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THE BROWNIAN ESCAPE PROCESS!

By R. K. GETOOR
University of California, San Diego

Let X be the Brownian motion process in R, d > 3 with X(0) = 0. Let L,
be the last exit time of X from the ball of radius r centered at the origin. Then
(L,) has independent increments and we compute the distribution of L,. When
d = 3 this yields a simple proof of a recent result of Pitman.

Let X = (X,) be the standard Brownian motion process in R?. If r > 0, define
(1 L, =sup{z: |X,| <r}.
We shall assume that d > 3. Then almost surely |X,| - oo as t — o0, and so L, is
finite almost surely. If P = P? is the law of the Brownian motion starting from the
origin we shall call the process (L,, r > 0; P) the Brownian escape process. Clearly
r — L, is strictly increasing and L, = 0. :

Recently Pitman [5] has shown that when d = 3, (L,, P) is a stable subordinator

of index % and rate 2%; that is, (L,, P) has stationary independent increments and
the Laplace transform of its distribution is given by

) E(e~b) = e~@7,

Pitman derives this as a corollary of a deep result connecting one-dimensional
Brownian motion and the three-dimensional Bessel process. The purpose of this
note is to give a simple direct proof of Pitman’s result and to study the escape
process when d > 3.

Here is our main result.

THEOREM. Let d > 3. Then the process (L,, P) is continuous in probability and
has independent increments. If r > 0, L, has a continuous density given by (t > 0)

— -1
3) P[L, € dt] = rd—z[g(d—z)/zr(ﬂ_z_g),d/z] Ry

The escape process has stationary increments if and only if d = 3.

ReMARrRk. If d = 3, (3) is the familiar density of the stable subordinator whose
Laplace transform is given by (2). Although (L,) does not have stationary incre-
ments when 4 > 3, it is trying in some average sense to “look like” a stable
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subordinator of index 3. More precisely we shall see that

(4) [PE(e™) dr =[e(d)(2a)?] ™"
r(57)
(5) o(d) = ———~.
,,;r( 42_1)

Of course, (4) is exactly what one would obtain if (L,) were a stable subordinator of
index 3 and rate ¢(d) - 22.

Proor. Using the scaling property of the Brownian motion (ie., if ¢ > 0,
cTIX (ct) is again a Brownian motion), it is immediate that L has the same
distribution as r?L, under P = P°. Since L, is increasing this implies that r — L, is
continuous at each fixed r almost surely, and hence it is continuous in probability.

To see that (L,) has independent increments we define R, = |X,|. Then (R,;
t > 0) is a continuous strong Markov process on R* = [0, o0) (it is the d-dimen-
sional Bessel process) and

(6) L =sup{t: R, <r}

is the “last exit” time of (R,) from the interval [0, r]. Let (8,),5, denote the usual
(completed) fields of the diffusion (R,)). A by now standard result (see, e.g.,
Theorem 37 of [1]) states that under P = P° the post L, process (R, +)r>0 18
conditionally independent of § 1, given R, . But by the continuity of the paths
R, = r almost surely P and so in the present case (R;, . )~ is independent of G, .
Here §, is the usual field associated with a last exit time. If » <, then

(7) L,— L, =sup{t>0: R, ,, <s},
and so L — L, is independent of §,. Also R,,, is §,,, measurable. But
tA L <L, and is §, measurable, and consequently ,,, C §,.1If a <r, then

« =sup{t: R\, <a},

and so each L, with a <ris § ;, measurable. As a result the process (L,, P) has
independent increments.
Before coming to the proof of (3) we introduce the process

®) F, = inf{|X|: s > ¢}, t>0.

Clearly ¢t — F, is increasing and continuous and lim, , F, = co almost surely.
Note that F, = Fy ° §, and F, = inf{|X|: s > ¢t}. If 0 < a < b, let T, = inf{s: |X||
& (a, b)}. It is well known and easily checked that if a < |x| < b, then

o e[ ] (87 ()]
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Letting b — o0 in (9) we obtain

d-2
(10) P [Fy>a] =1 _(I%I) 0<a< |x

We are now prepared to prove (3). Clearly
P[L, <t] = P°[F, >r] = E°{P*O[F, > r]},
and using (10) we have

d—2
P[L, <1t]= (2wt)"’/2f|x|>,e"""/2'[1 - (l—%) ]dx

2

= 0 d—2 _ ,d—27,—-u*/2t
._—_I‘(d/2)(2t)d/2 Jru[u r‘=*le du
-1
= [I‘(;)] (/320 D% dv — rd2(2n)! "2,

Differentiating with respect to ¢ we obtain (3).
Let us denote the density in (3) by g,(r, f). Consulting a table of Laplace
transforms one finds

. 1
(1) e~ (r, 1) di = &7

(1) fe=,r, 1) e = [ 20970 £22) | (120 K-y a(r200?)

where K, is the usual modified Bessel function of the third kind. Of course, when

1
d =3, (12) reduces to (11). Also, if d =5, (12) reduces to (I + r(2a))e "%,
Either calculating from scratch using (10), or by using (27) on page 51 of [2], we
obtain (4) and (5) by integrating (12) in r over (0, oo). Therefore if (L,) has
stationary independent increments, then one must have

1
[ire =g (r, 1) di = e~re@@)?
and one easily checks (compare derivatives at a = 0) that this contradicts (12) if

d > 3. This completes the proof of the theorem.

REMARK. Since any increment of a process with independent increments that is
continuous in probability has an infinitely divisible distribution, the density g (r, 7)
is infinitely divisible. Also if 0 < a <b, the increment L, — L, is a positive
random variable having an infinitely divisible distribution whose Laplace trans-
form, in view of (12), is given by

b’K,(b(2a)?) L _d=2
a’K,(a(20)7) 2

One can invert this explicitly when d = 5, but the resulting density does not seem
to be particularly interesting. On the other hand, starting with the Bessel diffusion

(13) ,d > 3.
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Y with generator 3(D? + ((2v + 1)/x)D) on x > 0 where D = d/dx, the same
argument shows that if

(14) L) =[2T@)e* ] e V2, >0,

then a~%,(¢/a is the density of the escape process L, =sup{: ¥, < a}. In
particular f, is infinitely divisible for » > 0, and (13) is the Laplace transform of an
infinitely divisible distribution for » > 0. The fact that f, is an infinitely divisible
density may also be obtained as a limiting case of a recently announced result of
Ismail and Kelker on the infinite divisibility of the F-distribution. See [4].

It is interesting to compare these results to the familiar first passage results. Let
T, = inf{¢: |X,| > r}. Then using the strong Markov property (7,, P) is an increas-
ing process with independent increments for d > 1. Using a standard martingale
argument, or the generator if we deal with the Bessel process (see, e.g., [3]), one has

1s) E%e™™0) = (r(2a)?)’[2T(v + DL(r2a)7)] ™"

where » = (d — 2)/2,d > lorv > — 3. Here I, is the modified Bessel function of
the first kind. If a < b the increment T, — T, has an infinitely divisible distribution
whose Laplace transform is given by

b’L(a(2a)?)

I, (b(20)7)

If d = 1, (15) reduces to (cosh r(2a)%)“. It is interesting to note that the densities
for the last exit (escape) process L, have simple expressions while those of the first
passage process 7, seem to be more complicated. For example, when d = 1, the
density of 7, may be expressed in terms of theta functions.

The expression (3) for the density of L, is also an easy consequence of formula
(13) in [6].

(16)

REFERENCES

[1] EL KaAroul, N. and REmNHARD, H. (1975). Compactification et balayage de processus droits.
Asterisque 21.

[2] ErpELYL, A. editor (1953). Higher Transcendental Functions, 2. McGraw-Hill, New York.

[3] GETOOR, R. K. and SHARPE, M. J. (1979). Excursions of Brownian motion and Bessel processes. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 47 83—106.

[4] IsMaIL, M. E. H. (1977). Bessel functions and the infinite divisibility of the Student ¢-distribution.
Ann. Probability 5 582-585.

[5] PrrMaAN, J. W. (1975). One-dimensional Brownian motion and the three-dimensional Bessel process.
Advances in Appl. Probability 7 511-526.

[6] RoBBINs, H. and SieGMUND, D. (1970). Boundary crossing probabilities for the Wiener process and
sample sums. Ann. Math. Statist. 41 1410-1429.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, SAN DIEGO
LA JoLLA, CALIFORNIA 92093



