The Annals of Probability
1979, Vol. 7, No. 3, 385-405

PREDICTION PROCESSES AND AN AUTONOMOUS
GERM-MARKOYV PROPERTY

By Frank B. KNIGHT
University of lllinois at Champaign-Urbana

Let X(¢) be a measurable stochastic process on a countably generated
space (E, &), and let G(¢) = N;4~,,F°(¢, t + 8) be its germ field. By transfer-
ring the probabilities to a representation space, we define and analyze the class
of such processes which are Markovian relative to G(#) and autonomous, in the
sense that they have a stationary transition mechanism. These processes are
reduced to Ray processes on an abstract space with a certain weak topology.
Five kinds of examples are indicated.

0. Introduction. The present paper is a follow-through to the general nonlinear
prediction process developed in [9] and [15]. As such, it may be appropriate to start
with a few words on the motivation for that theory. The original motivation for [9]
was to make possible a general treatment of the germ-Markov property, as defined
for instance in [7]. In the latter a process X(¢) is called Markovian relative to the
germ fields (or germ-Markov) if for each ¢ the past and future are conditionally
independent given the germ field G(f) = N30T °(¢, ¢t + §), where F°(z, ¢t + &)
denotes the o-field generated by {X(s), t <s <t + §}.

Such a concept arose previously in the study of Gaussian processes (for example,
in [11]) but it is obviously not confined to these. A natural analogy is that of a
mechanical system with some random elements present. The future motion de-
pends on the past not only through the instantaneous position, but also through the
instantaneous velocity, which can only be defined in terms of a germ field. A
familiar recourse in this situation is to introduce the vector Markov process
consisting of both position and velocity. However, in the general case obstacles
arise for a direct extension of this device. In fact, except in rather special cases,
G(?) is not countably generated. Already in the case of Brownian motion this is
well known to be true, although of course each ¥°(¢, ¢t + 8) is countable generated.
Thus in a sense the “present” G(¢) is more complicated than the entire process, and
it is not quite clear how to simplify the germ-Markov property.

Another (perhaps unrelated) difficulty in studying a germ-Markov property is
that there are other definitions of a germ G(¢), according to whether X(¢) € G(¢) is
imposed and/or § < o is allowed. These distinctions would become significant in
discussing a strong-Markov property of germs, as seen ir [7], although they do not
affect the class of processes for which the simple germ-Markov property holds.
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Accordingly, in [9] we redefined % (¢, ¢ + &) as the o-field generated by all integrals
{fif(X(1))dr,t <s <t+ 8} (for all bounded measurable f, and assuming the
process X(¢) to be measurable). This is equivalent to the former definition if X(¢) is
right (or left) continuous, but in general it leads to a quite different viewpoint in
which the “instantaneous present” has no intrinsic meaning. From this viewpoint
the ordinary Markov property is meaningless, and the germ-Markov property
replaces it. Consequently, in the framework of [9] the definition of G(¢) at least
does not depend on inclusion of X(#), although of course G(¢) is still in general not
countably generated.

In the present paper, we first (Section 1) give a new proof of an important result
of Meyer [15] which is needed later. This also provides a review of the main
substance of [9] and [15]. Then we make one clarification of the theory, which
serves a similar function. For some general applications to nonlinear filtering, we
refer to Yor’s paper [18].

In Section 2 we develop the germ-Markov property in this framework, and
introduce the concept of autonomy for germ-Markov processes, which generalizes
the usual concept of time-homogeneity for ordinary Markov processes. Then we
study the general autonomous germ-Markov process and show that it reduces to an
ordinary Markov process of known type—specifically, to the Ray process of a right
process, restricted to its Ray space as in [5], Section 15. A somewhat more
elementary description is also given in terms of the framework of [9]. It turns out
here that the topology of [9] is weaker than the Ray topology, which makes the two
descriptions almost identical. Finally, in Section 3 we give some examples of
germ-Markov processes which arise in various ways from stochastic integrals, time
changes, etc. We do not study intensively any particular class of such processes,

" but merely present some of the types which have come to our attention.

Some remark is necessary on why we continue the setup of [9), rather than that
of [19]. In the first place, while [19] does permit a simplification of notation, this is
bought at the cost of two factors. Namely, it becomes necessary to assume a
suitable topology for the state space of X(¢), such that the paths are right-continu-
ous with left limits, and it is also necessary to assume that X(z) has the canonical
representation on its path space. These assumptions, however, tend to obscure
some important distinctions. Two basic consequences of [9] are that it provides a
right-continuous process in a natural topology, without any preassigned topology
for X itself, and that by transferring the discussion explicitly to an auxiliary space it
avoids any assumptions on the probability space of X. In particular, it thus avoids
assuming the existence of translation operators.

In the second place, it is not difficult to axiomatize the idea of a “prediction
process,” and to show that for a given process X all such constructions are roughly
equivalent. This was done in [10]. But here it is possibly more relevant to point out
that the predictive processes Z}* of [19] are easily obtained from the Z(#) of [9] by
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forming the inverse images on £ of Z(¢) restricted to the (Borel) image of Q in Q.
Consequently, all of the present conclusions transfer in an obvious way to the
situation of [19].

We do, however, make one change in the notation of [9]. We replace Z(¢) by Z}
to make room for Z/(S) as a notation for the (random) measure Z(?) at the set S.
Here, as in [19], the superscript 4 denotes the probability for which Z” gives a
conditioning.

1. The general prediction process. We first review briefly the results of Section
1 of [9].2 Let (Let (2, F, P, X(#)) be a measurable process with values in an abstract
space (E, &), where & is countably generated. We choose a fixed but arbitrary
sequence o < h, < 1 of & /% -measurable functions which generate & (% denotes
the Borel field of R), and we map X(¢) into the sequential process Y,(f) =
[oh (X(s)) ds, 1 < n. Let (2, F'(¢,, t,), P") denote respectively: (a) the space of
all sequential paths (y,(9)); 0 < y,(t + 5) =y, () <s,0 <s,t; n > 1; (b) the o-
field generated by y,(¢) — y,(¢)), t, <t <t n > 1; and (c) the probability on
%’ = (o, o0) given by P'(S’) = P{(Y,) € §'}, S’ € F'(0, ). Since the sets
{(Y,) € S’} for 8’ € ¥'(1,, t,) comprise the o-field generated by all integrals
[3, f(X(m)dr, t; <s <, the space (¥, §’, P’) constitutes a “widesense” approach
to the study of P on these o-fields. We note again that if for a suitable topology
X(?) is right-continuous, then by differentiation in x we see that these o-fields
reduce to the usual generated o-fields of X(¢), 1, < ¢ < t,.

We next introduce the generalized translation operators i, on Q' by setting

it(yn(s)) = (yn(t + S) - yn(t))’
and we let (H, 3C) denote the space of all probability measures on (¥, %'). We
consider €' as a compact metrizable space with the topology uniform convergence
for each n and ¢ in compact sets, and we consider (H, J() as a compact metrizable
space with the topology of weak-*convergence of measures on (', %'). For each
element 4 € H (and in particular for P’) we construct the prediction process
ZKS"), S’ € F',t > o, as the unique (H, I)-valued process on (2, F’) (up to
h-equivalence) with right-continuous paths and satisfying
PH(i7'S"|F (o, t +)) = ZM(S"); h-as., t>0,8€YF.
Here we write P" in place of simply 4 in order to be consistent with the notation
E™* for h-expectation, and F'(0, 1 +) = N45,F (0, t + 8).

The main results of Section 1 of [9] may now be stated as follows. In the first
place, Z" exists for all ¢ > o, h-a.s. Next, for any %}(o, t + ) stopping time T
(respectively, any previsible ¥;(o, t + ) stopping time T, > 0), where %;(0, ¢) is

2We will point out here some trivial but embarrassing errors in [9): page 576 line — 17, delete hy, hy;

page 577 line — 2, replace /S by i, S’; page 581 line — 10, replace Ez, g by g(Z(s)); page 582 line — 3
f € C*(®); page 584 lines 10, 11 for C; = 0 and C, = co we have E, { xP,.
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%’(o, t) completed by all A-null sets in %', we have respectively
(1.1) (a) P'(i7,'S"|F;(0, Ty +)) = Z1.(S")
(b) P*(i7,'S"|B(0, Ty)) = Z2 (S), S’ €F".

Here the o-field %, (0, T,) would customarily be written %, (0, T, — ), but since the
paths of ' are continuous in ¢ the two definitions yield the same object, namely
{S' € 5,0, 0): 8" N(T, <t) € F0,1) for all t}. We note that , since no
Markov property is assumed for h, we do not have %;(0,¢) = %,(0,¢ +) in
general. The second main conclusion of [9] concerns the processes Z/ as h varies.
There is a Borel transition function ¢(z, z, 4), A € 3, B* xIC-measurable in (¢,2),
such that for every & € H the corresponding Z/ is a homogeneous strong-Markov
process relative to its generated o-fields (or equivalently relative to %, (0, ¢ + )) with
the same transition function g. Thus, no matter what process X and induced
measure P’ one has, the corresponding prediction process Z/ is a homogeneous
Markov process with a given transition function. We can think of Z* as the
process of conditional futures of X given the pasts up to time ¢ + . Since time o +

has, in general, a larger past than time o, we do not have the normality property
P*{Z% = h) = 1 for all h. An important role is therefore played by the following

DEFINITION 1.1.  The set of nonbranching points is H, = {h € H : q(o, h, {h})
=1}.

Since g is measurable, we have H, € 3. When considering the Z as a Markov
process with transition function ¢ on (H, I(), with the canonical representation on
the space 2, of right-continuous paths, we omit the superscript A, this being
preserved in the notation P° or P” for the initial distribution or point. The
~ following result of Meyer [15] shows that we can use H, as a restricted state space
for Z,.

THEOREM 1.1. For any h € H, we have P*{Z} € H, for all t > 0} = 1. In
particular, P*{Z*(S)=0or 1 for all t > 0 and S € F'(0o + )} = 1. Restricted to
the set H,, the process Z is a right process in the sense of Meyer ([14], XIV; [5]).

PrROOF. Since Z/ is right-continuous in H, it follows easily that for each & the
set {(t,w): Z, € H,} is optional for the family F,” of o-fields generated by
Z,s <t +, and completed for P* on Q in the standard manner [14, XIII, 5], this
family being right-continuous (see [14], XIII, T 13). Consequently, unless the
projection of this set on Q, is P*-null, there would be a stopping time T with
P"(Z, & H,; T < w0} > 0, by the optional section theorem [2, IV, ]. Then by
the strong-Markov property of Z,, since Z is both past and future of time 7, we
would have .

0=P{Z, % Z;}
= E"{P#(Z, % Zr})
=P"(Z, ¢ H,},



GERM-MARKOV PROCESSES 389

contradicting the former result and proving the first assertion. For » € H, and
S’ € %'(o +), it follows from (1.1) with T, = 0 that

I = P*(S'|%"(0, 0 +))
- 24(s)
= P*(S’), h-as.

Hence P*(S") = 0 or 1, and the second assertion follows from the first. Finally, the
properties of a right process on H, are now clear, except for the right-continuity of
excessive functions along the trajectories of Z,. But this follows, since g is a Borel
transition function, by [14, XIV, T11], completing the proof.

REMARK. It is worth emphasizing again that %'(0,0 + ) is not countably
generated. Hence it does not follow from the fact that Z(S)=0 or 1 on
%'(0, 0 + ) that Z for each (¢, w') is concentrated on an atom of %’(0,0 + ).
Otherwise, if & = P’ were induced by a Brownian motion X(¢), then since X(¢) can
be identified with its own prediction process in an obvious way, it would follow
that X(¢) is a pure jump process in the sense of [8]. In short, an atom of %'(0, 0 + )
specifies the trajectory in a time interval of positive length (depending on the
sample path). For a fuller discussion, see Blackwell and Dubins (1975).

Our second general result concerns the connection of Z, as a Markov process on
H, with the set H of probabilities on §'. It does not quite hold true that every
initial distribution for Z, on H, defines a process equivalent in distribution to some
particular Z”, h € H. The reason is clear from the following example (based on
Example 1.4.1 of [9]). Suppose that X(7) has only two paths, each having probabil-
ity 3, and that they coincide for 0 < ¢ < 1 but differ for 1 <. Then the induced
conditional future process Z will have the same general behavior. However, if we
consider the two paths as two separate deterministic processes X; and X,, with
induced processes Z " and Z®, and form the process Z, for P® where v is the
initial distribution on H, assigning probability 3 to Z{" and to Z{?, Z, will not
correspond to any Z/, » € H. Indeed, by (1.1) with T; = 0 we have for any A

PH(S'|5(0, 0 +)) = Z{(S"), S ey
In particular, for S € (0, 0 + ) this becomes Iy = Z#(S"), h-a.s. But for P*, Z,
is a.s. constant (0 or 1) at each S’ € $'(0, 0 + ) (in fact, on %'(0, 1)). If Z and Z*
were equivalent in distribution it would follow that Ig. is constant s-a.s., hence A
would have only values 0 or 1 on %'(0, 0 + ). But then, since ¥’ is countably
generated, Z# would A-a.s. coincide with 4, while in fact Z, for P has two values
each of probability 3.
Consequently, we need the following

DEerFINITION 1.2. Let J(, denote the restriction of JC to H,. A probability v on
(H,, 3C,) is called resoluble on Q' if for some h € H the prediction process Z/ has
the same joint distributions as Z, for P°. The measure /4 (which is unique) is called
the resultant of v.
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DEFINITION 1.3. A function g : @' —» H,, %'(0, 0 + )/ J(,-measurable, is called
@'-consistent if for each S’ in the (countable generated) o-field induced by g on &’
we have g(w'; ') = Ig(w’) (where g(w’; S’) is the measure g(w’) of the set
S’ € 90,0 +)).

The principal result connecting these definitions is

THEOREM 1.2. A probability v on (H,, K,) is resoluble on ' if and only if it is the
image of a probability on %'(0, 0 + ) by some '-consistent function g.

PrOOF. We suppose first that v is resoluble on €/, and let » and Z” denote the
resultant measure and prediction process on €. Then by (1.1) with T, = 0, and
Theorem 1.1, Z¢ is %;(0, 0 + )/ I(C,-measurable. Since I(, is countable generated,
we may define an h-equivalent Z which is %0, 0 + )/ I(,-measurable.

Let (4,) be a countable field generating J(,, and S, = {w’ : Zh € 4,) be the
induced sequence in %'(0, 0 + ). Then we have -

h ’ ’ ’
Z(S,) = P(5,/%°(0,0 +))
= I, for all n, h-as.
Consequently Zg(S ") = I, for all S’ in the o-field induced by __Z_g on & except for
w’ in an h-null set N in the induced o-field. If N is nonvoid, let A* be any element

of H, with h*(N) = 1 (for example, a unit measure concentrated at w' € N), and
define

g(w') = _Z_g onQ — N
= h* onN.

Then the o-field generated by g is that jointly generated by N and {S, N (2 —
N); 1 < n}, and since ZS(S,{ NE —N))=1on S, N — N) we see that g is
Q'-consistent. Also, since Z(;‘ = g except on an A-null set, the image on I(, of 4 on
%'(0, 0 + ) by g is the same as that by Z{, namely v.

Conversely, suppose that v is the image of a probability #, on %'(0, 0 + ) by an
'-consistent function g. We consider the probability measure

h(S") = [g(w'; S)ho(aw’)

= [g(w'; S)h(dw), S €%,
where the second expression follows since, by consistency, h = h, on the o-field
generated by g. To show that v is resoluble on &, it suffices to show that
(1.2) P"(S8’|%7(0,0 +)) = g(w'; S’), S’ € ', h-ass.
Now for S, € %(0, 0 + ) we have
(1.3)  fs,8(Ws5 S)h(aw) = [5,8(W'; S')fq g(W"; dw')h(dw")

= Jo(/5,8(W'; S")g(w"; aw’))h(aw").
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Let S'(n, k) ={w' : k272 <g(w'; S") < (k + 1)27"},0 < k, 0 < n. Then the
integrand of (1.3) becomes

(14) Js,8W'; S)g(w”; dw’) = lim, 2, k2" "g(w"; S, N S'(k, n))
= g(w"; S)g(w"; S,)

since, by consistency, all of the summands vanish except the one for which
w” € S'(k, n), and for it g(w”; S'(k,n)) = 1. If g(w”; S,) =0 then so does
gw”; S, N §"), while if g(w”; S,) = 1 then g(w”; S, N S’) = g(w”; S’). Hence in
either case the right side of (1.4) equals g(w”; S’ N S,). Since g(w”, ) € H,, by
Theorem 1.1 g(w”; S,) takes on only values O or 1. Hence the last expression in
(1.3) becomes
Jag(W", 8" N S, )h(dw") = h(S' N S,),

proving (1.2) and the theorem.

Since every & € H defines a process Z/ equivalent Z, for some P°, namely that
in which v is the distribution of Z{ on J(,, it is no real loss of generality to consider
Z, only as a Markov process on (H,, J(,). In the sequel, we will assume that Z, has
the canonical representation on the space of all right-continuous paths on H,, with
left limits in H for ¢ > o.

2. An autonomous germ-Markov property. We continue to treat our processes
X as probabilities on the auxiliary space (@, ) since this is easier and more
general. It is possible to specialize to the subset of such probabilities induced by all
processes X on any reasonable space (E, &), such as a U-space as defined in [5],
and this was done in [9, Section 2]. Here, however, we will proceed on the more
general level, and leave it to the reader to translate the definitions in terms of an
underlying process X.

DEFINITION 2.1. Let G*(#) = N T (1, 1 + &) and G (1) = N, F(t — &, ).
We say that a probability » € H is germ-Markov at time ¢ if for each S’ € %,

.1 P(i7'S'|F°(0, ¢ +)) = P(i”'S"|G *(¢)).
We say that h € H is a Markov process of germs, or has the “germ-Markov
property” if (2.1) holds for all ¢ > 0.

REMARK. We note that even though the left side of (2.1) is given by Z/(S") in
accordance with (1.1), and Z} is itself a homogeneous Markov process, there is as
yet no assumption of homogeneity on the germ. Thus, any inhomogeneity is
covered up in the construction of Z?, as can be understood by considering a case
in which 4 is induced by a right-continuous but inhomogeneous Markov process X
(and hence satisfies (2.1)).

We will prove one general result on germ-Markov processes without assuming
any kind of additional homogeneity.
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THEOREM 2.1. (a) h has the germ-Markov property if (and only if) it is germ-
Markov at a countable dense set of t.
(b) h has the germ-Markov property if and only if for all t > 0

(22) P*i ! (S)F(0, 1)) = P*(i'S'|G(2)); S’ €9F.
ProOF. Suppose that 4 is germ-Markov on the dense set (z,). Then, with a slight
abuse of notation, we have for any S’ € %'(e, ®), ¢ > 0, and any ¢ > 0,
(23) p"(i7's'|%(0, t +)) = lim,, ., P"(i7'S'|F(0, 1, +))
= lim, -, P"(i7'S'|F(¢, 1, +))
= P"(i”'S"|G *(2)),
where we used the fact that i'S’ € F'(¢ + ¢, o), and then martingale conver-
gence of conditional expectations. Letting ¢ — 0, (2.3) holds on a field generating
F(0, o). Since the left side equals Z/(S"), which is a measure in S’, extension of
measures extends (2.3) to (0, o), proving (a).
Turning to (b), we assume first that 4 has the germ-Markov property.Then for
t>0
(24) P"(i ' (S)F(0, 1))
= lim, ., 1, P*(i7(S)NF(O, 1, +) VV F'(1,, 1))
= lim,_e<,"T,P"(i,"(S')|G +(tn) Vv Gjl(tm t))
= limt_e<,nT,Ph(it"I(S')l(’f’(tn, t))
= PH(i7 (8|6 (1)),
using the conditional independence of %'(0,t, +) and %'(z,, f) given G*(z,).
Conversely, since G *(0) = %(0, 0 + ) the germ-Markov property at 1 = 0 always
holds. Moreover, assuming (2.2) and S’ € ¥'(e, ), ¢ > 0, we have
(255) P(i7'S'|F°(0, £ +))
= limt+e>t,,ltPh(it_ |S1|63-'/(0’ tn))
= limt+e>t,,uPh(it_ 'S'|G —(tn))
= lim,, ., P*(i”'$"|F"(1, 1,))
= P*(i”'S"|G*(1)).
Letting ¢ — 0 extends (2.5) to S’ € ¥’ as in part (a), completing the proof. Of
course, the expression (2.2) equals Z (S") by (1.1), h-a.s.
The main content of the present section lies perhaps more in the definition of an
autonomous germ-Markov process, rather than in any one theorem. To explain

Definition 2.2, we first obtain an equivalent form of the germ-Markov property at
time ¢.
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THEOREM 2.2. A probability h € H is germ-Markov at time t if and only if there
is an H, € I, such that (a) P"{Z" € H,} =1, and () the trace of ¥, on H,
coincides with the o-field on H, generated by {z(S); S € %'(0,0 + )} as a set of
mappings of H—> R ™.

REMARK. Since J(, is countably generated, its trace on H, is likewise. But
%'(0, 0 + ) is not countably generated, hence neither is the o-field generated by
{z(S); S € (0,0 + )} on H,. The restriction on H, imposed by (b) is equivalent
to the requirement that 4 € H, be determined uniquely by its values on %’(0, 0 + )
and that the o-field generated on H, by {z(S); S € %'(0,0 + )} be countable
generated (see [2], III. 26).

Proor. If & is germ-Markov at time 7, then by (2.1) and (1.1) the corresponding
Z! generates a subfield of the completion of G *(?) for A in ¥'. Then if (4,) is a
countable field generating J(,, by discarding an A-null set in ¥’ we can arrange
that each {w’ : Z*(w’, -) € 4,} and consequently Z/ itself, is G *(¢)-measurable.
Setting S,;* = {Z! € 4,} € G*(#), we have

P"(Sn"'l?}'"(o, t +)) = Zth(it(sn+))

= I ,h-a.s.

where i(S,") = {(iw’; w € S,'} € G*(0), and we used the fact that S,* € (0,
t +) N i, '(%"). Accordingly, the random variables Z/'(i(S,*)), n > 1, generate the
same o-field as Z” up to A-null sets in ¥, and again by discarding such a set we
can make these generated o-fields identical. Let Q) € %, h(Q;) = 1, be the comple-
ment of such a set, where we will assume without loss of generality that Z € H,
on all of @, (Theorem 1.1). Since Z/(i(S,*)) has only values 0 or 1, the o-field
generated by Z/ on @, is the inverse of the product o-field in x¢% {0, 1} under the
mapping Z/(i(S,")), 1 < n. It follows easily that there is a x2.,{0, 1} /(H,, IC,)-
measurable function j on x{°{0, 1} such that Z = j(Z/(i,(S,))) on Q, (the usual
proof, as in Doob (Stochastic Processes, Supplement, Theorem 1.5), assumes that
Z} is real-valued, but since the compact metric space (H, J() is measure-isomor-
phic to a real Borel set with its Borel field, this entails no difficulty). We now
restrict j to the measurable subset B of x;2,{0, 1} on which, for x = (x,) € B,
J(xX)(i(S,*)) = x,, 1 < n. Then plainly j is one-to-one on B, and P{Z}! € j(B)} =
1. Consequently, j(B) is an element of J(, [2, III. 21), and on j(B) the ¢ field I(,
coincides with that generated by z(i(S,")), 1 < n. Setting H, = j(B), we have
proved (a) and (b) of the theorem.

Conversely, assuming (a) and (b), since J(, is countably generated there is a
sequence S, € %'(0, 0 + ) such that A(S,), 1 < n, generates the same o-field as J(,
on H,. Since P*{Z} € H,} = 1, and

Zth(sn) = Ph(it— lsnlgl:(o’ t +))
= Ii,"S,,’ h-a.S.,
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where i7'S, € G*(¢), it follows that Z" is measurable over the completion of
G *(¢) in ¥’ for h. This implies (2.1), completing the proof.

We may regard the set H, of Theorem 2.2 as determining the transition from the
germ to the entire conditional future at time ¢ through the correspondence between
Z! on (0,0 + ) and Z/ on all of ¥'. The idea intended by the word “autonomy”
is that the same transition mechanism is valid for all . Hence we propose the
following

DEFINITION 2.2. A probability # € H has the autonomous germ-Markov prop-
erty if there is a K, € ¥, such that (a) the trace of J(, on K, coincides with the
o-field generated by {z(S); S € (0, 0 + )} on K, and (b) P*{Z} € K, for all
t>0}=1

REMARK. By reinterpreting P* as a measure on the paths of Z,, we can omit the
superscript in Z/. In view of Theorem 2.1(a) it is not implausible that existence of
such a K, might follow from the weaker hypothesis that, for a different K, (b)
holds only for a countable dense set of . But this seems hard to prove. The reason
that ¢ = 0 is excluded in (b) is that we consider 4 as an entrance law for the
process, in the same sense as for ordinary Markov processes.

A more serious issue is the absence in Definition 2.2 of any assumption on Z/ .
Indeed, since only the germs G(f —) = Ns-oF °(¢ — 8, f) are observable in a
usual scientific sense, it might seem preferable methodologically to replace ZF in
(b) by Z . However, this turns out to be the wrong approach (it eliminates the
possibility of branching points). Fortunately, we recover the process Z! without
further assumptions in Theorem 2.2(d) below.

For a first type of example, suppose that A is induced by a realization X(7) of a
right-continuous Markov process (in the sense of Dynkin [4]) on a Lusin space
(E, &), relative to its generated o-fields ¥ °(¢ + ), and with homogeneous transi-
tion function p(s, x, A). Then h is autonomous germ-Markov. In fact, we can use
as K, the image of E in H under the mapping from x to the future i(x) € H
induced by p(-, x, ) and its iterates, namely A(x)(S’) = P*{(Y,) € §’}, as in
Section 1. Condition (a) then follows because x is a measurable function of the
values of A(x) on ¥'(0, 0 + ). Indeed, A(x) assigns probability 1 to the sequences
(7,()) with (d*/dt*)y,(0) = h,(x) (we are assuming without loss of generality
that the A, of Section 1 are chosen continuous). Then for L € JC, there is an
E, € & such that if B, = {(h,(x)): x € E,} we have

Kon L=Kyn {h(x):x € E,}
= Ko 1 {h(x) : (h(x)) € B}
=K, N {z € H,: z{(gt—;yn(O)) € Bw} = 1}.
This expresses K, N L as generated by
2(8), § = {((d*/dt*)»,(0) € B} € F(0,0 +),

as required. Property (b) is obvious in the present case.
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The essential result concerning Definition 2.2 is that, given 4 and K, Z/ is
simply a realization of a Ray process on a certain subset of H. But before turning
to this, we draw a simpler consequence as follows.

THEOREM 2.3. Let T be an %'(0,t + )-stopping time, and let G + (T) =
NesoF (T, T + €) where (T, T + ¢) is generated by (y (T + s) — (1), 0 <s
<e), 1 <n. Then any h satisfying Definition 2.2 has the strong germ-Markov
property:

P'(ir ((S)|°(0, T +)) = PH(iz '(S)|G*(T))
= Z}(S), h-as.on {T < 0}.

Proor. The first and third terms are equal by (1.1), hence we have only to
prove the second equality. Replacing T by T' A 1, we may assume that P*{T < o)
= 1. We want to show that Z;(S) is measurable over the completion of G *(T) for
h. Over {T = 0}G *(T) reduces to F'(0, 0 + ), hence there is no difficulty. Over
{T >0} we have Z} € K, h-as., and hence can express Z} as a measurable
function of Z}(S,), 1 < n, for a sequence S, € 9°(0, 0 + ), outside an A-null set.
Then over {T > 0} we have

Z{(S,) = P*(i;'S,|'(0, T +)

=1l , h-a.s. foralln,

since iz '(S,) € G*(T) c F'(0, T + ). This shows that Z!(S,) is measurable over
G *(T) completed for h. Hence the same holds for ZX(S), as required.

We turn now to our main structure theorem for autonomous germ-Markov
processes. The intuitive meaning will be mentioned following the proof. For the
definition and properties of Ray processes we refer to [5]. Note that by Theorem
1.1 the condition 4, € H, is not restrictive.

THEOREM 24. Let h, € H, and K, € I, satisfy Definition 2.2. Then there is a
universally measurable set K C H, such that:

(a) for every h € K, P"{Z, € K for all t > 0} = 1; moreover h, € K.

(b) Z, is a right process on K.

(¢) every probability on K is resoluble on ' (see Definition 1.1) by a resultant
measure h € H having the autonomous germ-Markov property determined by K,

(d) there is a one-to-one continuous mapping h(z) of the Ray space Ry of K onto a
subset of the resultant measures of (c) which preserves Z,.

PrROOF. We begin by setting
K={z€H,: P(Z €K,forallt >0} =1}.

In the terminology of [5], Section 12, we have K = {z € H,, : Py _x 1(z) = 0} for
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>0, in which T, _, is the hitting time of H, — K, and Py _x f(2) =
E*(e™*"f(Z;); T < w0} for T =T, _x. Since 1 is a-excessive, we know that
Py _x 1 is a-excessive. By definition of a right process (see [5], pages 53 and 79)
this implies that {z € H, : P _, 1(z) = 0} is “well-measurable,” in such a way
that for each z € K, I,(Z,) is P‘-indistinguishable from a well-measurable
process of the o-fields of Z, completed for P*. Then for z € K, unless P{Z €K

for all £ > 0} = 1, we can apply the optional section theorem [2, IV, ] to
obtain a stopping time 7 of these o-fields with P*{Z, & K; T < 0} > 0. But
ther, by the strong Markov property, we would have
1> E*{P{Z, € K, forallt > 0}}
= P*{Z, € K, forallt > T},
contradicting the definition of K.

Again by [5], page 79, K is a U-space in H,, hence we can define q(¢, x, A N K)
for A € (,. It follows from the above that for each initial distribution v on K,
there is a Markov process Z* on K with transition function g. Moreover, we may
assume that this process has right-continuous paths, so that the first axiom HD1 of
right processes [5, Section 9] is satisfied. To see that HD?2 is also satisfied (namely,
that excessive functions are right-continuous along the paths), we observe that if fy
is a-excessive for the resolvent on K, then setting

f(x) = fx(x) for x € K,
= oo for x & K,

we obtain an a-supermedian function whose a-excessive regularization [5, Section
2] coincides with fy on K. Thus HD2 on K follows from Theorem 1.1, and we have
proved (b).

Turning to (c), let ¢, be a decreasing sequence with limit o, and let v be a
probability on K. Since K is universally measurable, we may as well consider v
concentrated on an J(,-subset of K. Let y, denote the P*-distribution of Z, . By
definition of X, p, is concentrated on K. Now by Definition 2.2 and the fact that
J(, is countably generated, there is a sequence S, € F’(0, 0 + ) such that {z(S,), n
> i} generates on K, the trace of J(,. We will show that y, is resoluble on &'
Referring to Definition 1.3, we define an Q'-consistent function g : @ — H, as
follows:

g(w) = zif z € K, and 2(S,) = I (w') for all n
= §,,. if there is no such z,

where 6, is the unit mass concentrated at a fixed point w” not covered for any z

under the first case (if any).
. Since the set of w’ covered under the first case has the form

limy_, . {w" : for some z € K,, z(S,) = Iy (W), 1 <n < N}

where there are at most 2" nonvacuous possibilities (0 or 1’s) for z(S,), 1 <n < N,
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we see that the set covered by the first case is in %’(0, 0 + ), and from this it is easy
to see that g is (0, 0 + )/ JC, measurable. To obtain the ’-consistency it is easiest
to observe that each z € K, concentrates its measure on a unique atom of the
o-field generated by the S,, and w’ is in that atom if and only if g(w") = z. Thus
g(w'; §7) = Ig(w’) is clear for w’ in the union over K, of these atoms, while in the
complementary set we have g(w’; S') = 8,(S") = Ig(w") = Ig(W).
Introducing, now, the probability
h(S") = [xSo 8(W'; S")z(aw')p,(dz)

= fKZ(S/)P'n(dZ)’ S'e ¥,
we have

PH(S'|97(0,0 +)) = g(w'; S’)
= ZM(S'),  h,as.

Hence p, is resoluble on &, with resultant measure 4,. Clearly, 4, is germ-Markhov.

Recalling that y, is the P°-distribution of Z, , we consider the measures /4, on
i '(9") given by k(i 'S) = h,(S). It will be shown that the measures A, are
consistent, in the sense needed for the Kolmogorov extension theorem. This does
not depend on any germ-Markov property, but only on the fact that Z, has q as
transition function. Thus for n > m and S € %’ we have

n(i7'S) = h,(S)
= EM[ E™(S|F7(0,0 +))]
= E"Z(S)
= E°[q(t, — t,, Z,, dz)z(S)
= EM[EM(Z}_,(S)|%(0,0 +))]
= EM[ E™(i;L, (8)/%(0,0 +))]

ly,— 1,

= h(i; 1, (5))

= hi(i \(S)).
From this consistency, by extension of the measures there is a unique # € H
reducing to 4, on i '(¥) for each n. Then by martingale convergence and the
germ-Markov property of the A, for o <, <t we have

ZNS) = E"(i7'S|F(0, ¢ +)) .

= lim,,_, E"(i”'S|9(t,, t +))
m-»cth/m(it_ l‘S’l‘.”‘j-‘/(tm’ t +))
= E*(i71S|G *(z))
= E*i7'S|G* (1))

= lim
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The last equality shows that Z/ has distribution [ x4(t — t,, z, A) p,(dz), which is
the distribution of Z, for P*. As ¢t — 0 + , this determines the P°-distribution of Z,
by right continuity. Hence 4 is the resultant measure for v. Of course, we have
P°{Z, € K} = 1since K C H,, hence by definition of K we see that Z/ has the
autonomous germ-Markov property determined by K.

It remains to prove (d). Perhaps the chief advantage of the Ray space R is that
it does not really depend on K being embedded in H, as shown in [5], Section 15.
We review quickly the basic ingredients of the “Ray-Knight compactification” of
K, and of the Ray space R,. First of all, we form the minimal convex cone of
bounded positive functions on K containing U*C * for a > 0, and closed under the
operations U%f and f N\ g, where C* denotes the restrictions to K of continuous
nonnegative functions on H, and U® denotes the resolvent of Z, on K. Next, we
form the compactification K of K in the uniformity determined by this cone: since
there is a countable uniformly dense set, K is a compact metrizable space. We
extend U to K by setting U U%f = U, where f is any element of the cone, extended
tofonK. Then U%(f— 5 =U Uy — U"‘§ defines a Ray resolvent on K in the new
(Ray) topology, and K is a U-space in K. We define the Ray space of K by

={z€ K:aU%z, K) =1).

Then K C Ry, and further, if P, denotes the transition function of the Ray process
Z, on K with resolvent U®, then by [5, 15.6] we have P(z, K) = 1 for all z € R,
and ¢ > 0 (but not in general for ¢ = 0). For z € K, we have P(z, A) = ¢(t, z, A),
in such a way that Z_, and Z, coincide. (This is explained in detail in [5], Section 11;
since the Ray topology does not coincide with the H-topology, we must restrict the
path space to the intersection of the respective path spaces. However, the univer-
sally measurable sets in either topology coincide.) Finally, we remark that for Z,
the set K — Ry is “useless” (inutile) in the sense that for initial distributions v on
Ry neither Z nor Z,_ ever reach K — Ry, P’-a.s. (by [17], Theorem 10, Corollary
2). Thus we can consider Z, as a process on Ry.

Returning to the proof of (d), let us first make precise the sense in which the
asserted mapping h(z) preserves Z,. By this we mean that for every z € Ry the
process Z, is actually a process on K for ¢ > 0, and that as such it has the same
joint distributions as Z/ for the corresponding A = A(z). In particular, the points of
Ry — K are all branching points of Z,. To see this, note again that for z € R
since aU%(z, K) = 1 there are 0 < £,|0 such that P*{Z, € K} = 1. Then P*{Z, €
K for all t > 0} = 1, and further, we can proceed exactly as for (c) to construct the
resultant measure A(z). It is immediate from the definition of X that the right limits
ZY are in K, h-a.s. Hence if we show that the function A(z) is one-to-one and
continuous on R, since h(z) = z on K we will have Z, = Z} € K, hence Z, is
preserved by A(z2). )

To this effect, we first note that A(z) is one-to-one since (as there are clearly no
“degenerate branching points” [17]) processes equivalent for # > 0 have the same z.
Suppose now that z, — z in Ry, with z, € K. Then by definition of the Ray



GERM-MARKOV PROCESSES 399

topology, we have for f € C*

lim, ,,Uf(z,) = U (2).
In particular, let f(z) = E“g for 0 < g continuous on '. Then
U%(z,) = E*[Pe”“E%"g ds
= E* (e *goi_ ds,
by definition of Z/» as a conditional probability given %’(0, s + ). But, as shown in
Lemma 1.3.2 of [9], convergence of these U%(z,) for all « > 0 and g is equivalent
with convergence at s = 0 alone: i.e., of E*g (here one uses the uniform continuity

of goi; in s, uniformly on §£’). Hence the measures z, converge in H to a unique
limit 4. If z € K, then

UY(2)

Uf(z)

E"[&e™*goi ds.

Thus z = h = h(z), and so h(z) is continuous on K (in other words, the Ray
topology is stronger than the H-topology on K). If z € Ry — K, then

TUY(z) = E*fFe“E%g ds
= Eh(z)fgoe—asEZ,"(‘)gd‘,
= E") [~ g0j ds,

since Z, € K for s > 0. Comparison of this with U%{(z,) shows that & = A(z). To
complete the proof of continuity, it only remains to observe that since K is dense in
Ry, whenever z, — z in Ry we can choose z, € K with z, — z and the H-metric
dy(z,, z;) < n~'. Then h(z,) — h(z) implies that h(z,) — h(z), completing the proof
of (d).

REMARK. The content of Theorem 2.4 is essentially that an autonomous germ-
Markov process carries with it a space K on which we have a corresponding
process in the sense of Dynkin, complete with Borel transition function ¢q. More-
over, by Theorem 2.2(d) the process is right-continuous in a natural topology, with
left limits identified either as points of K or as branching points into K (i.e., as
probabilities on K). The “true state space” can be viewed as the set of atoms of the
trace of JC on K N K. Since this trace is countably generated while also generated
by {z(S), S € %'(0, 0 + )}, observations reduce to checking a countable number
of 0 or 1 germ probabilities, i.e., a countable number of corresponding germ sets.
Realistically speaking, of course, these germs are not observable, being in the
future. However, at any previsible stopping time 7 > 0 one can observe Z;_ =
lim,,_,wZ#”, where T, increase to T, which still involves only countably many fixed
sets (and hence can be finitely approximated). Then one can rely on the moderate
Markov property of (1.1)(b). In the case of simple Markov processes, these atoms
are identified with points of the state space by the correspondence of points with
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futures, hence of infinitesimal futures with futures, generated by the given transi-
tion function. It is worth noting here that this method can be used to improve a
transition function, under essentially the same hypotheses as [16]. In short, we do
not require that the semigroup property hold for every x in order to define the
above correspondence for a particular process X(¢), in the sense of giving condi-
tional futures for every ¢. An “X-polar” exceptional set can be permitted. Since
q(t, x, A) satisfies the semigroup property identically, it then can be used to
generate a complete Markov process consistent with X(¢).

3. Examples of autonomous germ-Markov processes. The present section is not
intended as a justification of the previous one, and in fact it is quite separate. We
will describe certain types of examples which seem intriguing, but we will not use
the representation space (', ¥’, P’). This is because our examples are either
Gaussian or have right-continuous paths. In such cases it is easiest just to describe
the processes X(¢) which induce the measures 4 of Section 2, and to indicate the set
of X-futures whose image on (', %) is to be the set K, of Definition 2.2. We will
classify five types of examples, as follows:

1. Germ-deterministic processes.

2. Gaussian processes.

3. Examples based on Poisson processes.

4. Examples based on Brownian motion.

5. Vector-valued examples.

Of course, this is not presented as a deep or all-inclusive classification, and in
some cases the categories overlap. We might call attention to type 3, in particular,
which seems to merit further study.

3.1. We call process X(¢) germ-deterministic if the entire past and future are
determined by the germ G(¢) at any time. Two types of such processes are as
follows.

(a) Random entire functions

X(1) = Z2_k %,
where the £ are independent random variables subject to growth conditions. For
example, it suffices that P{|&| > (k!)~! infinitely often} = 0. The autonomy
property, and the identification of a K, in terms of bounds on the derivatives of

X () (such as |(d*/dt*)f(1)| < c¥, 1 < k, for some c), are evident.
(b) Random Fourier representations

X(f) = fbe™dZ(\), - <a<b< o,
where Z(A) is a process with (complex) orthogonal increments and we assume strict
stationarity of X(7). Here again Z()), and hence X, is determined by the derivatives
@/ dt™)X(t) = [5e™(NY'dZ(N) at a fixed ¢, in view of the finiteness of 5 — a and a
simple polynomial approximation argument. In the Gaussian case, a more general
condition for germ-determinism was given by Levinson and McKean ([11], 8).
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Here, the future can be determined by the time-stationary germ quantities
(Joe™dZ(\), a < r < b, r rational).

3.2. The case of stationary Gaussian germ-Markov processes has been studied
in detail by Levinson and McKean [11]. In the “Hardy case” (of imperfect
prediction) the necessary and sufficient condition for the germ-Markov property is
that 2~ ! be an integral function of minimal exponential type [3] or [11], where 4 is
the outer function for which |A|* gives the spectral density. There is no question
here of going into the details of this deep investigation, which is referenced in [3].
One comment which may be useful concerns the fact that the definition of a germ
in [3] appears different than ours in that it is two-sided in time. But in view of [11,
6a] the two definitions are equivalent for stationary Gaussian processes. It should
be noted that the Gaussian germs are defined in Hilbert space terms, but (see [12],
for example) they reduce to our definition by o-fields, except for sets of probability
zero. In the Gaussian case, construction of our set K, is in principle quite easy,
since the future is obtained by adding to the projection on the germ a fixed
independent Gaussian process.

3.3. A potentially quite rich class of examples comes about by using the
discreteness of Poisson jumps to bring in a random element without obscuring an
underlying continuity. For example, X(¢) = P(f) + tP,, where P(?) is a Poisson
process and P, a fixed independent random variable, is of course a germ-Markov
process, since (d* /dt*)X(#) = P, is in the germ. We can use the jumps in a more
constructive way by considering a “zig-zag” process X(#) which moves at velocity
+ vin (4,,_,, t,,) and at velocity — v in (¢,,, ,,41), Where 0(= #y)) <t; < - - - are
the jumps times of a Poisson process of intensity A, and v is a constant. The
germ-Markov property is again clear. Let us imagine, moreover, an independent
sequence X,, of such processes, with velocities v, and Poisson intensities A, — co.
Posing Y(#) = =7_,X,(?), the “turning points” are now everywhere dense, while it
is easy to ensure uniform convergence in ¢ by choosing A, large or v, small. For
instance, if A, = 2*" and v, = 2", then routine arguments based on the indepen-
dent, mean zero differences X, (¢, 1)) — X,(#,,) and Chebyshev’s inequality, yield
such a convergence (one uses the fact that for ¢ > 0

P{max,,|X,(s)] > e} < 2P{|X,(2)| > ¢},

as is clear since the maximum must occur either at a turning point or else at ¢). It is
intuitively evident that, given the path of Y(s), t <s < ¢ + ¢, one can read off the
turning points of all the processes X,,(s) which occur in that interval. But the slopes
and values at these points determine X,(¢) itself, whence one can determine
X,(t + €) — X,(¢) for all but finitely many X,’s (namely, for those which have
turning points in (¢, ¢ + €)). But then the remainder has constant velocity in
(¢, t + €). Assuming that a finite sum 3% _,(* 1)v, determines the »n choices of sign
uniquely, Y(?) is an autonomous germ-Markov process.
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This partially heuristic argument is easy to justify rigorously if we make one
more “improvement” in the process. We have only to add to each X, jump
discontinuities of small size +§, at each turning point ¢ ,, using +§, or —§,
according to the sign of (d* /dt*)X, (¢, ,)- Assuming that 37_, 8, <9,, 1 <n, it
is clear inductively that all of these jumps and jump times are measurable functions
of Y(£) = 32_,X,(9). Since they determine the turning points, we do not need to
worry further about the nondifferentiability of Y (which was already present in the
first construction).

A precise definition of a set K, for which Y satisfies Definition 2.2 is easy, since
the germ at time ¢ determines the right velocities *uv, of all of the component
processes, which together with Y(7) itself determine the conditional futures.

3.4. Turning to examples based on the Brownian motion B(#), we remark first
that if Y(7) is a stationary solution of stable n™ order linear equation with constant
coefficients

., dn—k d
2k=0ak;tm Y(2) = jd'tB(t),
then X(¢) = [3Y(s) ds has the autonomous germ-Markov property. This is clear by
writing
dn—k
22=0akF(X(t + 5) — X(¢)) = B(t + s) — B(2),

and appealing to uniqueness of the solution. Actually, of course, these are also
Gaussian processes and could be included in 3.2 above, but the reader will find a
separate treatment for example in Chapter 6 of [6]. The displacement of a particle
* starting at 0 and determined by an Ornstein-Uhlenbeck velocity process results
from the case n = 2. Here it happens that X’ = Y is even an ordinary Markov
process.

Construction of other germ-Markov processes from B(?) is quite different than
from P(f) in 3.3, due to the fact that B(¢) plus a “random drift” is absolutely
continuous with respect to B(¢). Hence the drift cannot be identified in the germ.
However, other possibilities open up in terms of random scale factors or random
time changes. Thus a process

X(t) = YB(¢), orX(t) = B(1Y?),
where Y > 0 is a fixed random variable independent of B, is an autonomous

germ-Markov process. This can be seen, for example, by applying Lévy’s definition
of the quadratic variation to prove for ¢ > o that

et (51 )= (552

a.s., showing that Y is in the germ at ¢. Similar considerations apply, for example,
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to

X(1) = By(Ji| By(s)|ds),
where B, and B, are independent Brownian motions. Since [;*¢|B,(s)|ds is in the
(completed) field generated by X from ¢ to ¢ + ¢, | B,(?)] itself is in the germ, and

the germ-Markov property follows for X(z).
A somewhat more elaborate example is furnished by the stochastic integral

equation
X(1) = %o + So([5X(1)dr)dB(s); X %0,
where the outer integral is in the sense of It6 (see [13]). We may show by successive
approximations that this equation has a unique nonanticipative solution X(#). We
set Xo(#) = x,, and define inductively
X, 1) = x, + [o(/oX,(7)dr)dB(s), n>0.
Then one has forn > 1,
E(X,11(t) = X,(0)" = [eE(Ji(X,(r) = X, _\(r)dr)’ds
< SeESN(X,(7) = X, (7)) drds
< fos'max, ¢, E(X,(7) = X,_(r))’ds.

Also we have E(X,(s) — xo)* =3x3s° hence if we assume that

E(X,(s) — X,_1(s)* < (n!)™'x337"s%,
the induction step is valid, and this inequality holds for all n. Since each X, is a
continuous martingale, the classical L?-martingale inequality of Doob [2, VII,
Theorem 3.4] yields for m < n
2x03_"/2t3k/2

(k)2

Since the sum on the right from m + 1 to n = oo is even square summable over
m, it follows by Chebyshev’s inequality and the first Borel-Cantelli lemma that
lim, . X,(s) = X(s) exists with probability 1, uniformly in (0, ¢) for every ¢, and
satisfies the defining equation. Moreover, the difference Y of two solutions would
satisfy the equation

E7(max, ¢ (X,(5) = Xp(5))) < Zhmpmar

Y(t) = [o(SoY(7)dr)dB(s),
from which as above

3
EY(f) < %maxs<,EY2(s),'

implying the uniqueness ¥ = 0..

‘Tt is not hard to see that X(f) is not a Markov process, for knowledge of
X(s), s < t, would determine [{X(s)ds, which is the “rate” of the process at time .
On the other hand, we can show that X is an autonomous germ-Markov process.
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To see this, we write

X(t + 1) — X() = [*(JhX(r)dr + [$X(7)dr)dB(s).
Forming the quadratic variation in (7, f + €) and letting e >0 + , we see that
|/6X(T)dr| is in the germ. But then (d* /dt*)|[oX(7)dr| = X(¢) (sign [oX(7)dr) is in
the germ. Along with X(¢), this determines [{X(7)dr, and then the germ-Markov
property is clear (one could also appeal to the symmetry of dB(s) to avoid
considering the signs).

3.5. If we permit processes of several components, the possibilities for a
germ-Markov property evidently become comparatively unlimited. We will be
content to present one nice example which was mentioned to us by D. L.
Burkholder. Let B,, B,, and B, be independent Brownian motions, and consider
the process X = (B,B;, B,B;), as a vector process in the plane. If we form the
quadratic variation in (7, ¢ + €) of B,B; we can obtain the limits in probability

— 2

im, 3o ( BB+ %) 20+ 62 ))
— _ 2
= hrn,,_,w[E',;_,Bf(t + sk . 1)(3 ( t+ 3k—) - B,(t + sk " 1))

et B )+ &) - o L]

~ e(B3(t) + B¥(1)).
Similarly, from the second component it follows that BZ(f) + Bj(¢) is in the germ,
so that the difference BX(r) — BX(z) is likewise. But since B?B? and B7B7 are
determined, so is B3(B? — B?). Hence finally B} is in the germ, and we see that X
has the autonomous germ-Markov property.
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