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MULTIVARIATE DISTRIBUTIONS WITH INCREASING HAZARD
RATE AVERAGE!

By J. D. EsARY AND A. W. MARSHALL

Naval Postgraduate School and University of British Columbia

Several conditions are considered that extend to a multivariate setting the
univariate concept of an increasing hazard rate average. The relationships
between the various conditions are established. In particular it is shown that if
for some independent random variables Xy, - - - , X, with increasing hazard
rate average and some coherent life functions 7, - - -, 7, of order k, T; =
(X, - - -, X), then the joint survival function F(t) = P(T; > t,- - -, T, >
t,) has the property that a~!log F(at) is decreasing in a >0 whenever each
t; > 0. Various other properties of the multivariate conditions are given.

The conditions can all be stated in terms of inequalities in which equality
implies that the one dimensional marginal distributions are exponential. For
most of the conditions, the form of the multivariate exponential distributions
that satisfy the equality is exhibited.

1. Introduction. This paper is concerned with several conditions that extend the
univariate concept of “increasing hazard rate average” to the multivariate case. A
univariate distribution F (or survival function F = 1 — F, or corresponding ran-
dom variable) is said to have an increasing hazard rate average (IHRA) if F(f) =0
for all # < 0 and if

[F (t)]'/ " is decreasing in ¢ > 0.

This condition is important in reliability theory because of the following facts

. (Birnbaum, Esary and Marshall (1966)). Coherent systems have IFIRA life distribu-
tions whenever their components have independent life lengths with IHRA distribu-
tions (in particular, with exponential distributions). Consequently the class of
ITHRA distributions is said to be “closed under the formation of coherent systems”;
it is the smallest class of distributions which is closed in this sense, is closed under
limits in distribution, and also contains the exponential distributions.

The assumption that the component life lengths are independent is often ques-
tionable at best, so it is important to understand multivariate extensions of the
IHRA property. Direct multivariate analogs of the univariate IHRA definition are
considered, but these lack intuitive appeal as does even the univariate definition. A
more clearly meaningful approach is by means of characterizations like that of
Birnbaum, Esary and Marshall (1966), but modified to allow for dependence. Also,
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models which account for dependence are considered. These three approaches lead
to various multivariate concepts. Relationships between them are established, and
related families of multivariate exponential distributions are identified.

Numerous other multivariate extensions of the univariate IHRA property are
possible, and may be appropriate in some situations. However, the multivariate
properties considered here are obvious ones that deserve scrutiny.

In the univariate case, the IHRA property is strictly weaker than the more
intuitive increasing hazard rate (IHR) property. We do not attempt here to relate
multivariate IHRA conditions to corresponding multivariate IHR properties be-
cause we believe that attempts to preserve pleasant mathematical relationships will
not necessarily help in finding physically meaningful definitions. Instead, we have
obtained multivariate IHRA conditions primarily by concentrating upon generali-
zations of the reliability motivations which explain why the univariate IHRA
concept is important. Similarly, we can see no reason to be concerned with the dual
concept of “decreasing hazard rate average” because we know of no reason why
this concept is of practical interest even in the univariate case.

Most of the terminology used in this paper is defined by Barlow and Proschan
(1975). The cor'lcept of a “coherent life function” is discussed by Esary and
Marshall (1970).

2. Analogs of the univariate definition. The univariate distribution F is IHRA if

F(t) = 0 for all ¢t < 0 and if the hazard function R = — log F satisfies
(i) R(?)/t is increasing in ¢ > 0,
or equivalently, if

(ii) R(at) < aR(t) foralla €[0, 1] and ¢ > 0 _
When R is differentiable (so that F has density f = F’ and hazard rate r = f/F),
condition (i) can be rewritten in the form

(iii) R(¢) < tr(¢) for all ¢ > 0.

In the multivariate case, the joint survival function of random variables
T, - ,T,is defined by F(t) = P(T, > t,, ..., T, >t,), and the hazard function
is defined by R(t) = — log F(t). Conditions (i) and (ii) have the obvious analogs

(i) R(at)/a is increasing in a > 0 whenever each ¢ > 0,

(i) R(at) < aR(t) for all a € [0, 1] whenever each ¢ > 0.

A multivariate analog of the hazard rate is the hazard gradient r(t) =V R(t); in
terms of this, (iii) has the analog

(iii") R(t) < t - r(t) whenever each ¢, > 0.

It is easily verified that these conditions are equlvalent although (iii") requires R
to be differentiable. This motivates our consideration of

ConpiTIoN A. Either (i'), (ii’) or (iii’) is satisfied.

Other multivariate analogs of the univariate definition have been considered by
Buchanan and Singpurwalla (1977).
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3. Additional conditions. In dealing with large systems, it is common practice to
determine the life distribution of various subsystems and then to combine such
partial results as successively larger subsystems are studied. An easy consequence
of the characterization of Birnbaum, Esary and Marshall (1966) which has a direct
bearing on such a procedure is the following:

(iv) independent random variables T}, - - - , T, have IHRA distributions if and
only if 7(T},---,T,) has an IHRA distribution for all coherent life
functions 7.

But in the above context the assumption of independence is often invalid. This

leads to consideration of

ConDITION B.  The random variables T}, - - - , T, have a joint distribution such
that 7(Ty, - - -, T,) has an IHRA distribution for all coherent life functions 7.

Because 7(T}, - - -, T,) = T, is a coherent life function, Condition B implies that
T,isIHRA,i=1,2,- - - ,n. But T}, - - -, T, need not be independent.

When making a system analysis by combining subsystem information as de-
scribed above, the subsystem life lengths 77, - - -, T, are often dependent as a
result of the subsystems having components in common. In such a circumstance,

T,=1(X;, - - - ’Xk)

where 7, is the life function of the /th subsystem and X, - - - , X, are component
life lengths. This model for dependence leads to

ConprTioN C. Ty, - - -, T, have a representation as
].;:Ti(X]""’Xk)’ i=1,2"">n,

. where X}, - - -, X, are independent IHRA random variables and 7, - - - , 7, are
coherent life functions of order k.

Although Condition C can be viewed as a model for dependence, it is also a
natural extension of the univariate characterization (iv). Of course (iv) says that if
Condition C is satisfied, each 7; has an IHRA distribution.

If each of the coherent systems in Condition C is a series system and if each X; is
exponentially distributed, then T, - - - , T, have a multivariate exponential distrib-
ution of the kind introduced by Marshall and Olkin (1967). It is of some interest to
modify Condition C by admitting only series systems. This case arises, e.g., if
T,---,T, are the minimal path life lengths for some coherent system with
independent components.

ConpITION D. For some independent IHRA random variables X bt Xy
and nonempty subsets S; of {1,2,- - -, k},
: T;=minjES,X1’ i=1,2,...,n.

Condition D is strictly stronger than Condition C (Section 9) but the distributions
satisfying Condition D can be used to generate all of those satisfying Condition C
in a rather simple way (Section 7).
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Condition B can be modified in the same way that D modifies C.
ConprTiON E.  min, ¢ ¢T; is IHRA for all nonempty subsets S of {1,2, - -, n}.

Condition A is the only condition we have given that is imposed upon the
survival function rather than on the corresponding random variables (the formula-
tion of Condition D in terms of survival functions is easy but not particularly
illuminating). The following condition, in terms of random variables, is equivalent
to Condition A (Section 8).

ConpITION F. T, - -, T, have a joint distribution such that
min,q; T; is IHRA whenever each g; > 0.

4. Relationships between the various conditions. Figure 1 summarizes the rela-
tionships between Conditions A—F. No further implications can be added to this
diagram. Proofs and counterexamples are given in Sections 8 and 9.

Ae=—F
= ~N
D=—=>C E
\ /7
B
FiG. 1.

5. Related multivariate exponential distributions. Univariate exponential distrib-
utions, characterized by having constant hazard rates, play a central role in the
study of univariate IHRA distributions. Here, families of multivariate exponential
distributions are identified which play similar roles with respect to Conditions
A-F.

ConpITION A. The cases of equality in the various defining conditions are:

R(;xt) is independent of @ > 0 whenever each ¢, > 0;

or
R(at) = aR(t) for all a €[0, 1] whenever each £, > 0;

or
R(t) =t - r(t) whenever each ¢, > 0.
Because Condition A is equivalent to Condition F, the distributions which satisfy

these equalities are characterized in terms of the corresponding random variables
Ty, - - -, T, as follows:

min,q; T; is exponentially distributed whenever each a; > 0.
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This rather broad class of multivariate exponential distributions was introduced by
Esary and Marshall (1974); it includes the multivariate exponential distributions of
Marshall and Olkin (1967). Representations of the corresponding survival functions
have been obtained by Pickands (1976). We do not claim that these distributions
are the only ones satisfying Condition A that have exponential marginals.

ConpITION B. It is not difficult to show that if 7y,---, T, satisfy
7(Ty, - - -, T,) is exponentially distributed for all coherent life functions 7, then
there exists a permutation 7 such that

P{Ty< -+ <Tw} =1

Conversely, if such a permutation exists and each 7, is exponentially distributed,
then 7(T), - - - , T,) is exponentially distributed for all coherent life functions 7. In
fact if T;, T;, min(T;, T}), and max(7;, T)) are all exponentially distributed, then it
follows in a straightforward manner that either P{T; < T;} = 1 or P{T, < T;} =
1. The family of distributions discussed above under Condition A includes a
number of examples for which the corresponding random variables are ordered
with probability one.

The family of multivariate distributions with corresponding random variables
T,,- - -, T, that satisfy

W) T,,- - -, T, are each exponentially distributed,

(vi) (T}, - - -, T,) has an IHRA distribution for all coherent life functions 7,
is extraordinarily rich. In fact, Esary and Marshall (1974) show that if

(vii) min; ¢7; has an exponential distribution for all § c {1, 2, - - , n}
then (v) and (vi) are satisfied. The family of joint distributions satisfying (vii)
includes those discussed above under Condition A and many others.

ConpITION C. If T, - - -, T, satisfy Condition C and are exponentially distrib-
uted, then we conjecture that T,,---, 7, have the multivariate exponential
distribution of Marshall and Olkin (1967). This conclusion can be obtained using
Theorem 4.3 of Esary, Marshall and Proschan (1970) if the additional assumption
is made that there is some point interior to the support of each X;.

ConpiTioN D. Since the minimum of independent IHRA random variables is
exponentially distributed only if the random variables are all exponentially distrib-
uted, it follows that if T, - - - , T,, satisfy Condition D and each 7 is exponentially
distributed, then T, - - - , T, must have the multivariate exponential distribution
of Marshall and Olkin (1967).

ConprTioN E. The large class of joint distributions for which min, ¢7; is
exponentially distributed for all nonempty subsets S of {1,2,- - -, n} has been
discussed by Esary and Marshall (1974).
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6. Two important properties of the conditions. The following properties are
reasonable requirements for any condition that might be used as a definition of
“multivariate ITHRA”:

(P1) Ty, - - -, T, satisfy Condition* = each nonempty sub-
set of Ty, - - -, T, satisfies Condition*,

P2) Sy -, S, satisfy Condition*, T),---,7, satisfy
Condition*, and (S}, - - -, S,), (T}, - - - , T,,) are inde-
pendent = S,,---,S,, T,,---, T, satisfy Condi-
tionx.

All of the Conditions A—F satisfy P1 as can be easily verified. Conditions A and
C-F also satisfy P2. Whether or not Condition B satisfies P2 is unknown.

7. Additional properties of the conditions. Here some miscellaneous properties
of Conditions A-F are mentioned.

Association. The random variables T}, - - , T,, of Conditions C and D are
generated as increasing functions of independent random variables and as such,
they are associated (see Esary, Proschan and Walkup (1967)). On the other hand, if
U is uniformly distributed on [0, 1] and ¥ = 1 — U, then the distribution of (U, V)
satisfies Conditions A, B, E and F. Since this distribution has correlation — 1, these
conditions do not imply association or any other notion of positive dependence.

Absolute continuity. The strongest condition we have introduced is Condition
D.If Ty, - - -, T, satisfy this condition and are jointly absolutely continuous, then
" Ty,---,T, are independent. For suppose that T, = min. s X; and T, =
min;e g X; are jointly absolutely continuous. Then P(7, = T,) = 0 and one can
take §,, S, to be disjoint. Consequently 7, and T, are independent. The general
result now follows because under Condition D, pairwise independence implies
independence.

There do exist distributions satisfying Condition C which are absolutely continu-
ous. For example, suppose X; has the absolutely continuous distribution F;,
i=1,2,3,4. Let T; and T, be the life lengths of the coherent systems of Figure 2.

X X3
X X
— X X —_— X X
X X3 Xg4 X X 2
Xo X4
T T2

FiG. 2.
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Then T, and T, are dependent but P(T, = T,) = 0. For ¢, < t,,
T >0, T,>0) = FI(tZ)FZ(tZ)[F3(tl)F4(t2) + Fy(t) Fy(1y) - Fs(’z)ifa(tz)]-

Here absolute continuity is apparent.
One can verify that the bivariate exponential distribution F given by

— 1
F(xy, x;) = exp[ - (x12 + x%)z], X, %, >0
satisfies Conditions A, B, E, and F, and has a density.

A property of Condition C. The random variables T, - - - , T, of Condition C
are generated from independent random variables X, - - -, X,. However, if
Xy, - - -, X, are not independent, but only satisfy Condition C, then again,
T,,- - -, T, satisfy Condition C. One verifies this from the fact that compositions
of coherent life functions are coherent life functions.

Connection between Conditions C and D. 1If Ty, - - -, T, satisfy Condition C,
then there exists random variables

Zyy v ’Zlkl’ Zypy v - »sz,;’ - ,an"

having a joint distribution satisfying Condition D such that

T, = max,  j<x Z;»

i=12---,n
This results from the fact that minimal paths of a coherent structure with indepen-

dent IHRA components have a joint distribution satisfying Condition D.

8. Proofs. In this section, we prove the implications summarized in Figure 1 of
Section 4.

D = C. This is trivial.

C = B. This follows from the fact that compositions of coherent life functions
are coherent life functions.

B = E. Again, trivial.

A=F. In (ii'), let z > 0, a;, = z /¢, and interpret 1/0 as oo. Then (ii") can be

written as
=[ &z oz =[| 2 V4
_logp(a_l,...,a_")g —alogF(—‘;;, ,an).
Observe that f(;z—, s, ai) = P{min ¢;T; >z} = G(z), say. Thus we have
1 n

from (ii") that
—log G(az) < —a log G(2);

ie., G is IHRA.

F = A. This proof is obtained by reversing the steps of the proof that A= F.

F = E. This is trivial.

C = A. This is the only troublesome implication. The following proof uses ideas
of Birnbaum, Esary and Marshall (1966), which become somewhat more involved
in the multivariate setting. We require some preliminary notation and lemmas.
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Let
X(r)=1 ifr<X,
=0 ifr>X, i=12---,k
X(1) = (X,(8), - - -, Xi(1))-
Let ¢, - - - , ¢, be semi-coherent structure functions (of order k) corresponding to
the life functions 7,,- - -, 7, In case ¢;(x) =0, 7(X},- - -, X;) =0; in case
o(xX) =1L (X, -, X)) = *®.
The joint survival function H of 7,, - - - , 7, is given by

(1) ﬁ(tl’ M) tn) = EH?-]‘P:(X(E'))-

Since X,,- - -, X, are statistigally independent, so are the rows of the k X n
matrix X(t) = (X,(4)). Hence, H(¢,, - - - , t,) depends only on the kK X n matrix
@) P = EX(t) = (F(1)) = (py)-

Here F, is the distribution of X. Let

(3) ﬁ(tl’ R tn) = h(P)

In order to find the partial derivative of h(P) with respect to p;, suppose for
convenience that

0=t0<tl<"’<tn<tn+l=oo,
let
d1=(1,...’1’0,...,0)

_be the vector with first / components equal to unity and last n — / components
equal to zero, and let P; be obtained from P by replacing the ith row of P by d,.
Since t; < - - - < t,, it follows that X(¢) is decreasing in j, and hence

=1¢;(X(t )) hoo[ Xi(t) — Xi(4) 1T -l‘i’j(x(t ), L)IL =1+1¢j(x(tj)’ 0,),
where (z, 1,) is the vector z with ith component replaced by 1, and (z, 0,) is the
vector z with ith component replaced by 0. Thus

4) E H7= |¢j(x(tj)) = h(P) = '1'-0(Pi1 _pi,1+l)h(Pi1)’
where p,, = 1 and p, ,,, = 0. With this representation, it is apparent that
oh(P
)] _‘(_) = h(Pij) - h(Pi,j—l)'
ap;

In the following, the notation
Y(x) = —x log x, 0<x<1

is used.

LeEmMMA 1. E,sz(p,,)—” > Y(h).
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ProorF. We prove this by induction on k, the order of the semicoherent
structures ¢,. If k = 1, then either ¢,(x) = 0, ¢,(x) = x, or ¢;(x) = 1. Consequently,
either A(P) = A(py1s P1as * * * s P1n) = P1; for some i, or h(P)=0, or A(P) = 1.
h(P) = p); means ¢ (x) =1 or x,j=1,2,---,i— 1, ¢(x) = x, and ¢;(x) = 1,
j=i+1l--- ,n.Ifh(P)=p,,,then

2z ‘P(Py) ‘P(Pl.) 8 = Y(h).

The equality = 4(p,;)(@h/p,;) = xp(h) is trivialif h=0o0r h = 1.

Now suppose the lemma holds for semicoherent structure functions ¢,, * - + , ¢,
of order k — 1. We compute, using (4) and then applying the induction hypothesis
as follows, remembering Pu 2Py i+t

114/( y) ap
ij

= zi,j‘P(P.,) 2= o(Pu P|,1+1)h(P11)

ap,

0
= 2’:“=22;=14’(Py)27=0(l’11 - P1,1+1)_ap,_h(P11)
ij

n d d
+2j=14’(P1j) E(pl,j—l - Plj)h(Pl,j—l) + E(Plj —pl,j+1)h(Plj)

> 2_olpy — P1,1+1)4’[ h(Pu)] + 2;!=14’(1’1,')[_}’(1)1,") - h(Pl,j—l)]‘
To simplify the notation, write
b, = h(P;) and p, =p, j=1,2--,n
Then the inequality becomes, after recombining terms,
From the concavity of ¢, it follows that
\P(Pjhj) - ‘P(Pjhj—l) > \b[ho + 3k - hi—l)pi] - ‘P[ho + zji:}(hi - hi—l)Pi]-
Summing both sides gives

;=1[‘P(Pjhj) - ‘P(Pjhj—l)] > ‘P[ho + 20 - hi—l)pi] - ¥(0),
which, together with (6), is

2 (0 y) >Y[hy + Zo(h — i—‘l)pi]'

From (4), we see that this is the inequality we set out to prove. []

Let n be the real-valued function of k X n matrices U = (u;) defined by
n(U) = —log h(e™*).
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Lemma 2. n(aU) < an(U) whenever a € [0, 1].

Proor. This inequality is equivalent to the statement that

n(aU)

is increasing in a > 0.

That this ratio has a nonnegative derivative is equivalent to the inequality of
Lemma 1. []

Suppose that Condition C holds. Let R be the joint hazard function of
T+, 7, (e, R()= —log H(t)) and let R, be the hazard function of X,

i=1,2,- -, k. By first using the fact that each X, is IHRA and 7 is increasing in
each argument and then using the inequality of Lemma 2, we obtain
R(aty, - -, at) = n[(R(@5))] < n[a(R(1))] < an[(R(1)] = Rty -+, 1,).

Consequently, Condition A is satisfied. This completes the proof that C = A.

9. Counterexamples. Our aim here is to show that no implications can be
added to Figure 1 of Section 4. We do this by exhibiting counterexamples; e.g., to
show C 5% D, we exhibit a distribution satisfying Condition C but not Condition D.

C 54 D. First, observe that if (T, T,) satisfies Condition D, then

T, =min(X, Z), T,=min(Y,Z)

where X = min;cg _5X;, ¥ =mincg X, and Z = min;cg 5 X;. (Take the

minimum over an empty set to be c0.) Consequently, the joint survival function of
T, and T, has the form

P(T, >4, T,>1) = Fx(tl)Fy(tz)Fz(max[tb tz])’
so that
(1) ATy <1, T,<t,)

=1 — Fy(1))Fz(t)) — Fy(t) Fy(2) + Fx(tl)Fy(tz)F_z(max[tv 1))
Now consider random variables T;, T, of the form
T, = max(U, W), T, = max(V, W),
where U, V and W are independent and uniformly distributed on [0, 1]. Then
(T, T, satisfies Condition C, and
P(T, <1, T, <t) = tt, min(¢,, t,), 0<t,,<1.

The assuniption that this joint distribution has the form (7) leads to the contradica-
tion that F,(¢,) depends upon #,.

A, F > B. (Consequently, A, F>C and E > B.) Suppose that (T}, T,) has
density

ft,t)=a ift;,20,4,>0 and ¢, +1, <1
=b if0<#<1,0<4H<1 and 4, +¢ >3

= (0 elsewhere,
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where a = 32/47 and b = 2a = 64/47. Here, max(T, T,) has support that is not
an interval, so max(7), T3) is not IHRA and Condition B is violated. On the other
hand min(a, T}, a,T,) is IHRA (even IHR) whenever a; > 0, a, > 0. To verify
this, we find that F (x) = P(T, > x, T, > mx) has, for 0 < m < 1, the density

£,.(x) = a[3(m + 1) + 4x(1 — m)?]/4, 0<x<1/[4(m + 1)],

= b[l + m + 4(1 + m?)x]/4, 1/[4m + 1)] < x < 3/[4(m + 1)]
= b(l + m — 2mx), 3/[dm+ 1)) <x<1
=0, elsewhere.

It is easy to check that f,, is IHR. The case m > 1 follows by symmetry.

B> A, F. (Consequently, B55 C and Es$ A, F.) To generate a distribution
which satisfies Condition B but not Condition A, let T, be uniformly distributed on
[0,1] and let T, =T, + 3 if 0< T, <3, T, =T, — 3 if 1 <T, < 1. The joint
distribution F of T, and T, has support on the diagonal lines of Figure 3 and is

given by

F(t,) =0 if@)0<1,t <3,
=t+5-1 ifO) 1<t <1,
=t—3 if(c)r,<i<tandt, —t,—1<0,
=t if(d)t,<3<tandt;,—t,—1>0,
=t~ if(e)t, <3< fandt,—t;, —1<0,
=1 if(f)t, <31<t,andt,—t,—1>0.

The regions (a)—(f) are indicated in Figure 3.

o

Fi1G. 3.

It is easily verified that F satisfies Condition B. In fact, T, T,, min(T,, T,) and
max(T;, T,) are all uniformly distributed, hence IHRA.
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To check Condition F, one computes that if @ > 2, then

P{min(T}, aT,) < z} = “:lz ifz <1,
=22—2“;—“ ifl<z<a/2a-1),
=z ifa/2@—-1)<z< 1

The derivative of —z ! log P{min(T}, aT,) < z}, for ; <z <a/2(a — 1) is non-
negative if and only if
2z < log 2z+a
2z + a 2a
which is violated for a sufficiently large. Hence, Condition F (and Condition A) do

not hold.
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