since the disjoint union of the events D
equals © this will define Y, on the whole space.

We fix D and consider the probability measures
(2.1.2) P,(A) = P{X, € A|D} and P,(4) = P{X, € A}
defined on the Borel sets 4 C S,. By induction hypothesis D is measurable with
respect to ¥, _,. Hence by (1.5)

|Py(4) - Pz(A)I < ¢
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for all Borel sets 4 C S,. We conclude that the Prohorov distance of P, and P,
does not exceed ¢,. By Lemma 2.1 there exists a probability measure Q on the
Borel sets of S, X S, with marginals P, and P, such that

(2.1.3) 2{(x,») : ai(x,¥) > 2} < 24
Denote the range of X, by {a,, i > 1}. Then Q is concentrated on the pairs (a;, a;)
(1 <i,j< o0). Write
(2.1.4) pi = Q(a;, a).
We observe that

P{X, =a|D} = P{a}=37,0(a,a) =2, p;
Since ¥, is atomless and since {X, = a;} N D is ¥,-measurable we can partition
the event {X, = a;} N D into %,-measurable sets Dy(j = 1, 2, - - - ) such that
(2.1.5) P{DyD} = p,.
(This is a standard property of atomless spaces. (See Exercise 23 on page 30 in
Chung (1968).)

On D; we define Y, =a; (1 <i,j < ). In this way we obtain a random
variable Y, on D. Since by (2.1.4) and (2.1.5)

P{(Yk = aj)n (Xe =a) N DID} = P{DijID} =p; = Q(a,-,ty)

we observe that Y, and X, have joint distribution Q on D. Hence by (2.1.3) (we
write |x — y| instead of o,(x, »))
P{|X, — Yi| > 2¢4|D} < 29,
or equivalently
As D runs through all sets D of the form (2.1.1) we obtain a random variable Y,
defined on the whole space. We sum (2.1.6) over all possible D and obtain

(2.1.7) P{|X, — Y| > 2¢} < 2.
This is slightly stronger than the condition stated in the conclusion of Theorem 2.
Since

(2.1.8) {Ye=a}=uiD,
we conclude that Y, is ¥,-measurable. Using (2.1.8), (2.1.5) and (2.1.4) we obtain
P(Y, = D} = 35,P(D,|D) = 327,
= Py{a} = P{X, = a},
since P, is the second marginal of Q. Hence
(2.1.9) P{Y,=a,D} = P{X, = a}P(D).
We sum over all D and obtain P(Y, = a) = P(X, = a), i.e, X, and Y, have the
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same distribution. This together with (2.1.9) shows that Y,, - - -, Y, are indepen-
dent. This proves Theorem 2 in the discrete case.

2.1.2. General case. Using the separability of S, we approximate each random
variable X, by a discrete random variable X} such that X} is %,-measurable and
that

(2.1.10) X, — X2 < & k=1,2---.

By the proof of Theorem 2 in the discrete case there is a sequence { Y, k > 1} of
discrete independent random variables such that Y} has the same distribution as
X} respectively and satisfies
(2.1.11) P{|XF¥ — Y > 24} < 2¢;.
Let [§, k > 1} be a sequence of independent random variables having uniform
distribution over [0, 1] and independent of { Y}, k£ > 1}. (It might be necessary to
enlarge the probability space to have such a sequence.) Let §* = o(Y}, £&). Then
{S&, k > 1} is a sequence of independent atomless o-fields. Let ¢ be in the range
of Y} and write H = {Y} = c¢}. We consider the probability space
(H, 8, P(*|H)}. Now
(2.1.12) Py(4) = P{X, € A|H}
defines a probability measure on the Borel sets 4 C .

By Lemma 2.3 of Section 2.2 below P, can be realized by a random variable Y,
on {H, G}, P(:|H)}. In other words, there exists a §;*-measurable random variable
Y, on H such that

(@113) P{Y, € A|H} = P{X, € A|H)

for all Borel 4 C S;. As ¢ runs through the range of Y} we obtain a random
variable Y, defined on the whole space 2.

Since Y, is §*-measurable for k = 1,2, - - - the random variables Y,, Y, -
are independent. Summation of (2.1.13) over all H shows that Y, has the same
distribution as X,. In (2.1.13) H is any set of the form { Y} = c¢}. Hence the joint
distribution of Y, and Y} is the same as that of X, and Y}. Therefore

P{|Y, = Y| > 3¢} = P{|X, — Y¢| > 3¢}
< P{|XF — YE| > 20} < 24
by (2.1.10) and (2.1.11). Consequently

P{|X, — Y| > 64y} < P{|Y, — Y¢| > 3¢} + P{|X; — Y| > 3¢} < 4.
This concludes the proof of Theorem 2.

2.2. Lemmas for the proof of Theorem 1.

LEMMA 2.2. Let F and G be two probability distributions on R? with characteristic
functions f and g respectively. Let T > 10°d. Then the Prohorov distance p(F, G)
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satisfies
o(F, G) < (T/m)*f <7l fu) — g(u)|du + F(|x| > :T) + 164T " log T.
Proor. We use a simple smoothing inequality of the form
(22.1) p(F, G) < p(F* H,G * H) + 2 max{r, H(|x| > r)}

valid for any three distributions F, G, H on a metric space and for any r > 0.
(2.2.1) follows easily from the definition of the Prohorov distance.

Let H be a distribution on R? with density »(x) and characteristic function
h(u) € L'. We shall prove a general estimate for p(F, G) in terms of H and
specialize later to obtain the desired bound. Write F;, = F« H and G, = G * H.
Then the characteristic functions of F, and G, respectively are given by f, = fh and

= gh. Both belong to L'. Hence we obtain for the densities ¢ and y of F, and
G, respectively

(222) lo(x) = y(x)| = 27) ™| fae " (fi(u) — g,(u)) du|
< (7)Y el fu) — g(w)||(w)| du
< Q)T + 2f s 1lh(w)| du)

for all x € R% Here

(223) I= f|u|<T|f(“) — g(u)| du.
Hence for any Borel set B
F\(B) — G\(B)
SEBN{x<T}) - G(BNn{x<T}) + Fl(IXI >T)
(224) < fini< J0(x) = y(x)|dx + F(|x| >3T) + H(|x| >47)

< (T/m)I + 2f s rlh(u)| du) + F(|x| >3T) + H(|x| i7)

by (2.2.2). We note that the right-hand side of (2.2.4) is an upper bound for
p(Fy, G,). Hence, if r < 1 T we obtain from (2.2.1)

(225 p(F, G) < (T/m)(I + 2fyy51lh(w)|du) + F(|x| >3T)

+3 max{r, H(|x| > r)}.

It remains to choose H and r suitably. Put
0=3d2T 'log:T and r=5dT ‘logT
and let H be a normal distributioq with density
»(x) = (2m0?) "¢ exp(— 30728, xP).
Then the characteristic function is given by |
h(u) = exp(——a 3 cathf )
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The lemma follows now from (2.2.3), (2.2.5) and the estimate

226)  (m)7 [ a0xp(— 13, ad)du = P{x3 > 4?)
< e WE{exp(tx3)}l,=sys = e 47521

via elementary calculations.

Lemma 2.3. Let (S, 0) be a complete separable metric space and let p be a
probability measure on the Borel sets of S. Let (2, %, P) be a probability space such
that % is atomless. Then there exists a random variable X on (2, ¥, P) with state
space S and distribution p.

ProoF. The separability of S implies that for any § > O there is a partition
S = U ,4; where 4, is a Borel set with diameter less than 8. Since this is also true
for any Borel subset of S we can find for each k > 1 a partition {4, =

1,2,- - -} of S such that the kth partition is a refinement of the (k — 1)th one
and such that for each k the diameter of the Borel sets A, is less than k™2
fori=1,2,- - - . Since ¥ has no atoms we can find for any C € ¥ and any se-

quence {p;, i > 1} of nonnegative numbers with P(C) = £2,p; a partition C =
U2, C,; with P(C) = p,. (See the remark following (2.1.5).) Hence for the sequence

(A, i = 1,2, - - }¥-, of partitions of S there corresponds a sequence

{By,i=12,---}7_, of partitions of { such that

(22.7) P(By) = p(4i)

and such that {B; ,,,i=1,2,- - -} is a refinement of {By,i=1,2,-- -} for
“each k =1,2,- - - . For each pair (i, k) we choose a point x; € 4,;. We now

define a sequence {X;, k > 1} of random variables on (2, ¥, P) by

(2.2.8) X () = x; if w € By.

By the construction of the sets 4, and B, we conclude that
0(X, 4 1(0), Xp(w)) < k™% forall weEQ.

Consequently {X,, k > 1} converges to a random variable X, uniformly on {. This
implies
(2.2.9) o(Xy, X) < 2/k.
In what follows we shall show that X has the desired property. Let g, and p* be
the distributions of X, and X respectively. Then for each Borel set 4 C S,
m(4) = P{X, €A} <P(X € AY*) = y*(4¥%)
by (2.2.9). Hence we obtain for the Prohorov distance

(2.2.10) o( e p*) < 2/k.
On the other hand by (2.2.7)—(2.2.9), since g, is concentrated on x;; and since 4,
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has diameter less than k=2,
m(4) = zxikeAp'k(xik) = Ex,keAP(Bik) = zx,kEAp'(Aik)
< Zu(4V% 0 4) = w(4"").
Hence

o( e 1) < 1/K2
This together with (2.2.10) shows that u* = p and that thus X has distribution p.

Lemma 24. Let (2, 9, P) be a probability space such that % is atomless and let
S be a complete separable metric space. Let X be a discrete random variable on
(Q, F, P) with state space S. Moreover, let Q be a probability measure on the Borel
sets of S X S such that the distribution X is a marginal distribution of Q. Then there
exists a random variable Y on (R, &, P) with state space S such that X and Y have
Jjoint distribution Q.

ProoF. This is an easy consequence of Lemma 2.3. Let {x,, i > 1} be the range
of X. For fixed i we define a probability measure

(2.2.11) 0(4) = ,‘:’—gﬁ‘-‘—i%

on the Borel sets A C S. We consider the probability space {(X = x,), F N (X =
x;), P(*|X = x,)}. By Lemma 2.3 there exists a random variable ¥ on this space
such that

(2212) P{Y € A|X = x;} = Q(4).

As x; runs through the range of X we obtain a random variable Y defined on the
whole space (2, %, P) and satisfying (2.2.12). By (2.2.11) Y does what is required.

LEMMA 2.5. Let £, £, and £, be o-fields such that £,\/ £, is independent of
£ ,. Then for each integrable random vector X with state space R? and measurable
with respect to £,

E{X| V£,} =E{X|E} as.

Proor. See Chung (1968), page 285.

The following lemma is well known and easy to prove.

LEMMA 2.6. Let U be a random variable with finite expectation and let ¥ O § be
two o-fields. Then

E|E(U|F)| > E|E(U|S)|.

2.3. Proof of Theoreml. As in the proof of Theorem 2 we observe that there is
no loss of generality in assuming that the o-fields %, are atomless. Indeed, we can
enrich the probability space (2, ¥, P) by adjoining a sequence {§,, n > 1} of
independent uniformly distributed random variables such that this sequence is
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independent of \/{°9%,, , ,. Let &, = o(F,,£,). Then ¥ is atomless and by Lemma 2.5
all the hypotheses of Theorem 1 remain valid if we replace %, by %;.

2.3.1. The totally discrete case. We first prove Theorem 1 under the additional
hypothesis that all X,’s and all G;’s are discrete. We apply Lemma 2.3 to (2, %,, P)
and G, and obtain an % -measurable random variable Y, with distribution G,.
Since a; =1 condition (1.3) is satisfied. We now assume that Y,(j <k) have
already been constructed and that, in addition to the desired properties, they are
%,-measurable. We consider the sets

(2~3~1) D= D(bv T bk—l) = {YI =by -, Y, = bk—l}

where b; is in the range of Y, (1 <i <k). We construct Y, on each set D
separately. Since the disjoint union of all possible events D equals { this will then
define Y, on the whole space (2, %, P).

We fix D and consider the probability measure F, on R% defined by

(232) F(B) = P{X, € B|D} = Pp(X, € B)

for all Borel sets B of R%. We now shall estimate the Prohorov distance p(F,, G,)
using Lemma 2.2. The characteristic function f, of F, is given by

(233) fu) = ﬁ [ expli<u, X,.>)dP.

Let G, _, be the o-field generated by Y, - - -, ¥, _,. Since §,_, C ¥,_, we obtain
using Lemma 2.6 and (1.1)

. E|E {exp(i{u, X)) G-} — (W) < A

for all |u| < T,. Hence
(234) E{f|u|<n|E{eXP(i<“, XSy} — gk(“)|d“} < MRT)%
Let ¢, > 0 be arbitrary to be chosen suitably later. Put

(2.3.5) M = N/ €&

Then by Markov’s inequality

(23.6) i<z, | E {exp(iu, X, 3)|Gi_1} — gi(w)ldu < &(2T)*
except on a set 4, with

(2.3.7) P(A4,) < .

In the following we disregard sets of measure zero. Since D is an atom of § -1
we conclude that on the set D the conditional characteristic function
E {exp(i{u, X;.))|Sk~} is a nonrandom function in u and equals f,(«) by (2.3.3).
Thus (2.3.6) either holds for all w € D or for none of them. Consequently, either
D c A, or D C Af. Let us first assume D C Af. Then by (2.3.6)

S| (1) — g(w)|du < Gk(2Tk)d"-
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Hence by Lemma 2.2
(2.3.8) o(Fy, G) < T2 + 8, + 164, T, 'log T, = B, (say).

(Note that at this point we do not use the full strength of (1.2).)
If on the other hand D C A, then we trivially have p(F, G,) < 1. Hence

(2-3-9) P(Fk, Gk) < B
where
(2.3.10) Bl =B, if DCAf

=2 if DcCA4,

By the Strassen-Dudley theorem (see Lemma 2.1) there exists a probability distri-
bution Q = Q,, on R% X R% with marginals F, and G, such that

(23.11) Q{(x,») t Ix =y > B} < B

We now apply Lemma 2.4 to the probability space (D, %P, P,). By (2.3.2) the
distribution of X, on this space is F,, a marginal of Q. Hence there exists an
%, P)-measurable random variable Y, such that X, and Y, have joint distribution
Q. In particular, by (2.3.11)

PD{le - Ykl > BI;} < :Blé
or

(23.12) P{|X, - Y| > B, D} < P(D)B;.
Moreover, since the second marginal of Q is G,, we conclude that Y, has
distribution G, on D, i.e.,

(2.3.13) G.(B) = P,(Y, € B) = P(Y, € B|D)

for all Borel sets B of R*. As D runs through all the sets of the form (2.3.1) we
obtain an %, -measurable random variable Y, defined on the whole space. (2.3.13).
implies that Y, has distribution G, and that Y, is independent of Y,,- - -, Y, _;.
We sum (2.3.12) over all events D C Af and obtain, using (2.3.7) and (2.3.10),

P{|X, — Y| > B} < B + me

We choose ¢, = Ak%Tk‘d" and obtain a result slightly stronger than (1.4), namely
with (1.4) replaced by

(23.14) a, = 16d, T, " log T, + 3\ T % + §,.
This concludes the proof of Theorem 1 in the totally discrete case.

2.3.2. The general case. For each X, there is a discrete %, -measurable random
variable X} € R% such that

(2.3.15) X, — XP| < AT
Then for all u with |u| < T
(23.16)  |E{exp(i<u, X;))|Fi_1} — E {exp(iu, X¥>)|F; -1}
< E{lexp(i<u, X, — X)) = 1]|F_y} < TNT' = A
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We now approximate G, by a discrete distribution function G with characteris-
tic function g¥ such that the following three conditions are satisfied.

(23.17) p(GE, G) < NI,
(2.3.18) |g¥(u) — g(u)| <A, forall |u| <T,
(2.3.19) GH(jul >1T;) <8,

This can be easily achieved by choosing a random variable Z, with distribution Gj.
We then pick a discrete random variable Z¥ such that |Z, — Z¥| < A, T, ". Then
(2.3.17) follows from the definition of the Prohorov distance and (2.3.18) follows
from the argument in (2.3.16). Finally (2.3.19) follows from (1.2) since 7, > 10 and
thus A, 7! <1T,. Hence by (2.3.16), (2.3.18) and (1.1) we have for all u with
lu| < T,
E|E {exp(iu, X}))|Fe—1} — ()] < 3\

Then by (2.3.19) and by the totally discrete case of Theorem 1 proved in Section
- 2.3.1 there exists a sequence {Y¥, k > 1} of independent, ¥, -measurable random
variables Y} with distribution G} such that

(2.3.20) P{IXr — Y} > af) < af
with af = 1 and
af = 164, T " log Ty, + 3N T, + §, k> 2.

(See (2.3.14). Recall that we did not use the full strength of (1.2) in the totally
discrete case.)

Now let {§, k > 1} be a sequence of independent random variables, uniformly
distributed over [0, 1] and let §* = o(Y}, &). Then {G, k > 1} is a sequence of
independent atomless o-fields. We enrich the probability space (2, %, P) by
adjoining the sequence {£, k > 1} and dénote this new space also by (2, ¥, P).
We redefine the sequences {X,, k > 1}, {X¥ k > 1} and {Y}, k > 1} without
changing their joint distribution.

By (2.3.17) and the Strassen-Dudley theorem (see Lemma 2.1) there exists a
probability measure Q, on R% X R% with marginals G, and G} such that

(2.3.21) O{(x )t |x =y > NI} S N TN

We apply Lemma 2.4 to the (enriched) space (2, 8;*, P). The distribution G of Y}
is a marginal of Q,. Hence there exists a random variable Y, on (2, G, P) such
that Y} and Y, have joint distribution Q,. In particular, by (2.3.21)

(2.3.22) P{Y, = Y} > NI} < AT

Now Y, has distribution G, the second marginal of Q,. Since Y, is §,;*-measurable
the sequence {Y,, k > 1} is a sequence of independent random variables. Finally,
(1.4) follows from (2.3.15), (2.3.20) and (2.3.22).

3. Proof of Theorem 3. The proof of Theorem 3 is based on several welll-known
facts. Let f, () be the characteristic function of the normalized sum N 722, y§,.
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LemMMA 3.1 (von Bahr (1967)). Under the hypotheses of Theorem 3
G ) — exp(=3<m Twy)| < €N ~2°|uf *Pexp(— )
for all u € R? with |u| < C,N 2. Here the constants C,, C, and vy > 0 only depend
on d and on the moments of §,.

We now define blocks H, of k* consecutive integers where
3.2) a=[18d/8] + 1.
We leave no gaps between the blocks. For given N > 1 define M = M, by
N € Hy,. Then

(3.3) M <3, k<N M,
Let i), be the smallest number of H,,.
LemMMA 3.2. Under the hypotheses of Theorem 3
max ,,M<N<,,MH|2{,V_,,M§,,| <« by /8ARD) g

ProOOF. Write £,, =&, 0, &, We recall that for fixed 1 < j < d the nor-
malized sum M ~2a3 by <r< ,,MH£ satisfies a central limit theorem with remainder
< M 1% since {§,> v > 1} is a sequence of independent, identically distributed
random variables centered at expectations and finite (2 + §)th moments. Let

= (4(1 + a))~'. Then by Lévy’s maximal inequality (see Loéve (1963), page 248),
by (3.2), (3.3) and by stationarity

P{max ,, cxcny [ZVopfl > B
< 2/<dP{max g <Ny | S oSl > d d~ih ‘“’\}
1
<y eaP (B, v, ol > 4Tt — MiQEED})

<exp(—cd M) + M~ 78 & M,
where ¢ > 0 depends only on T. The lemma follows now from the Borel-Cantelli

lemma. [J
Put
(34) X, = k2%, u 8,
and let %, be the o-field generated by X, - - - , X,. Then with probability 1
(3:5) E {exp(i{u, X;)|F;_1)} = E {exp(iu, Xk>)}

for all u € R“. From (3.1) we obtain for k > k, and all u with |u| < Czk%“
E {exp(iu, X;»)} — exp(—3<u, Tuy) < k18 « k=%,

This together with (3.5) shows that condition (1.1) is satisfied with A, = const. k ~*¢
and T, = const. k%4,
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We now show that condition (1.2) is satisfied. Since I is positive definite all
eigenvalues p,, - - -, p; of T' are positive. We write T = UAU ~! where U is a
unitary and A is a diagonal matrix. We define A~ in the obvious way and make
the substitution # = A~2U ~'u in the following integral. Write z = (¢, - - - , ¢;) and
p = max ;. ;<0 Then by (2.2.6)

o{lul > 1T} = (27) 2%(det T)"* f > irexp(— 3<u, T™'u)) du
1 1.2
= (2'”) demtﬂ t +pdt3>Tk2/l6e_2‘ dt

< (27)_%df|,,>%np‘%e‘%‘z dt < exp(—3T2p~'/128) = &, (say).

Hence by Theorem 1 we can redefine the sequence {X,,k > 1} on a new
probability space together with a sequence {Y,, k > 1} of independent random
variables Y, with normal distribution N(0, T) such that

(3.6) P{le - Ykl > ak} < ak
where
3.7 o <k

We now construct the Brownian motion X(7). We first observe that for any
Brownian motion X(#) with covariance matrix I the vectors

(3.8) YE = (X(heyr) — X(h))k ™2

are independent normal vectors with normal distribution (N(O, I')). Hence the
< sequences {Y;, k > 1} and { Y}, k > 1} have the same distribution. Consequently,
by the Kolmogorov existence theorem we can redefine the process {2, <, ¢t > 0}
and the sequence {Y,, k > 1} on a richer probability space without changing the
joint distribution of these two processes and such that on this new probability
space there exists a Brownian motion X(¢) with covariance matrix I' satisfying

(3.9) Y, =Y} k=12--

We now show that X(¢) has the desired properties. Let ¢ > 0 be given. Define
N = [t] and M as above. Then by (3.4), (3.8) and (3.9)

(3.10) 2,8 — X()| < ZpepmlXi — Yklk%a + max hM<N<hM+,|211Y-hM£v|
+sup hM<:<hM+.|X(t) - X(hM_)|°
By (3.6), (3.7), (3.2), (3.3) and the Borel-Cantelli lemma the first term in (3.10)

<<2k<Mk2 ak<<M2" L N2—8/@d) 44

By Lemma 3.2 the second term in (3.10) is < N 37 8/(80d) Finally, by a routine
argument we conclude that the last term in (3.10) is also within the desired bounds.
Indeed, since the components X(¢) (1 < j < d) are one-dimensional Brownian
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motions we have with A = (4(1 + a))™!
P{sup 4, <rcn, [ X(1) = X(hy)| > B}
< 2j<arP{S‘1p e <t < K1) — X(Iyg)| > d_ith%_}‘}
< 2P (S0P ol (O] > d 3 hy 3 M 3]

< P{IN(O, 1)| > d~7hy "M 2} < exp{ —cd 'hl7PM "} < M2

by the proof of Lemma 3.2. Here ¢ > 0 depends only on I'. This proves our claim
and thus Theorem 3.

4. Proof of Theorem 4.

4.1. Lemmas. For the proof of Theorem 4 we need a few well-known facts, all
valid under the hypotheses of Theorem 4.

LemMA 4.1.1 (Ibragimov (1962)). Let p,q >0 with p~' + q~! = 1. Suppose
that § and v are measurable with respect to ¥ and L, . Moreover, suppose that
€], < oo and ||n]|, < co. Then

|E¢n — E&-En| < 26%/PX(n)|&]|,lInll,-
LEMMA 4.12. We have for some constant a > 0
(4.1.1) E[Z,nél*? < asy**°,
(4.1.2) s% = Nh(N)
. where h(N) is a slowly varying function on the integers satisfying h(x) < x" for any
T > 0. Moreover, for all x
(4.13) P{max |, nISpcnbcl > %) < 2P{[Spcnbel > x — 25y} + N7,

(4.1.1) and (4.1.2) are due to Ibragimov (1962) pages 360 and 357. The proof of
(4.1.3) is basically the same as the proof of Lemma 3 of Reznik (1968) except that
at one place (4.1.2) has to be used.

4.2. Introduction of blocks. Put

(4.2.1) a = §/40.

We define blocks H, and I, of consecutive positive integers, leaving no gaps
between the blocks. The order is H,, I;, H,, I,, - - - . The lengths of the blocks are
defined by .

422) cardH, =[2ae* k1], card ], =[ae*k*'].

We set '

(4.2.3) N, =3, card(H, U L) ~ "

and

(4’2’4) Y = szHkgw O = ZPEIkgl" GI% = Eul%'
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LemMMA 4.2.1. We have
1 1
0k2 T K sy K0 k27

ProOF. Again we define blocks H* and [*(1 < j <) of consecutive positive
integers leaving no gaps between the blocks. Let each H*(1 < j <) consist of
card H) elements and let each I[*(1 < j <) consist of card I, elements. Define / to
be the largest integer with

(42:5) U,iru U, frc U _HuUl

and let I} consist of these integers which belong to the set theoretic difference of
the two sets in (4.2.5). Note that I;* can consist of as many as card ([, U H,) — 1
elements. Then

e < ¥ ke « ok

or
(4.2.6) K< < k2

By (4.1.2), (4.2.2), (4.2.4) and (4.2.6)

(4.2.7) loll < e** < a,7/1 1<j<k
Weset for1 <j </

(428) uj* = zveHj‘gw Dj* = Evelj‘gv'

We first show that

(4.2.9) 07| < 0.

" If |card H, — card I}| < card I, then by Minkowski’s inequality and by the
argument used to prove (4.2.7)

lo¥|| < 0, + e** < o.

If, on the other hand, card I}* < card H, — card [;, we define a random variable z
by (recall that the last summand in v is &)

z=o'+ gNk+m +-. +€Nk+h

where m is the smallest integer with ¢(m) < 3 and where h = card H, — card I}.
Since z is a sum of card H, — m terms £, we have

(4.2.10) o, = ||z|| + O(1).
By Lemma 4.1.1

. . 1
(42.11)  Ez* = E(of + z — of) > ||ofI? + llz = o}I* — 2¢2(m)l|o}|lllz — of|
> zlloF*

(4.2.9) follows now from (4.2.10) and (4.2.11).
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By (4.2.7), (4.2.6), (4.2.4) and (4.2.9)
(42.12) IZ,<071l < Lol + l1oFl] < Iloell + 0 < 0.
Moreover, by Lemma 4.1.1, (4.2.6), (1.6) and (4.2.1)

EE ) - lof < 2i<j<lol%¢%(ek7(a—l)
< otk 2 < a}.

Hence by (4.2.12)
(4.2.13) sy, — 170, < 0.
The lemma follows now from (4.2.6).

.LEMMA 42.2. We have

J

Proor. From (4.1.2) and (4.2.2) we conclude that

1
2kt < 8%, a.s.

I|2j<kvj”2 < 2j<ke%(1+fy7(a—1)(1+f) < e%(l+vr)ka‘
Hence

—_ lkZa

P{|2j<kvjl > Sz%vk} <<S];kle(l+‘r)k“ & e~ U=DK+(+Dk" =7
by another application of (4.1.2) and (4.2.2). The lemma follows now from the
Borel-Cantelli lemma.

LEMMA 4.2.3. We have
maxNk<N<Nk+,|211Y=Nk+l£u| < SNkk—sa a.s.

PrOOF. By statior;arity, Lemma 4.2.1, (4.1.1), (4.1.3), (42.2) and (4.2.1) we
obtain

P{max Nk<N<Nk+,|211Y-Nk+l£u| > stk_sa}

< P{|uk| > sy k™% — 2ok} + (Ngy1 — N -3

< P{|u| > %stk"S“} + ek

2446 ke
+ k

< sy COE | o5+ + o7k < (0,k>/sy,) €

< k—(%—Ga)(2+40a) < k~1"2
The lemma follows now from the Borel-Cantelli lemma.
LEMMA 4.2.4. We have '
(4.2.14) sﬁ,k“ o o2,(1+0(k™"))
and
(4.2.15) st — Z;x0; < sy kL
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Proor. From Minkowski’s inequality and (4.2.7)
SNy < SN, + 0415 SN, <L Sy, + 0p -
Thus by Lemma 4.2.1
(4.2.16) sy, L sy, LSy,
Since
2
31%',‘,,, = E(uk+1 + o4 t 2y<Nk§v)
we have
2 2 2 1 —2
SNers ~ SN, T Okr1 K Of418n, T OGSy K
by Lemma 4.1.1, (1.8), (4.2.7), (4.2.4) and (4.2.1). Thus by Lemma 4.2.1, (4.1.2) and
(4.2.16)
(4.2.17) Sy = S~ G < o2 kL
This proves (4.2.14). To prove (4.2.15) we sum (4.2.17) and obtain using (4.2.2)

and (4.1.2)

2 _sn 2 2 “iy,. 2 2 -1
Sx., — Zh=o0k+1 L Zpglni T 1 Dlnck<nOie1 < SyN

4.3. Conclusion of proof of Theorem 4. Let £, be the o-field generated by u,. We
apply Theorem 2 to the sequence {u,, k > 1} and obtain a sequence {Y,, k> 1}
of independent random variables having the same distribution as . and satisfying

(43.1) P{luy, — Y| > Rk} < k™4

since by (1.8), (4.2.2) and (4.2.1) ¢ < 2k7'%%/% =2k~ for all k > k.
We now apply Strassen’s (1965a) Theorem 4.4 to the sequence {Y}, k > 1} and
f(t) = t(log £)~>. Then

(4.32) Vi =3, EY? =3, Eu? = 53, (1 + 0(k™"))
by Lemma 4.2.4. We note that by (4.1.2) and (4.2.3)
(4.3.3) log sy, < k** < log sy,.

Thus by the last two lines of the proof of Lemma 4.2.3 and by (4.3.2)
Zi>1V '(log LAY {¥2>Viog Vi) "} Y(dP
1
< 2k>,(s§k2k1°“)l+ Z8E|uk|2+‘s < co.

Hence by Strassen’s (1965a) Theorem 4.4 we can redefine the sequence {Y;,j > 1},
without changing its distribution, on a richer probability space together with
standard Brownian motion X(¢) such that

(43.4) S, Y, — X(V) < Vi(log V)% as.
Theorem 3.1 follows now at once. We put
(4.3.5) ay = Vi (N, <N < Ngyo)
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By (4.3.2) the sequénce {Vi, k > 1} and thus {ay, N > 1} is nondecreasing.
Moreover, for N, < N < N, ,,

2 2
ay — sy =V, — E(2n<Nk§n + 2]:=Nk+l€n)
=V, — s} +0(sy0) < sy k™' < sik!

by (4.3.2) and since

E(2§=Nk+1§n)2 < .

(This last relation can be proved in the same way as (4.2.9).) Consequently,
ay ~ s%. Finally, let N > 1 be given. Choose k so that N, < N < N, ,. Then

S,cndy — X(ay) < 2,y — Y| + 12,00
+max Nk<M<Nk+.|21r:l=Nk+ il

(4.3.6)
+ |2j<k Yj - X( Vk)l

< V,(log Vk)_%<< ay(log aN)_% a.s.
by (4.2.4), (4.3.1)-(4.3.4), the Borel-Cantelli lemma and Lemmas 4.2.2 and 4.2.3.
This proves Theorem 4.

4.4. Miscellaneous ramarks.

4.4.1. We first prove the claim that Theorem 4 implies the law of the iterated
logarithm (1.10). Since ay ~ sZ this will follow from
‘(44.1) lim sup »_,(2ay log log aN)—%X (ay) =1 as.
The law of the iterated logarithm for standard Brownian motion implies at once
that lim sup(- - - ) < 1. To prove the reverse inequality we recall that, by the
standard proof, for given § > 0 there is a sufficiently large g such that
(44.2) lim sup ,_,..(2¢" log log q”)_%X(q”) >1-6 as
But for given n there is a k such that

Vie 4" < Vi

This implies by (4.3.2), (4.2.4) and Lemma 4.2.1

(4'4'3) q” - Vk < Vk+l - Vk = 0]34_1 < ka—%-"a.
" Hence '
(4.4.4) lim sup ,_.(2V, loglog ;) "iX(¢") > 1 -8  as.

Now X(¢") — X(V}) is a normal random variable with variance < ka‘%““ by
(4.4.3). Thus

P{|X(q") = X(V)| > V} < exp(~ K3).
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Consequently by (4.4.4) and the Borel-Cantelli lemma

lim sup ,_,.(2V, log log Vk)_%X V)>1-686 as.
This together with (4.3.5) proves (4.4.1) and thus our claim.

4.42. We now show that in the standard case 2¢%(n) < o0, the quantity ay can
be replaced by o°N. Hence in this case Theorem 4 reduces to Theorem 4.1 of

Philipp and Stout (1975) (except for the error term). Indeed, if 2¢%(n) < oo then
by Lemma 4.2.2 of the just mentioned paper we obtain after a proper normaliza-
tion of the random variables

sy — N < N¥@+5),
Hence if N, < N < N,,,, then
ay—N=s3(1+0k™")) - N
=N(1+0k™ ") -N
< N (k' + k') < N,(log N,) "2 < N(log N) ?
by (4.3.5), (4.3.2), (4.2.2), (4.2.3) and (4.2.1). Consequently,

Zienb — X(N) < N(log N)_% a.s.

by Theorem 4, the Borel-Cantelli lemma and since X(ay) — X(XN) is a normal
random variable with variance < N(log N)~2.

443. It is an easy matter to extend Theorem 4 to functions 7, =
f&:, &,415 - - - ) of sequences of ¢-mixing random variables. A proof can be
modeled after Section 7 in Philipp and Stout (1975).

44.4. There is no difficulty in extending Theorem 4 by our method to
sequences of random variables satisfying a strong mixing condition (1.11). How-
ever, in this case we have to assume that the mixing rate p(n) satisfies p(n) < n —</8
for some ¢ > 0. Since such a result was proved by Philipp and Stout (1975) using
martingale approximation techniques it is not worthwhile to present here a proof in
full detail. We only give a short sketch instead.

We define the blocks u, and v, as well as o, by (4.2.4). Instead of Theorem 2 we
apply Theorem 1 to the sequence {u.0; !, k > 1}. We note that the left-hand side
of (1.1) does not exceed

(44.5) E|E{exp(i<u, w07 D) F_y} — E {exp(i<u, 0 "))}
+|E {exp(i<u, w07 "))} — e~1%.

The second term in (4.4.5) is small for |u| < T} since, as is well known, the central
limit theorem with remainder holds for properly normalized sums of strong mixing
random variables. The first term in (4.4.5) is small by (4.2.4), (4.2.2) and the
following lemma due to Dvoretzky (1970).
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LeMMA 4.4.1. Let X be a random variable with |X| < 1 and let ¥ be the o-field
generated by X. Then for any o-field 8
E|E(X|§) — EX| < 27p(%, §)
where
o(F, 8) = sup| P(4B) — P(4)P(B)|
the supremum being extended over all A € ¥ and B € §. If X is a real-valued
random variable then 2w can be replaced by 4.

Hence by (4.4.5) we see that (1.1) is satisfied with g, () = e~ 2% for all lu| < T,.
Since G, is normal (1.2) also holds if 7, was suitably chosen. Thus by Theorem 2.2
there is a sequence of independent standard normal random variables Y, such that

P{lYk - ukok—ll > ak} < ak
for some a; with Za;, < oo. Thus
(4,4,6) P{luk - Ykok| > okak} < Oy
where {Y,, k > 1} is a sequence of independent normal N(0, 6?) random variables.
The partial sums of this sequence can be embedded into standard Brownian
motion by Kolmogorov’s existence theorem. By (4.4.6)
As in Lemma 4.2.2 it is easy to see that the small blocks v, can be discarded.
Finally, we recall that by a maximal inequality, similar to (4.1.3), Lemma 4.2.3 also
remains valid in the strong mixing case. However, in its proof one has to apply the
« central limit theorem with remainder instead of Markov’s inequality for the
(2 + §)th moments.

5. One more approximation theorem. The basic hypotheses in both Theorems 1
and 2 involve the conditional characteristic function or the conditional distribution
of X,. However, in some instances the joint characteristic function of X, - - - X, is
easier to deal with.

THEOREM 5. Let {X,,k > 1} be a sequence of random wvariables and let
{Gy, k > 1} be a sequence of probability distributions with characteristic functions

g(w), u € R. For fixed k > 1 denote f(u,,- - - , w) the joint characteristic function
of Xy, - » X, and f*(uy, - - - , w,_,) the joint characteristic function of Xy, - -,
X1 Suppose for each k > 2 .

(53) | furs =+ o s ) — Py s e )& )] < px

Jor all u = (uy, * * - 5 ) with |u| < U, where

(54) U, > 10°%2

Moreover, suppose that for some m; > 0

1
(5.5) max | ;o P{1X] > Ut} < e
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Then the conclusion of Theorem 1 remains valid with
0 < U log U + ndkiUi+ pUE*S k> 2.
PrOOF. Let F, be the distribution and f, be the characteristic function of X;.
We putu, = - - - = u,_; = 0 in (5.3) and obtain
(5:6) | fe(e) — &) < P
for all u, with |4 < Uy. Hence by Lemma 2.2 with T = 2U; ¢
o(Fe G) < o U/* + F(Jul > U7) + 8U.+ log U,.
Thus by the definition of the Prohorov distance and since by (5.4) Ui < 2U,+ — 1
< U,* — p(Fy, Gy), we obtain
(5.7) G (lul > 2U%) < F(lul > U§) + o(Fi Go)

< pka + 2n, + 8U,:7l log U, = §,(say).
This shows that condition (1.2) of Theorem 1 is satisfied with T} = 8Uk%.

The verification of condition (1.1) has some similarities with the proof of Lemma
2.2. Let {£, k > 1} be a sequence of independent random variables with distribu-
tion H, and characteristic function h, € L' to be chosen suitably later. Put
Z =X +§ 1<j<k. Since h, € L', the joint density p(zy,- -, Z) of
Z,-+,Z,is given by
(5:8) Pz, z) = (277)_kfn"e—i<"’z>f(“1, Ce )

X hy(uy) -« - (e )duy - - - dy
_ where u = (up, " -, %) and z = (zp,* " ,2) Similarly the joint density
p*zy sz Of Zy, - v, Zy_y s given by ‘
(59) Pz Zon) = (2'”)—k+lfR*—'eK“"z»f*(up Ce L, Wey)
X hy(wy) -+ ey (e y)duy - - - Ay
where u* = (u;, - * + , #_;) and similarly z* = (z}," - -, z,_,)- Finally, we note
that Z, has density
(5.10) 2(z) = @) fre ™ i () () dity
Thus for all real u,
E|E{e™*|Z,,- - -, Za}— E{e™ |

= fn"-'|fnem"z"(pf((zzll:: .. .. ,,zzkk_)l) - pk(zk))dzkl
Xp*(zy,+ + v > Z—1)dzy - Az
(5.11) < Jwelp(zp- s 2) — p*(zn e s 2 )Pz )N dzy - - a2
< f|z|<vk|P(Zl’ e, z) =P s z_)pe(zldzy - - dz;,
+P{Z2+ - +ZR>U + P{ZP+ - +Z >1u2}

+P(22 >3 U02).
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By (5.8)—(5.10) the last integral is bounded by

(2“)_k(2Uk)kfR*|f(“1a e ) =y -, uk—l)fk(uk)l
X|hy(uy) - - - h(w)|du, - - - du,

< (Uk/ﬂ)kfhd(ljk{lf(ul’ Cee ) = fH(uy, e, AR ACA]

(5.12)
+1f(w) — g(w)|}duy, - - - dw,
+ U s lm(u) - - - B(u)|du, - - - du,
< UZp + Ubfsulm(uy) - - - hy(w)\du, - - - du,.
We put
(5.13) o=}

and choose H; a normal distribution with mean 0 and variance oj2. Then the last
integral in (5.12) is by (2.2.6)

<S>, e%p(— 32k 0fu)duy - - - dyy < Uk 50,0, xP(= 52, i87)dty - - - iy
< Uf exp(~3U70?/8).2 < exp(~ 4 U7).

Thus by (5.12) the last integral in (5.11) is bounded by
- (5.14) < U¥p, + exp(— %— Uk%).

It remains to estimate the three tail probabilities in (5.11).
By (2.2.6), (5.4), (5.5) and (2.4.7) we obtain

P{Z2+ - +22> U2} < P22, (X2 + &%) > U?}
<3, P{X? > U2/4k) + P(3,,4% > 1 U2)
19 < S0P {1X] > UF) + P{Sebie > 102)
<L kn, + e U,

For the other two tail probabilities in (5.11) we obtain the same bounds in the same
way. Hence by (5.11), (5.14) and (5.15)

(516)  E|E{e"™|Z,,- - -, Z_\} - E{e™}| < Uttp, + kn + exp('§ é')

for all real u.
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Finally, by (5.6) and (5.13)
(5.17) |E{e"%} — g(u)] = | fu(w)h(u) — gi(w)
<) = g(w)] + | (u) — 1
<Lp + u26,3<<p,( + U!
for all  with |u| < 8Ug.
Hence (5.16), (5.17) and (5.7) show that conditions (1.1) and (1.2) of Theorem 1

are satisfied with
N < Uy + by + U,
Tk = U;Zly
and
8 = p Ui + 2m, + 8U 7 log U
Hence by (1.4) we can choose o, a constant multiple of
1 111 1oged
Uig®log U, + mzk2U; + pp U™ 5.
Thus by Theorem 1 there exists a sequence of independent random variables Y,
with distribution G, such that
Consequently, by (5.13) and since Z, = X, + &,
P{|Xi — Yl > 2o} < P{|Z, = Yi| > o} + P{|&l > o}

<o + of 0} < o g

Note added in proof. In the course of the proofs of Theorems 3 and 4 we several
times redefined sequences of random variables thereby applying without explicityly
mentioning the following simple lemma.

LEMMA Al. Let S, i = 1,2, 3 be separable Banach spaces. Let F be a distribu-
tion on S; X S, and let G be a distribution on S, X S; such that the second marginal
of F equals the first marginal of G. Then there exist a probability space and three
random variables Z,, i = 1, 2, 3 defined on it such that the joint distribution of Z, and
Z, is F and the joint distribution of Z, and Z; is G.

This lemma is used implicitly in most papers on the subject, past, present (and
future!). The fact that there is perhaps a difficulty when redefining sequences of
random variables was observed and settled by Philipp and Stout (1975), page 23.
To verify the lemma we modify their basic idea: Simply choose Z, and Z,
conditionally independent given Z,. Of course when applying Kolmogorov’s ex-
istence theorem (which remains valid in the Banach space setting) we have to check
the consistency condition. Let p be the common marginal of F and G. The
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conditional probabilities P(Z; € 4,|Z, = .) i = 1, 3 are defined for all Borel sets
A; C S;, i = 1, 3. (Although we are to construct the random variables Z,, i = 1, 2, 3
we can use this notation for convenience since these conditional probabilities can
be defined in terms of F and G respectively.) Then F and G are marginals of the
following probability measure v defined on S; X S, X S; by

v(4, X A, X 43) = [, P(Z, € A)|Z, = 2)P(Z; € A3|Z, = z)dp(2).
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