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A COMPARISON OF STOCHASTIC INTEGRALS!

By PHILIP PROTTER
Duke University and Institute for Advanced Study

Two different stochastic integrals have been developed during the last ten
years. One is largely associated with the work of E. J. McShane (the star
integral), and the other has grown out of the work of H. Kunita and S.
Watanabe (the dot integral). Assuming the customary conditions that guarantee
the existence of the star integral, we give a formula relating the two integrals.
We show that the star integral is equal to the dot integral provided one takes a
projection of the integrand onto the space of predictable processes before
evaluating the dot integral. This essentially embeds the theory of the star
integral into that of the dot integral.

1. Introduction. During the last ten years two stochastic integrals have devel-
oped separately. McShane has developed the Ito-belated integral in a series of
papers culminating in his book [8]. See especially the account given in [9]. For
convenience we denote this integral as the star integral and we write H * Z for the
Itd-belated integral of H with respect to Z. A second integral known as “the
stochastic integral” has been developed from the work of Kunita and Watanabe
[6], and we call this the dot integral. We write H-Z for the dot integral of H with
respect to Z. A brief history of the development of this integral is given in the
comprehensive treatment by Meyer [11] where references to the many contributors
may be found. In this paper we establish the relationship between the two integrals.

Let H be a locally bounded jointly measurable process and let Z satisfy the
KAt-condition after small amendments, which implies that Z is a semimartingale

* (see Section 2 for definitions of these terms; KAt and KAt after small amendments
are taken from McShane [8 or 9] and are given in Section 3, with one small
change). Let *H denote the previsible projection of H. In Theorem (4.9) and

Corollary (5.19) we show

(1.1) H»*Z="HZ
(12) HxZX =*H"[Z, X]

where X is also KAt after small amendments, H * ZX is the second-order Ito-be-
lated integral, [Z, X] is the quadratic variation process of Z and X, and where
equality of processes means indistinguishability.

Because of the separate development of the star and dot integrals there has been
a certain duplication of effort; for example, the relations (1.1) and (1.2) which we
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establish here combined with the previous work in [13, 14] and the results of
Doléans-Dade [2] and Doléans-Dade and Meyer [4] show that Theorem (11.2) of
[9] actually holds under weaker hypothesis.

At first glance the star and dot integrals do not seem comparable, since the dot
integral is defined only for semimartingales, while the star integral is defined for
any process for which a limit of sums exists. However, we show in Section 3 that
the sufficient conditions given by McShane for the existence of the star integral
also imply that the differentials in the star integral are semimartingales. Hence we
extend a result of Pop-Stojanovic [12] to the case where the paths of the differen-
tials need not be continuous. The principal results, which establish (1.1) and (1.2),
are given in Theorem (4.9) and Corollary (5.19).

2. Preliminaries. We assume that the reader is familiar with both the star
(Ito-belated) integral as given in [9] and the dot integral as given in, for example,
[11]. We shall make use of the “general theory of processes” as set forth in
Dellacherie [1].

We assume throughout the paper that (Q, ¥, p) is a complete probability space
and (%,),5 is a complete, right-continuous increasing family of ¢-algebras with
¥ = 9, = V%, All stochastic processes are assumed to be adapted to (%,). A
process Z which satisfies a KA¢-condition or satisfies a KAz-condition after small
amendments (precise definitions are given in (3.1) and (3.2)) a.s. has paths with
right and left limits. By the assumptions on (%,) Z then has a version which is
cadlag (right continuous with left limits). We always assume that all differential
processes Z, X are cadlag and moreover that Zy = X, = 0.

A jointly measurable process H is said to be locally bounded if there exist
stopping times (7") increasing to oo as. such that (H[),,, is adapted to
(%, p17)1>0 and sup,|HT’| < K, a.s., where K, is a constant. For locally bounded
jointly measurable H we let H * Z be the first order It6-belated integral, which is
usually denoted [ {H(s)dZ(s). We let H x ZX be the second order It6-belated
integral, usually denoted [(H(s)dZ(s)dX(s). A process Z is a semimartingale if it
can be written Z = M + A where M is a local martingale and 4 is an adapted
cadlag process which has paths a.s. of bounded variation on compact time
intervals. If Z is a semimartingale, the sums =, .q(Z, - Z, )> converge in
probability as the mesh of the partitions %" of [0, ¢] tends to 0. The limit is denoted
[Z, Z],, and a cadlag version can be chosen. If [Z, Z], € L' for each ¢, it has a
dual previsible projection (cf. [1], page 107) and we denote it ((Z, Z),),5,. We let
O denote the class of square integrable martingales with M, = 0 and 9, the
class of locally square integrable martingales with M, = 0. Let @ be the family of
adapted cadlag processes (4,) which a.s. have paths of bounded variation on
compact intervals with 4, = 0. If H is a bounded jointly measurable process, *H
denotes its previsible projection and, if (4,) € @ which satisfies 4, € L' for each ¢
then we denote by 4° the dual previsible projection of 4. Following Dellacherie [1],
we let ((0, T)) = {(t, w) : 0 <t < T(w)} denote the stochastic interval. For a
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cadlag process X we set AX, = X, — X,_, where X, _ is the left limit. For fixed w
the function ¢ — Z,(w) will be denoted Z.(w). If Z is a semimartingale, it has a
unique continuous local martingale part which we denote by Z°¢. We follow the
convention that AZ? = (AZ,)* = (Z, — Z,_)*

3. The KAt hypotheses. The existence of the star integral for general integrands
was established by McShane ([8], [9]) under certain hypotheses on the differential
processes. In this section we describe these conditions and we show in Theorem
(3.9) that a process satisfying the KAt-condition after small amendments is a
quasi-left-continuous semimartingale. This will permit us to compare the star and
the dot integral in Sections 4 and 5 and to establish (1.1) and (1.2). Definition (3.1)
below of a KAt-condition is taken from [8, 9].

(3.1) DerFINITION.  An (adapted) process Z satisfies a KAt-condition on [a, b] if (1)
E(Z}) < oo and (ii) there exists a constant K such that for all u, v witha <u <v
< b, then ass.

(a) IE{ZU - Zulgu}l < K(D - u)

®) E((Z, - Z5,} < K(v ~ u).
A process satisfying (3.1) is called a KAt process.

(3.2) DerFNITION.  An (adapted) process Z satisfies a KAt-condition after small
amendments on [0, o) if there exist stopping times T” increasing a.s. to co and KAt
processes Z" such that for each n the processes (Z,\rn),50 and (Z/ )50 are
indistinguishable.

Definition (3.2) above is slightly different than the one given by McShane in
[8, 9] but achieves the same purpose and is more “natural” from the standpoint of
. the “general theory of processes.”

Pop-Stojanovic [12] has shown that if a KAt process Z has continuous sample
paths, then it is a semimartingale. The assumption of continuity of the paths is not
necessary, however, as Lemma (3.4) shows.

(3.3) LemMA.  If Z satisfies a KAt-condition, then (Z, + Kt) is a submartingale and
thus, without loss of generality, Z can be assumed to have right continuous paths with
left limits (“cadlag” paths).

ProoF. The KAt condition implies that E(|Z,[) < oo for each ¢. Part (a) of the
KAt-condition implies that — K(t — s5) < E{Z, — Z,|%,} for s < ¢ and hence Z, +
Kt is a submartingale. Since we assume that the filtration (%,) is complete and right
continuous, and since Z, + Kt is a submartingale it is well known that a version
Z/ + Kt can be chosen such that Z/ = Z, a.s. each ¢ and Z, has cadlag paths.

We now establish two lemmas needed in the proof of Theorem (3.6), a theorem
which shows that if a process Z satisfies a KAt-condition, then it is a special
semimartingale which is decomposable into the sum of two KAt processes, one of
which is a locally square integrable martingale and the other is an adapted process
with Lipschitz paths.
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(3.4) LeMMA. If Z satisfies a KAt-condition then it is a special semimartingale. (See
[11], page 310, for a discussion of special semimartingales.)

Proor. By Lemma (3.3), Z, + Kt is a submartingale. It is well known that a
right continuous submartingale X has a unique decomposition X = M + A where
M is a local martingale and A is a previsible, increasing process which is locally
integrable. Thus the submartingale Z, + Kt is a semimartingale, hence also Z, is a
semimartingale.

Since Z, + Kt = M, + A, with A previsible and locally integrable, Z, = M, +
(4, — Kt) where (4, — Kt) is previsible and locally integrable. Thus Z, is a special
semimartingale and the lemma is proved.

(3.5) LemMma. If Z is KAt, then [Z, Z], € L', the paths of {Z, Z) are Lipschitz
continuous, and Z is quasi-left-continuous. (See [l], page 85 for the definition of
quasi-left-continuity )

ProoF. Fix ¢ and let 9" be partitions of [0, ¢] with lim, , mesh ¥" = 0. Then
2 eon Z,, -2, )* converges in probability to [Z, Z], (cf. [11], page 358). Let {n’}
be a sequence of integers such that the convergence is a.s. Then

E{[Zz,Z]) = E{lim,,,z(z,m - z,j)z}

<liminf SE{E{(Z,,, - 2,)9, }]
< K.

Thus [Z, Z], € L'(dP) for each t. Let (Z, Z), denote its dual previsible projec-
tion. Since [Z, Z], charges precisely the same stopping times as Z does, as is shown
" in [1], page 111, it suffices to show that {Z, Z ), is continuous in order to establish
the quasi-left-continuity of Z. Thus it remains to show only that {(Z, Z ). is a.s.
Lipschitz continuous. It is elementary that 3, c.E{(Z,,, — Z, )2|65§ } converges in
o(L', L®) to {Z, Z),. We omit the details of the proof. However, Lepingle [7],
page 314, has established the convergence for 1 <p < 2 when Z° = 0. Forp = 2,
one need not assume Z° =0. Fix s and ¢ and let A, , = {{Z,Z), —<Z, Z), >
K(t — 5)}. If P(A; ) >0, then E{1, (KZ,Z), — (Z,Z),)} > P\, )K(t — 5).
But

E{l, (Z 2),-<2 2),)} =tmE{1, 3, .+E{(Z,, - 2)5,}}
<lim E{1, K(t - s)} = P(A, )K(z — 3),

a contradiction. (Here &" are partitions of (s,¢]) Thus P(A, ,) = 0. Letting
A= U, ,coA, , and using the right continuity of {(Z, Z). , we conclude that
almost all the paths of {(Z, Z ). are Lipschitz. This completes the proof.

(3.6) THEOREM. If Z satisfies a KAt-condition, then Z is a special semimartingale
with decomposition Z = M + A where M is a locally square-integrable martingale
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and A has adapted, Lipschitz continuous paths. Moreover, both M and A are
themselves KAt processes.

Proor. By Lemma (3.4) we know Z is a special semimartingale. Let Z = M +
A be its canonical decomposition; that is, M is a local martingale, and 4 is
previsible with paths of bounded variation. By Lemma (3.5) Z is quasi-left-continu-
ous, and this implies that 4 has continuous paths: if 4 jumps at a time 7, it must
be previsible, and A, A € F_. Since E{M,|%,_} = M;_, we have Ad; = —
AM, and AA; = E{AA;|%;_} = E{AM/|%_} =0.

Since A is continuous, it is locally bounded, and Z, € L*(dP) by the KAt
hypothesis. Thus M = Z — A is locally square-integrable. We therefore have

[M, M), =M, M, + 3, AM}
= (M, M), + 3, AZ}
= [Z’ Z]t

where we have used the continuity of 4. We write (M, M), for the dual previsible
projection of [M, M],. It is well known that M> — (M, M, is a martingale. Hence
for s <1,

E{(Mt - MS)2|@S} = E{Mt2 - Mszlgs}

= E{<M’ M>t - <M’ M>S|C‘J-‘s}

<E{{Z,2) -<Z Z)|%}

< K(t—s)
where the Lipschitz continuity of (Z, Z), established in Lemma (3.5) has been

. used. Thus M is KAt¢.
It remains to show that 4 is KAt and has Lipschitz continuous paths. First,
observe that
E{(4, - A)|%,) <2E{(Z, - Z) + (M, - M,)"|%,}
< 4K(t — s).

Thus it remains to establish only the Lipschitz continuity of the paths. From the
proof of Lemma (3.4) we have Z, + Kt = M, + C,, where C, = 4, + Kt is increas-
ing. Also, from the proof given above we have shown that C, is continuous.
Moreover, C, = Z, + Kt — M, and hence is in L? because E (M?*} = E{[M, M],}
= E{[Z, Z],} < oo shows that M, is in L. By a lemma of Doléans-Dade [10],
page 90, if P are partitions of (s, #] with mesh %" — 0, then

S,eeE{C,,, —Cl|%}=Cl—>C~-C

as n — oo, with convergence in L2 If C, — (t — s) = A", then 4], > A, — A, in
L% But |E{4,,, — 4|9, }| = |E{Z,, - Z|%,} < K(44y — 1) Let n’ be a
sequence of integers such that 4", — 4, — A4, a.s., and let A, | be the exceptional
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set. Off A, ; we have
IAt - Asl = limn’—*oolAt?s

E{A’/H - Atll(y—‘tl}l
< 2t,e@"’K(tj+l - tj) = K(t - 3).

Let A = U, ;e ;> 50 P(A) = 0. The continuity of the paths of 4 implies off A
the paths of 4 are Lipschitz. This completes the proof.
We now consider processes satisfying hypotheses (3.2) rather than (3.1).

< lirnn’—mo2 LEP"

(3.7) THEOREM. If Z is a process that is KAt after small amendments then Z is a
semimartingale. Moreover, Z is quasi-left-continuous.

ProOF. Let Z" be KAt processes and T” stopping times increasing to co such
that Z/, » and Z,, . are indistinguishable. For each n (Z, ;)50 is a semi-
martingale by Lemma (3.4); thus Z is a local semimartingale. But Meyer [11], page
311, has shown that a local semimartingale is a semimartingale.

Let (Ty),», be a sequence of totally inaccessible stopping times exhausting the
jumps of (Z/\7+),;50- Then (7)., »»; e€xhaust the jumps of Z and are totally
inaccessible, so Z is quasi-left-continuous.

4. First order integrals. In this section we show that if Z is KAz or KAt after
small amendments (and hence a semimartingale as shown in Section 3) and if H is
an appropriate integrand, then

(4.1) Hx*Z="HZ
where H * Z denotes the star integral (f4H,dZ,),, *H denotes the previsible
projection of H, and H-Z = (H)-Z is the dot integral.

The following definition was given by McShane [9], page 133:

(4.2) DEFINITION. A process H is a simple process if there exist points 0 < ¢, < 7,
<:++ <f < oosuchthat H = H;on[t,_y, 1), with H, €5, 1 ,cs>and H, =
0 otherwise.

(4.3) LeMMA. Let M € W, and be KAt, and let H be a bounded simple process.
Then H + M =3H-M.

PrOOF. Suppose H is of the form H, = hl ,(¢) with h € F,. Let k =
E{h|¥,_}. Then
3Ht = kl[s](t) + hl(s, u)(t)' '
Thus .
3H‘ M = kAMsl{,>s)
+h(Mt - Ms)l(s, oo)(t)
- hAMuI[u’ oo)(t)'
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Since by Lemma (3.5) M is quasi-left-continuous it does not jump at fixed times.
Hence

H - Mt = h(M/\u - Mt/\s)'
By Lemma (5.8) of [9], we have

H+ M, = h(M,, — M,,)
The same arguments give in the general case that

*H - M, = ZII'C-II{i(MI/\t,- - M/\t,-_,)

and Lemma (5.8) of [9] yields the equality.

(44) LeMMA. Let A € @ be KAt and let H be a bounded simple process. Then
HxA=H-4A="H-A.

PrOOF. Recall that for 4 € @ H - A refers to the Lebesgue-Stieltjes integral of
H with respect to A. Let H, = 3%_/h, 1;,_. - Then the Stieltjes integral H- 4, =
S h(A,p, — Ap,_)- Ttis well known that {H #°H} is contained in a countable
union of graphs of stopping times. Since H is simple, a.s. the set {7 : H, #°H,} is
finite. The quasi-left-continuity of the paths of 4 then implies H-A4 =’H- A.
Lemma (5.8) of [9] then gives H * A = H-A =3H - A.

Given a process A € @, we define a (signed) measure on R, X Q by

oo
(45) M‘A(H) = Ef HsdAs‘
0
Then g, denotes the measure dr X dP.

(4.6) THEOREM. Let Z be KAt and let H be jointly measurable and locally bounded.
Then H » Z =*H-Z.

ProoF. First note that if 7 > T" then *H7" and *H™" agree on [0, T"], and so
the previsible projection of H can be defined. By optional stopping, we can assume
without loss of generality that H is bounded and hence E[,H?2ds < oo for each .
By Theorem (3.6) we know that Z is a special semimartingale with decomposition

Z=M+4
where M € 9N, and KAz, and 4 € @, KAt, and has Lipschitz continuous paths.
Note that since the paths are Lipschitz the measure p, is absolutely continuous
with respect to p,. For H a bounded simple process by Lemmas (4.3) and (4.4) we
have H » Z =*H-Z.

Suppose H is bounded and jointly measurable. Doob [5], pages 440-442, has
shown there exist bounded “simple processes” H" such that H" converges to H in
L*(dy,). By Theorem (5.9) of [9] we have

E{(H"+Z - H+Z)})"= E{(H" - H) * Z)z}%

< CE{ fo(H” H)fds}
where C is a constant. Thus for each 7, H" * Z, — H * Z, in L*(dp).
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Consider now *H - Z. Let {n’} be a sequence of integers such that H” — H a.e.
(d,). By the absolute continuity of the measure, also H” — H a.e. (dp,). By the
dominated convergence theorem it follows that [(H" — H)%du, — 0.

We have

@7  E{CH"-z-°H-Z)}}
<2E{(CH" - *H)-M);} + 2E{(CH" - *H)- 4,)’}
<2E{CH" = *H)*- (M, M)} + 2E{((H" - H)- A’}
<2E{C(H" — H)}'- (M, MY,} + 2E{(Kt)((H" — H)*- 4,)}

where the Cauchy-Schwarz inequality and the elementary inequality (a + b)?

2a® + 2b? have been used. It is easy to see that the previsible projection is
contraction (cf. Yor [15]). Then (4.7) becomes

(48) E{CH"-z-°H-Z)})

<
a

<2E{*(H" — HY - (M, M),} + 2Ky, ((H" - H))
=2E{(H" — HY*- (M, M),} + 2Kep,((H" — H)?)
=2E{(H" — H)*-(Z, Z),} + 2K,((H" — H)?)

where (Z, Z>, is the dual previsible projection of [Z, Z], = [M, M],. We showed
in the proof of Lemma (3.5) that (Z, Z). is as. Lipschitz continuous. Thus
bz, z5 < Iy and 80 p, o (H™ — H)?) — 0 as n’ — oo. Thus (4.8) yields

E{CH"-Z - 3H - Z)}} < 2z 2,((H" — H)?) + 2Keu,((H" — H)?)

which tends to 0 as n’ — co. We conclude that *H" - Z -°H - Z in L*(dP).

We have shown 3H" - Z = H" * Z, and both converge to the same limit. Thus
3H-Z, = H * Z, as., and hence are indistinguishable by the right continuity of the
paths. This completes the proof.

(4.9) THEOREM. Let Z be KAt after small amendments and H be jointly measurable
and locally bounded. Then H » Z =H - Z.

PrOOF. By Theorem (3.7) we know that Z is a semimartingale, so >H - Z is well
defined. Let T" be stopping times increasing a.s. to oo and Z”" be KAt processes
such that Z, ,,» = Z/, 7». Meyer [11], page 307, has shown that H- Z, AT 18
indistinguishable from *H - Z,, r»- McShane [9], page 125, has shown the analogous
result for the star integral. An application of Theorem (4.6) completes the proof.

5. Second Order Integrals. Since in general martingales do not have paths of
finite variation, it is necessary to define second order integrals which arise in the
appropriate version of Itd’s lemma and in the study of stochastic differential
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equations. We denote the second order integral of McShane by H * ZX, which is
written [{H(s)dZ(s)dX(s) in [9], page 124.

We let [Z, Z], =<2, Z°), + Z,.,AZ?, be the quadratic variation process;
[Z, Z] is an increasing process. Note that if Z has continuous paths, then [Z, Z],
=(Z,2Z),=(Z°, Z°), (see [11)).

We show in this section that if H is an appropriate integrand and Z, X are KAt
after small amendments, then

(5.1) H+ZX ="H-[Z, X],

We shall need the following classical result on square-integrable martingales (cf.
Meyer [10], page 83):

(5.2) THEOREM. Let M be a quasi-lefi-continuous square integrable martingale.
Then

M=M +3,,4,=M +M"
where M’ is a continuous martingale, A, = AMz 1,51, — (AMz1 {,>m)3, and where
(T,)n>1 is a sequence of stopping times exhausting the jumps of M. The series 2,514,
is convergent in 9N, and M" is orthogonal to each martingale N € 9N without a
discontinuity in common with M".

(5.3) LeMMA. Let M € O, be KAt. Let H be a bounded “simple process,” as
defined in (4.2). Then

H* MM =°H-[M, M].

ProoF. For ease of notation we write [M], for [M, M], and we let [M], , =
[M], — [M],. We make use of (8, §*) partitions, which are defined in [9], page 124.
_Fix a ¢ and let 9" be a sequence of (8, 87) partitions of [0, 7] with §; — 0 as n — 0.
Let
I="H-[M],

(5'4) Jn = ztjeﬂ’”H‘g[M]th,g

V=5, coH (M, — M)

g+1

We will show that J, — ¥, >0 in L' and that J, — I —»0.in L' as n — 0. We
follow a technique used by Meyer in [10].
Fix a k and let M} = M, ,,,
(5.5) M'=P+Q+R=N+R
where P is a continuous martingale, Q is the sum of the first #» compensated jumps,

and R is the sum of the rest of the compensated jumps. Using the notation of (5.4)
we have

(56)  E{|J, - V,|}
< E{IEHD,([M],“,,,, - (N, - th)zl}

+E{|2H,j(2(N,jH - N)R, —R)+(R, — R,J)2)|}.



COMPARISON OF STOCHASTIC INTEGRALS 285

Consider the second term on the right side of (5.6). Let AN =‘(N,j w— ). Then
67 E{I=H,(28NAR + (R))|)
1 1
< 2E{(EH;(AjN)Z)z(z(AjR)Z)Z} + E{SIH,|(&,R)}

1 1
< 2KE{S(AN)'} E{3(4R)*}* + KE{=(AR))
where we have used the Schwarz inequality for sums, the Cauchy-Schwarz inequal-
ity and where K is the bound for H. Thus (5.7) yields
E{IEH,j (24,NAR + (AjR)Z)l} < 2K’E(MP)|R||, + K||R|),

where ||R||, = E(R2), which, by Theorem (5.2), is arbitrarily small if n is chosen
large enough. We now consider the first term on the right side of (5.6). Recall that
N = P + @ as given in (5.5). Thus

(8  E{IZH,(M],, - &N}
= E{|2H,([P],.,, +[Q],.., +[R],.., ~ &NY)I)
<E{2H,([P],,,, - &P))]
+E{|2H,([2],.,,~ 4,0)]

J

+E{IZH,[R], |}
+E{|SH,(AP)(4,0)]}.

* We first observe that the third term on the right in (5.8) may be estimated by

(59) E{|ISH[R],, )| < KE{S[R]}")
< KE{[R],)
<K|R|3

which is arbitrarily small, for n large enough. Consider next the last term on the
right in (5.8). Meyer [10] has shown Z(A,P)(A;Q) are uniformly integrable; also

ZH, Q;P)40) < K(Z(AjP)2)%(2(AjQ)2)% is uniformly integrable. Moreover,
zHy(AjP)(AjQ)I < Kstu|AjP| IQIoo

which tends to 0 a.s. by the uniform continuity of the paths of P on [0, #], and the
fact that the paths of Q on [0,7] are as. of finite total variation. Thus
E{|SH,(&P)4,Q)|} >0 as n— co.

As for the second term on the right in (5.8) we see that [Q]t+.
2,<S<,I+I(AQS)2 ,<s<,HAQS, where we write AQ? for (AQ,)% The sums
2H y<o<s IAQ - (@ Q)z) are uniformly integrable since H is bounded,
Zic ,AQS € L and, as is well known, the sums 3(4; Q)* are uniformly integrable
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(see, e.g., Meyer [1'1], page 356). Moreover,
(510)  [SH,(Z,c,. A0 — (8,0)°)] < 2KZ|(280,)(8,0°) + (8,0°)’

where Q, = 3,.,AQ, + O/ is a pathwise decomposition. Since Q has paths of
finite variation on [0, 7], if |Q|, denotes the total variation on [0, 7], (5.10) becomes

[SH,(SA07 — (4,0))] < 4K sup)| 0y, — O;1 1]

which tends to 0 as n — oo by the uniform continuity of the paths of Q°.

Consider finally the first term on the right of (5.8). By optional stopping, if
necessary, we may assume without loss of generality that both P and (P) are
bounded. Since [P] = (P for P continuous we have that

E{(2H,(<P,,,, — (&P F)))=E (zH2(¢P>,,,, - (&P Y))

where we have used the fact that P> — (P is a martingale. Thus the first term on
the right in (5.8) is dominated by

KE(3((P,.,, - OPY) ) < 2KE({S(PD,., ) + =(8,P)*).

Now
2
2(<P>t,»+., ;) < (sup<P), ., P,
< (sup<PY,,, )P,
which tends to 0 as n — oo, and which is dominated by ((P),)* € L'. Also
S(AP)* < (supj(AjP)z)E(AjP)2
which tends to 0 by the uniform continuity of the paths of P if one chooses a

subsequence such that E(AjP)2—> {P), as. Moreover, supj(AjP)2 is bounded by
4K? where K is a bound for P, and Z(A,P)* is uniformly integrable. Thus
E{Z();P)* <d—>0asn— co.

Thus we see that each of the four terms on the right side of (5.8) tends to 0 as
n — 0. We conclude that J, — ¥, — 0 in L' for J,, ¥, as given in (5.4). It remains
to show that J, — I —0in L. :

Let L' =ZH i, , 5) and

wA) = E{IA.[M:I:}‘

Then _

(5.11) E{, -1} = E{I(L" - *H)- [ M] |}
<E{|L"-°H|-[M],}
= w(IL" - H|)

< Nulp(u(L” = HY)E.



COMPARISON OF STOCHASTIC INTEGRALS 287

Now L" =3L"u — a.e., since L" =3L" except possibly at the fixed partition points
¢; but u does not put mass at previsible stopping times because M is quasi-left-con-
tinuous. Thus we have

(5.12) p((L" = *HY)) = w(CL" - °H)’)
< p(L" - HY)
= E{(L" - H)’- (M),}.
But lim L*(w) = H(w) for almost all w and at most countable many s. Since

{M)(w) is continuous for almost all w, we have by the dominated convergence
theorem that

(5.13) lim, , E{(L" — H)*- (M)} = 0.

Combining (5.13) with (5.11) and (5.12) yields that J, — I -0 in L! as n — oo.

We conclude that H * MM, =3H - [M, M], as. for each ¢, and by the right
continuity of the paths the processes (H * MM,),5, and CH - [M, M],) are indis-
tinguishable. The lemma is established.

(5.14) LEMMA. Let Z be KAt and let H be a bounded “simple process” as in (4.2).
Then H » ZZ =°H - [Z, Z].

PROOF. Let Z = M + A be the canonical decomposition of Z, where M €
M o and KA? and A has adapted, Lipschitz continuous paths (Theorem (3.6)). For
a sequence of (8, §*) partitions define

(5.15) A, =SH (M, - M)
Bn = 22H’YI-(AII,+| - M{,)(Aijn - Atj)
Cn = ZH'I;(A’,H - Aij)z'
Then
(5.16) 3H,(Z,, - Z2) =4,+B,+C,
Letting K be a bound for H we have
(5.17) E{|B,|} < 2K*E{(S(&M))*(2(84)")*}
< 2K2E{E(A,M)z}%E{E(AjA)Z}f

1 - 1
< 2K’E{M?}?E{(sup;|5,4])(4],)}*
with, A X = (X,  — X,), with |4], the total variation of the path on [0, 7], and
where the Schwarz inequality has been used twice. The uniform continuity of the
paths of 4 implies that sup;|A;A4| tends to 0 as n— co (and so &* tends to 0).
Moreover, we have sup;|A;4| < Kt and so the dominated convergence theorem and
(5.17) imply that E{|B,|} >0 as n— .
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Consider C, in (5.16). Then
E{|G} < KE{Z(4,,, — 4,)"}

< KE{(suplejA])ﬂAI,)},
and by the arguments previously made, the right side above tends to zero. Finally,
by Lemma (5.3), 4, in (5.16) tends to *H - [M], in L'; since [M] = [Z] =[Z, Z],
the proof is complete.

(5.18) THEOREM. Let H be jointly measurable and locally bounded. Let Z, X be
KAt. Then

H»+ZX =*H-[Z, X].

PROOF. Suppose we have the result for bounded H with E[)H?2ds < co. Then
the result holds in general if H * ZX,\yn=H" % ZX,\gn =H"" - [Z, X],p1»
=3H-[Z, X, A But these are simple consequences of the definition of the
integrals and the elementary fact that [Z, X],,7 = [Z, X7],. We now assume
without loss of generality that H is jointly measurable and bounded, and that
E[®H?2ds < co. Then we know ([9], page 138) that there exist bounded simple
processes H” such that EfP|H — H,|ds < g,, where ¢, — 0. By Theorem (6.4) of
[9] we have E{|H" + ZZ, — H » ZZ|} < CE[y|H] — H,|ds — 0 as n — co.

On the other hand, we have

E(H"[2),~H (2]} <E{PH" ~HI|[2.2] }
<E{’H"-H|-[Z,Z],)
= E{|H" - H|-(Z,2Z),}.

We know from Lemma (3.5) that the paths of (Z, Z) are Lipschitz continuous.
Thus if pzy(A) = E{1,-<Z, Z),}, by choosing a sequence of integers {n’} such
that H” — H a.e. p, we have H” — H a.. p 5. Therefore, by the dominated
convergence theorem, we find p (| H " — H[)—>0asn — oo.

We have shown in Lemma (5.14) that H" * ZZ, =H"- [Z, Z], and the above
argument shows that H” * ZZ, and *H" - [Z, Z], converge in L' to H * ZZ, and
3H - [Z, Z],, respectively. Thus H * ZZ, =*H - [Z, Z], a.s. The right continuity of
the paths shows that H * ZZ is indistinguishable from *H - [Z, Z]. Finally, by the
polarization identities H * ZX =>H - [Z, X]. This completes the proof.

(5.19) COROLLARY. Let H be locally bounded and let Z, X be KAt after small
amendments. Then '
H+ZX =*H-[Z, X].

Proor. First note by Theorem (3.7) that Z and X are semimartingales; hence
[Z, X] is defined. The result follows by an application of Theorem (2.5) of [9] and
Theorem 27 of [11], page 307.
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