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THE CARRYING DIMENSION OF A STOCHASTIC MEASURE
DIFFUSION!
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A multiplicative stochastic measure diffusion process in R¢ is the continu-
ous analogue of an infinite particle branching Markov process in which the
particles move in R? according to a symmetric stable process of index a,
0 < a < 2. The main result of this paper is that there is a random carrying set
whose Hausdorff dimension is almost surely less than or equal to a. As a
corollary it follows that the corresponding random measure is singular for
d > a. The latter result is also proved by a different approach in the case
d=a.

1. Introduction. The multiplicative stochastic measure diffusion process in R?
arises as the “high density limit” of an infinite particle branching Markov process
in which the particles move in R according to a symmetric stable process of index
a, 0 < a < 2. The basic construction of the stochastic measure diffusion process,
together with a study of some basic properties, is contained in Dawson [3], [4]. The
main objective of this paper is to study the local structure of the resulting randpm
measures.

We first review some basic definitions and results. Let 9T(R”) denote the family
of Borel measures on R“ furnished with the topology of vague convergence. Let
Cx(R?) denote the class of continuous real-valued functions on R? with compact
support. For a random measure on R, that is, an 9(R?)-valued random variable,
the probability distribution is uniquely determined by the characteristic functional
L(+), defined for f € Cx(R?) by

(L.1) L(f) = fm(nd)exP(ifxdf(x)"(d"))P(d")~

A stochastic measure process {X(f):t > 0} is an M (R¥-valued stochastic
process defined on a probability space (2, ¥, P). A Markov stochastic measure
process with time homogeneous transition probabilities is uniquely determined by
the characteristic functional of the initial distribution X(0) and the characteristic
functional of the probability transition function, given for f € CK(R"’) and v €
M (R? by

(12) L, ,(f) = E(exp(if f(x) X (1, dx))| X(0) = ).
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The multiplicative critical stochastic measure diffusion process in R? is an
M (R¥)-valued Markov process with

(1.3) L, ,(f) = exp(i Uf(x)»(dx)),
where {U, : ¢t > 0} is a semigroup of nonlinear operators on Cx(R?) which we
describe below. Let G, denote the infinitesimal generator of the Markov semigroup
{S, : t > 0} of contraction operators on Cx(R“) associated with the symmetric
stable process on R? of index a, 0 < a < 2. Then u(t, x) = U,f(x) satisfies the
nonlinear initial value problem
du(t, x)
ot

(1.4b) u(0, x) = f(x),
where y is a given positive constant. The reader is referred to [3], [4] for the proof
of existence and some basic properties of this process, some of which are
summarized below. In particular, the measure diffusion process at time ¢ is well
approximated by alternating branching and diffusion processes over successive
time intervals of length #/m in the following way: particles are created according
to the branching mechanism defined -by (1.5) and are then smeared out by the
diffusion determined by the semigroup operator S,.

We now review the basic properties of the measure diffusion process which are
required in this paper.

(1.4a) = G,u(t, x) + iyu®(t, x), t>0,

PROPOSITION 1.1. Let S, and U, be defined as above, and let T, : C((R?) >
Cx(R?) be defined by

(1.5) Tf(x) = f(x)/[1 — ivtf(x)], t>0.
Then the following hold:
@

it oo | Uf = (Sy/mTiym) Sl =0 foreach t>0 where || - |

denotes the supremum norm.

(®)
S TG = §0L8pH») — Vi nl») &,
where
n () = (v) ’exp(=y/v1), >0
' =0, y<o.
(c) If v is a nonatomic measure on R*, then
(1.8) LT,(f) = exp(if T,f(x)v(dx))

s the characteristic functional of @ compeund Paissen randaw. field with Lévy-
Khintchine- Kingman representation (1.6).
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The reader is referred to [3] for the proof of (a) and to [4] for the proof of (b) and
(©).

The basic property of the symmetric stable semigroup that we require is the
“scaling property,” that is, for » > 0,
(19) S.f(0) = S,.f,, (0)
where f, (u) = f(r~'*4). In other words, if {Z,(f) : t > 0} denotes the symmetric
stable process with index a, then r~V%(Z (rf) — Z,(0)) has the same law as

(Z (D) — Z20)).
Given a Borel set E c Rand 8 > 0,8 > 0, let

NE(E) = infsZ (d(S)))"

where d(S)) is the diameter of the set S;and § = {{S;} : E C U S, d(S;) <& for
each i}. Then the Hausdorff B-measure of E is defined by

(1.10) NP(E) = lim,_o N§(E).

The Hausdorff dimension of E is defined by

(1.11) dimE =inf{B > 0: AP(E) =0} =sup{B > 0: AP(E) = }.

Note that 0 < dim E < d, and if E has positive Lebesgue measure, then dim £ =
d.

In this paper, we demonstrate the existence of a random carrying set of
Hausdorff dimension a for the stochastic measure diffusion process. (A similar
problem, that of determining the Hausdorff dimension of a carrying set of a
random measure arising from a “curdling” process, has been posed by Mandelbrot
[6].) It follows from our result that the corresponding random measure is singular if
the dimension d is greater than the index a of the symmetric stable diffusion
process. Finally, we prove the singularity of the random measure in the case d = «
by rescaling in both space and time and using the fact proved in [4] that for the
critical measure diffusion in the recurrent case, the measure of a compact set
approaches zero in probability as ¢ becomes infinite.

2. Statement of the results. The main result is given by the following theorem:

THEOREM 2.1. Let {X(t):t > 0} denote the multiplicative stochastic measure
diffusion process in R? defined by the characteristic functional (1.3) whose spatial
diffusion corresponds to a symmetric stable process with index o, 0 < a < 2. Then for
fixed t > 0, there exists a random set B such that

@1 X(t,w, C N B(w)) = X(1, w, C)
Jor every compact set C and almost every w, and
(2.2) dim B(w) < a  forevery w.

REMARK 2.2. Note that since this is a local problem, we need only construct
B N V where V is a unit cube in R¢ Furthermore, without loss of generality, we
can assume that X (0, V) = 1.
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REMARK 2.3. If the Borel set B(w) has positive Lebesgue measure, then
dim B(w) = d. Combining this with (2.2) we get the following corollary:

COROLLARY 2.4. The random measure in R? characterized by equation (1.3) with
spatial diffusion governed by a symmetric stable process of index a, 0 < a < 2, is
singular if d > a.

Using a different approach we obtain the following extension of this corollary:

THEOREM 2.5. The random measure on R? characterized by equation (1.3) with
spatial diffusion governed by two-dimensional Brownian motion and the random
measure on R' characterized by (1.3) with spatial diffusion governed by the one-
dimensional symmetric Cauchy process are almost surely singular measure-valued.

3. Proof of Theorem 2.1. Consider a unit cube ¥ c R¢ which for each n > 1
is subdivided into 2+¢ equal subcubes of volume 2%, where {k,, n > 1} is an
increasing sequence of nonnegative integers. The ratio of the diameter of the fixed
cube V to that of the subcubes is ', = 2%,

Consider the set B obtained as follows:

By=V
B, cB,_, n>1

B, is a union of N, subcubes of volume (T',) " “
-]
(3.0) B= [\ _B.
Then B is a generalized Cantor set, and, similar to the derivation of the Hausdorff
dimension of the Cantor set (see, e.g., Billingsley [2], pages 141-143), the Hausdorff
dimension of B can be shown to be
3.2) dim B = lim inf, ,[log N,/log T,].

We now proceed to consider a probabilistic analogue to this construction. Let X
be a random measure on V. Given ¢ > 0, let

3.3) Ni(X) = min{n : 27_,X(v) > X(V) — ¢}

and

(3.4) K= UM,

where {v,:i=1,---,Ni(X)} is a cover consisting of the given subcubes of

volume 2% achieving the minimum in (3.3).
LeEMMA 3.1. Assume that

( log N#(X)

(3.5) e T,

<D(1+‘n,,))>l—e,’,

where ¢,00, 1,10, and €,]0 as n — co.
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Then there exists a random set B(w) such that

(3.6) X(w, B(w)) = X(w, V)  ae.
3.7) dim B(w) <D  ae.w.
PrOOF. Let
_ [ . log N(X(w))
(3.8) o, = {w Tog T, < D(1+m,)
and
(39) Kxw= US it wee,
' =g if wed,

Note that if necessary we can take a subsequence of { K, }. Hence, without loss of
generality, we can assume that ¢, < co. We now show that

(3.10) B(w) = UL N iKr(w)
satisfies the conditions stated in the lemma.

Since by hypothesis P(®,) > 1 — ¢, and ¢, < oo, then P(UL; Npui®,) = 1
by the Borel-Cantelli lemma.

If w € N3P, then

X(w, N2 Kr(w) > X(V) — 27,48,
Hence if w € UL N2 ®,, then
X(w, U=y NyoikKi(w)) > X(V),
that is,
X(w, B(w)) > X(V).

Since, trivially, X(V) > X(w, B(w)), we see that B(w) satisfies (3.6).
If we NP, then

n=k

log N,(B(w))
Tog T, <D(l+m,) forall n>k,
and hence by (3.2),
log N (B
dim B(w) = lim infﬁw%(ﬁ)l < D,

and the proof of the lemma is complete.

In order to establish an estimate of the type (3.5) for the multiplicative stochastic
measure diffusion X(¢) at time z, we exploit the approximation given by Proposition
1.1(a). Let P, and {P,, m > 1} denote the probability measures on M (R?) with
characteristic functionals L, ,(-) and

(3.11) L,(f) = exp(if(S,/mT,/m) " f(x)¥(dx)),  f € Cx(RY),
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respectively. Then Proposition 1.1(a) implies that the sequence {P,, m > 1}
converges weakly to P, as m — oo. The significance of this is that X(¢) can be
approximated by alternating two processes over successive intervals of length
(¢/m). The process corresponding to S,,, is a deterministic diffusion of the
measure according to the symmetric stable semigroup, thus yielding an absolutely
continuous measure. On the other hand, the process corresponding to 7, ,,, takes a
nonatomic initial measure 7 € 9 (R¥) into a compound Poisson random measure
with characteristic functional
(3.12) LE(f) = exp(il T, f(x)3(d)).
In view of (1.6), the total Poisson intensity is (y¢/m)~'5 and the mass distribution
of the particles is negative exponential with mean yz/m. Thus, the approximation
given by Proposition 1.1(a) consists of alternately “creating particles” whose masses
are exponentially distributed with mean yz/m and then “smearing them out” by
the deterministic diffusion operator corresponding to S, /,,. In view of the scaling
property (1.9) of the symmetric stable semigroup, the smeared out particle tends to
be concentrated in a region whose diameter is of the order of (z/ m)'/ o

The basic idea of the proof is to show that at a given scale the picture suggested
by this approximation is in fact correct. Thus we will show that the measure
diffusion random measure can be viewed as a hierarchy of smeared clusters at
different scales. The nth scale is obtained by subdividing ¥ into I'¥ equal subcubes
of volume I'; ¢ as above.

Let

m, =[2ytT;], n=123" -

. where [x] denotes the greatest integer less than or equal to x. By the scaling
property (1.9) of the symmetric stable law there is a constant ¢ > 0 such that

(3.13) z, = P(|Z,(t/m,) — Z,(0)| > nT'; ') <c/n"

for sufficiently large n.
Assume that » is nonatomic and consider the random measure X(¢/m,) (re-

stricted to V') with characteristic functional
(3.14) Li/m, ,(f) = exp(if U,/ f(x)¥(dx))
for f with Spt(f) c V.
LemMa 3.2
(i) The random measure X(t/m,) consists of a Poisson number W of clusters with

total intensity (yt/m,)” (V).
(it) The total mass Y. of each cluster is exponentially distributed with mean

(yt/my,).
PrOOF. We begin by using the approximation U, ,,, = (S,/,, T,,)™/™ where

m > m,. The result of first applying 7,,,, and then S, ,,, to the nonatomic initial
measure » is a compound Poisson random field of smeared particles. The total
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Poisson intensity is my(¥)/yt and the masses of the particles are exponentially
distributed with mean yz/m. The particles are smeared out over a region whose
diameter is of the order of (z/m)'/®.

To determine the structure of the random measure whose characteristic func-
tional is given by (3.14), m/m, iterations of this process are required. This iterative
process can be viewed as a critical branching random walk as follows. Each
smeared particle at the next iteration gives rise to a Poisson random number of
particles whose location is displaced from that of its predecessor by the symmetric
stable law associated with S, ,,,. The number of offspring is a Poisson random
variable whose mean is equal to (m/yf) times the mass of the predecessor. But
since the mass of the predecessor is exponentially distributed with mean (yz/m),
the offspring distribution is given by (letting a = m/yt)

k

P(N =k) = ff(L‘%'—)—e‘“")[ae‘“"]d}\ = (k) 'yeake =2 d
(3.15) :
=2 k+D), k=0,12---,

that is, a geometric distribution with mean one. Hence, we have a critical branch-
ing random walk in which the particles have an exponentially distributed random

mass.
By a “cluster” is meant the collection of descendents surviving at time (¢/m,) of
one of the particles first created at time (¢/m). Recall that for a critical Galton-

Watson process {Z, : n > 0},

P(Z, > 0) ~2/ne?
~ where o> = Var(Z)), and
lim,_,P(Z,/n > z|Z, > 0) = exp(—2z/4?)
(cf. Athreya-Ney [1], page 19). It remains to note that for the geometric distribution
in (3.15), 0% = 2, and thus

m4>m~%

and
(3.16) lim, P(Z,/n >z|Z, > 0) =exp(—z), 2z>0.

Hence, P(Z,,,, > 0)~ m,/m, and the conditional distribution of Z,, ,, condi-
tioned on {Z,, > 0} is approximately exponentially distributed with mean
(m/m,). We thus note that the total number of surviving clusters, W, has a
Poisson distribution of total intensity (m,/y?)»(V). Furthermore, each cluster
consists of a random number of particles, the number of which is approximately
exponentially distributed with mean (m/m,). Each of the “small particles” created
at time #/m has a mass which is exponentially distributed with mean (yz/m). We
must now verify that the total mass of a cluster at time (#/m,) is exponentially
distributed with mean (yz/m,).
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Let @p(S), ¢c(S) denote the Laplace transforms of the mean distributions of the
small particles and the clusters, respectively, and let
Y(2) = E(2%0m|Z,, . > 0).
We then have
@c(5) = ¥m(Pp(s))

where

= d = 1.
op(s) 2+ s and a=m/y

From the exponential limit law (3.16), it follows that
Yu(z™/™) > 1/ (1 - log z)
uniformly on bounded z-intervals. Then

496 = o 27 )

-1/ [1 — log((exp(yts))~ v "'")]
as m— oo.
Therefore
m, /vt

\Pm(q)P(s)) - mn/'Yt + s

as m — oo,

which is the Laplace transform of the exponential distribution with mean (yz/m,).
Thus the proof of the lemma is complete.

Lemma 3.3.

(i) Let B! denote a sphere of radius nT,, ' centered at the location of the ancestral
small particle at t/m for each cluster. Then, given a constant k > 0, there exist
constants k, and «k, such that
(3.17) P,,(X(t/m,,, (U ,.’:CIB;")C) > x/nﬁ) < k-2 4 nt/m,

(ii) For B < a and sufficiently large n,

log Ny /"ﬁ(X (t/m,)) >a+ log(29*'n9*?2) e3(#( V)’
log T, * log T, e B)

(3.18) P,

Proor. We first note that the cluster has an exponentially distributed total
mass and that its “expected” spatial distribution is given by p.(¢/m,, x, -), where
P.(t, x, +) denotes the probability transition density of the symmetric stable pro-
cess.: Additionally, by (3.13),

2y = f(B;')Cpa(t/mm x’y)‘b’ < c/nu'

Let the random variable X,,i = 1, - - -, W, denote that portion of the mass of the
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ith cluster which lies outside B;:, i=1---, W Then
X(2/m,, U (BD)C) < Z¥e.X,

and
(3.19) E(x(t/m,, u¥(B)°)) <z,
Furthermore,
Var(X(t/m,, U¥(B:)C)) = E(W,)- Var(X(t/m,, (B)))
+[ B(x(t/m, (B,;;)C))]2 - Var(W,)
(3.20)

= (yt/m,)”"Var(X(1/m,, (B)°))
+2X(yt/m) (vt /m,) .

To determine Var(X(¢/m,, (B))), we compute the exact characteristic functional
of the random measure at time ¢/m, associated with a cluster with center at x. This
is computed from (1.3) as

(321) L, . () = lim, o{ [exp(iU,@(x)z) — exp(—z/v1)]/[1 — exp(—z/v)]}
| =1+ ivtU,p(x).

Thus,
Var(X(t/m,, (BF)C)) = (vt/my)o(t/m,) — (yt/m,)’z},
where, by [4], Equation (4.7),
o() =[5/ [s)) B2y Pul(5, X, V)Pt = 5,9, WIPL(t' — 5,9, v)dw dv dy ds

< V[ (s Po(t's X, w)dw.
Hence v(¢/m,) < (t/m,)z,, so
(3.22) Var(X(t/m,, (B2)°)) < v(t/m)z, — vt/ )22
Therefore, from (3.20) we have

Var(X(t/m,, U%(B]))) < (¢/m,)z,
and
E([x(2/m,, OFa(B2))]) < 22+ (t/my)z,

Now using Chebyshev’s inequality we have

P(X(t/m,,, (U,.'KCIB;,‘)C) > x/nﬁ) < k-2 4 g0’/ m,
and the proof of (i) is complete. But from (3.17) together with
(3.23) P(W¢ > n’m,/yt) < k(v( V))*/n?,
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it follows that for 8 < a and sufficiently large n,
P,(NX/™(X(1/m,)) > 209 *"m,/ 11) < x(v(V))*/n*
+ k0?72 4 0P m,
< k) (v(V))? ) n¥=B),
Hence
P,(log N;/"*(X(t/m,))/log T, > a + log(2**'n**?) /log T,,)
< ky(n(V))?/ n*= P,

and the proof of (ii) is complete.

To prove the main theorem, note that we can apply Lemmas 3.2 and 3.3 when »
is replaced by the nonatomic random measure X((m, — 1)¢/m,). Since the random
measure X((m, — 1)¢/m,) has finite moments (cf. [4]), Chebyshev’s inequality
yields

-1
(3.29) Py(X( m"m t, V) > n(“‘ﬁ)/z) < Ky/n@B),

n

Then, by the Markov property, we have for 8 < a and sufficiently large n,
(325) P,(log N¥/"*(X(#))/log T, > a + log(2**'n“*?) /log T,) <ws/n@ A,
Theorem (2.1) then immediately follows from (3.25) and Lemma (3.1).

4. Proof of Theorem 2.5. We first introduce the rescaling transformation (cf.
[4], Section 5) X(£) - X ®)(¢) as follows:
- (41) XE(n), @) = <X(), >

where @i (x) = p(x/K) and K > 0.
In [4], Section 5, it is shown that the characteristic functional of X ®(?) is given

by

(42) LE(f) = exp(ifu(2, x)v(dx))
where
4.3) uB)(¢, x) = TE_  K** Dy (1/K*, x/K).

We complete the proof in the case d = 2; the proof in the case d = 1 is essentially
the same. If d = 2, a = 2 and » is Lebesgue measure, then

(4.4) [u(t, x)dx = Sp K*[u,(t/ K?, y)dy.
Hence,

(4.5) X®(K%)/K? ~cX(1).
Therefore,

(4.6) X(1, 4) =eX(1, 4,,4)/ (1/1)

where x € 4,3 if and only if tix € A.
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But from [4], Theorem 3.1, if 4 is compact, then

4.7 X(t,A) >0  inprobability as ¢ — co.
Hence letting 4(x) denote a unit cube centered at an arbitrary point x € R?,
(4.8) X(1, 4,(x))/|4.(x)] >0  in probability as &—0

where |4,(x)| denotes the Lebesgue measure of 4,(x). But if X(1, -) has a nontrivial
absolutely continuous component, then

(4.9) P({w : lim inf, oX(1, @, 4,(x))/]|4,(x)] > 0}) >0

for a set of x of positive Lebesgue measure.
It follows that X(1, -) has no absolutely continuous component since otherwise

(4.8) and (4.9) yield a contradiction.

ReMARK. Equation (4.5) implies that X(-) is self-similar under the transforma-
tion X —» X%, t > K in the case d = a. This fact has also been noted in a recent
manuscript of Holley and Stroock [5] and is implicit in recent unpublished work of
Spitzer.
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