THE BROWNIAN ESCAPE PROCESS1

By R. K. Getoor

University of California, San Diego

Let X be the Brownian motion process in \mathbb{R}^d , d > 3 with X(0) = 0. Let L_r be the last exit time of X from the ball of radius r centered at the origin. Then (L_r) has independent increments and we compute the distribution of L_r . When d = 3 this yields a simple proof of a recent result of Pitman.

Let $X = (X_t)$ be the standard Brownian motion process in \mathbb{R}^d . If t > 0, define

$$(1) L_r = \sup\{t: |X_t| \le r\}.$$

We shall assume that $d \ge 3$. Then almost surely $|X_t| \to \infty$ as $t \to \infty$, and so L_r is finite almost surely. If $P = P^0$ is the law of the Brownian motion starting from the origin we shall call the process $(L_r, r \ge 0; P)$ the Brownian escape process. Clearly $r \to L_r$ is strictly increasing and $L_0 = 0$.

Recently Pitman [5] has shown that when d = 3, (L_r, P) is a stable subordinator of index $\frac{1}{2}$ and rate $2^{\frac{1}{2}}$; that is, (L_r, P) has stationary independent increments and the Laplace transform of its distribution is given by

$$(2) E(e^{-\alpha L_r}) = e^{-r(2\alpha)^{\frac{1}{2}}}.$$

Pitman derives this as a corollary of a deep result connecting one-dimensional Brownian motion and the three-dimensional Bessel process. The purpose of this note is to give a simple direct proof of Pitman's result and to study the escape process when d > 3.

Here is our main result.

THEOREM. Let $d \ge 3$. Then the process (L_r, P) is continuous in probability and has independent increments. If r > 0, L_r has a continuous density given by (t > 0)

(3)
$$P[L_r \in dt] = r^{d-2} \left[2^{(d-2)/2} \Gamma\left(\frac{d-2}{2}\right) t^{d/2} \right]^{-1} e^{-r^2/2t} dt.$$

The escape process has stationary increments if and only if d = 3.

REMARK. If d = 3, (3) is the familiar density of the stable subordinator whose Laplace transform is given by (2). Although (L_r) does not have stationary increments when d > 3, it is trying in some average sense to "look like" a stable

www.jstor.org

Received December 15, 1977.

¹This research was supported in part by NSF grant MCS 76-80623.

AMS 1970 subject classifications. Primary 60J65; secondary 60J30.

Key words and phrases. Brownian motion, independent increments, last exit, infinitely divisible.

864

subordinator of index $\frac{1}{2}$. More precisely we shall see that

(4)
$$\int_0^\infty E(e^{-\alpha L_r}) dr = \left[c(d)(2\alpha)^{\frac{1}{2}}\right]^{-1}$$

(5)
$$c(d) = \frac{\Gamma\left(\frac{d-2}{2}\right)}{\pi^{\frac{1}{2}}\Gamma\left(\frac{d-1}{2}\right)}.$$

Of course, (4) is exactly what one would obtain if (L_r) were a stable subordinator of index $\frac{1}{2}$ and rate $c(d) \cdot 2^{\frac{1}{2}}$.

PROOF. Using the scaling property of the Brownian motion (i.e., if c > 0, $c^{-\frac{1}{2}}X(ct)$ is again a Brownian motion), it is immediate that L_r has the same distribution as r^2L_1 under $P = P^0$. Since L_r is increasing this implies that $r \to L_r$ is continuous at each fixed r almost surely, and hence it is continuous in probability.

To see that (L_r) has independent increments we define $R_t = |X_t|$. Then $(R_t; t \ge 0)$ is a continuous strong Markov process on $\mathbb{R}^+ = [0, \infty)$ (it is the *d*-dimensional Bessel process) and

$$(6) L_{r} = \sup\{t: R_{t} \leqslant r\}$$

is the "last exit" time of (R_t) from the interval [0, r]. Let $(\mathcal{G}_t)_{t\geqslant 0}$ denote the usual (completed) fields of the diffusion (R_t) . A by now standard result (see, e.g., Theorem 37 of [1]) states that under $P=P^0$ the post L_r process $(R_{L_r+t})_{t>0}$ is conditionally independent of \mathcal{G}_{L_r} given R_{L_r} . But by the continuity of the paths $R_{L_r}=r$ almost surely P and so in the present case $(R_{L_r+t})_{t>0}$ is independent of \mathcal{G}_{L_r} . Here \mathcal{G}_{L_r} is the usual field associated with a last exit time. If r < s, then

(7)
$$L_{s} - L_{r} = \sup\{t > 0: R_{L_{r}+t} \leq s\},$$

and so $L_s - L_r$ is independent of \mathcal{G}_{L_r} . Also $R_{t \wedge L_r}$ is $\mathcal{G}_{t \wedge L_r}$ measurable. But $t \wedge L_r \leq L_r$ and is \mathcal{G}_{L_r} measurable, and consequently $\mathcal{G}_{t \wedge L_r} \subset \mathcal{G}_{L_r}$. If a < r, then

$$L_a = \sup\{t: R_{t \wedge L} \leq a\},\,$$

and so each L_a with $a \le r$ is \mathcal{G}_{L_r} measurable. As a result the process (L_r, P) has independent increments.

Before coming to the proof of (3) we introduce the process

(8)
$$F_{t} = \inf\{|X_{s}|: s > t\}, \quad t \geq 0.$$

Clearly $t \to F_t$ is increasing and continuous and $\lim_{t \to \infty} F_t = \infty$ almost surely. Note that $F_t = F_0 \circ \theta_t$ and $F_t = \inf\{|X_s|: s \ge t\}$. If 0 < a < b, let $T_{ab} = \inf\{t: |X_t| \notin (a, b)\}$. It is well known and easily checked that if a < |x| < b, then

(9)
$$P^{x}[|X(T_{ab})| = b] = \left[\left(\frac{b}{a} \right)^{d-2} - 1 \right]^{-1} \left[\left(\frac{b}{a} \right)^{d-2} - \left(\frac{b}{|x|} \right)^{d-2} \right].$$

Letting $b \to \infty$ in (9) we obtain

(10)
$$P^{x}[F_{0} > a] = 1 - \left(\frac{a}{|x|}\right)^{d-2} \qquad 0 < a < |x|.$$

We are now prepared to prove (3). Clearly

$$P^{0}[L_{r} < t] = P^{0}[F_{t} > r] = E^{0}\{P^{X(t)}[F_{0} > r]\},$$

and using (10) we have

$$P^{0}[L_{r} < t] = (2\pi t)^{-d/2} \int_{|x| > r} e^{-|x|^{2}/2t} \left[1 - \left(\frac{r}{|x|}\right)^{d-2} \right] dx$$

$$= \frac{2}{\Gamma(d/2)(2t)^{d/2}} \int_{r}^{\infty} u \left[u^{d-2} - r^{d-2} \right] e^{-u^{2}/2t} du$$

$$= \left[\Gamma\left(\frac{d}{2}\right) \right]^{-1} \left\{ \int_{r^{2}/2t}^{\infty} v^{(d-2)/2} e^{-v} dv - r^{d-2} (2t)^{1-d/2} e^{-r^{2}/2t} \right\}.$$

Differentiating with respect to t we obtain (3).

Let us denote the density in (3) by $g_d(r, t)$. Consulting a table of Laplace transforms one finds

(11)
$$\int_0^\infty e^{-\alpha t} g_3(r, t) dt = e^{-r(2\alpha)^{\frac{1}{2}}}$$

$$(12) \int_0^\infty e^{-\alpha t} g_d(r, t) dt = \left[2^{(d-4)/2} \Gamma\left(\frac{d-2}{2}\right) \right]^{-1} \left(r(2\alpha)^{\frac{1}{2}} \right)^{(d-2)/2} K_{(d-2)/2} \left(r(2\alpha)^{\frac{1}{2}} \right)$$

where K_r is the usual modified Bessel function of the third kind. Of course, when d=3, (12) reduces to (11). Also, if d=5, (12) reduces to $(1+r(2\alpha)^{\frac{1}{2}})e^{-r(2\alpha)^{\frac{1}{2}}}$. Either calculating from scratch using (10), or by using (27) on page 51 of [2], we obtain (4) and (5) by integrating (12) in r over $(0, \infty)$. Therefore if (L_r) has stationary independent increments, then one must have

$$\int_{0}^{\infty} e^{-\alpha t} g_{d}(r, t) dt = e^{-rc(d)(2\alpha)^{\frac{1}{2}}}$$

and one easily checks (compare derivatives at $\alpha = 0$) that this contradicts (12) if d > 3. This completes the proof of the theorem.

REMARK. Since any increment of a process with independent increments that is continuous in probability has an infinitely divisible distribution, the density $g_d(r, t)$ is infinitely divisible. Also if $0 \le a < b$, the increment $L_b - L_a$ is a positive random variable having an infinitely divisible distribution whose Laplace transform, in view of (12), is given by

(13)
$$\frac{b^{\nu}K_{\nu}(b(2\alpha)^{\frac{1}{2}})}{a^{\nu}K_{\nu}(a(2\alpha)^{\frac{1}{2}})}, \qquad \nu = \frac{d-2}{2}, d \geqslant 3.$$

One can invert this explicitly when d = 5, but the resulting density does not seem to be particularly interesting. On the other hand, starting with the Bessel diffusion

Y with generator $\frac{1}{2}(D^2 + ((2\nu + 1)/x)D)$ on $x \ge 0$ where D = d/dx, the same argument shows that if

(14)
$$f_{\nu}(t) = \left[2^{\nu}\Gamma(\nu)t^{\nu+1}\right]^{-1}e^{-1/2t}, \quad t > 0,$$

then $a^{-2}f_{\nu}(t/a^2)$ is the density of the escape process $L_a = \sup\{t: Y_t \le a\}$. In particular f_{ν} is infinitely divisible for $\nu > 0$, and (13) is the Laplace transform of an infinitely divisible distribution for $\nu > 0$. The fact that f_{ν} is an infinitely divisible density may also be obtained as a limiting case of a recently announced result of Ismail and Kelker on the infinite divisibility of the F-distribution. See [4].

It is interesting to compare these results to the familiar first passage results. Let $T_r = \inf\{t: |X_t| \ge r\}$. Then using the strong Markov property (T_r, P) is an increasing process with independent increments for $d \ge 1$. Using a standard martingale argument, or the generator if we deal with the Bessel process (see, e.g., [3]), one has

(15)
$$E^{0}(e^{-\alpha T(r)}) = \left(r(2\alpha)^{\frac{1}{2}}\right)^{\nu} \left[2^{\nu}\Gamma(\nu+1)I_{\nu}\left(r(2\alpha)^{\frac{1}{2}}\right)\right]^{-1}$$

where $\nu = (d-2)/2$, $d \ge 1$ or $\nu \ge -\frac{1}{2}$. Here I_{ν} is the modified Bessel function of the first kind. If a < b the increment $T_b - T_a$ has an infinitely divisible distribution whose Laplace transform is given by

(16)
$$\frac{b^{\nu}I_{\nu}\left(a(2\alpha)^{\frac{1}{2}}\right)}{a^{\nu}I_{\nu}\left(b(2\alpha)^{\frac{1}{2}}\right)}.$$

If d = 1, (15) reduces to $(\cosh r(2\alpha)^{\frac{1}{2}})^{-1}$. It is interesting to note that the densities for the last exit (escape) process L_r have simple expressions while those of the first passage process T_r seem to be more complicated. For example, when d = 1, the density of T_r may be expressed in terms of theta functions.

The expression (3) for the density of L_r is also an easy consequence of formula (13) in [6].

REFERENCES

- [1] EL KAROUI, N. and REINHARD, H. (1975). Compactification et balayage de processus droits.

 Asterisque 21.
- [2] ERDÉLYI, A. editor (1953). Higher Transcendental Functions, 2. McGraw-Hill, New York.
- [3] GETOOR, R. K. and SHARPE, M. J. (1979). Excursions of Brownian motion and Bessel processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 47 83-106.
- [4] ISMAIL, M. E. H. (1977). Bessel functions and the infinite divisibility of the Student t-distribution. Ann. Probability 5 582-585.
- [5] PITMAN, J. W. (1975). One-dimensional Brownian motion and the three-dimensional Bessel process. Advances in Appl. Probability 7 511-526.
- [6] ROBBINS, H. and SIEGMUND, D. (1970). Boundary crossing probabilities for the Wiener process and sample sums. Ann. Math. Statist. 41 1410-1429.

DEPARTMENT OF MATHEMATICS University of California, San Diego La Jolla, California 92093