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A SHARP INEQUALITY FOR MARTINGALE TRANSFORMS!

By D. L. BURKHOLDER
University of Illinois

If g is the transform of a martingale f under a predictable sequence
v uniformly bounded in absolute value by 1, then

}"P(g‘ > A) < 2”f"ly A>Oy
and this inequality is sharp.

1. Imtroduction. If d = (d,, d,, - - - ) is a martingale difference sequence and
€], &5, - + + are numbers in {—1, 1}, then
(1) P(IZ% - 18 dil > N) < cllZ%oy &Iy
where ¢ is some absolute constant. Applications of this inequality and its natural

extensions abound. For example, it leads immediately, by a simple interpolation
and duality argument, to

() 2% ll, < GlIZ%o1 dill,, 1 <p < oo,

which implies that any martingale difference sequence in L? is an unconditional
basis for its closed linear span. In turn, inequality (2) gives at once, by Khintchin’s
inequality, the two-sided L? inequality for the martingale square function. For
further details and discussion, see [1].

Our main goal here is to give a new proof of (1), a proof that throws additional
light on the inequality by yielding the best constant.

Let (2, @, P) be a probability space and &, &,, - - - a nondecreasing sequence
of sub-g-fields of @. Let f = (f}, f,, + - - ) be a martingale with difference sequence
d=(d,dy ) f, =2Z%_,d, where d, : @ > R is integrable and &, —measur-
able with E(d,,,|@,) =0,k > 1. Let v = (v, vy, - - - ) be a predictable sequence:
v : @ > Ris @ _,—measurable, k > 1. Then g = (g, 8, - * - ), defined by g, =
3% _ 1t d,, is the transform of the martingale f under v. The L'-norm of f is
I fll, = sup,||f]l, and the maximal function of g is defined by g*(w) = sup,| g,(w)|-
The following extends (1).

THEOREM 1. Suppose that g is the transform of a martingale f under a predictable
sequence v uniformly bounded in absolute value by 1. Then

(©) AP(g* > N <2/fl,  A>0.

Except for the constant, this is a special case of Theorem 6 of [1], which was later
extended by Davis [4]. Other proofs of (3) with the number 2 replaced by some
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larger constant may be found in Gundy [10], Neveu [14], and Rao [15]. Also, see
Meyer [12] and, for the special case of Haar series, Gaposhkin [7]. Each of these
proofs has its own advantages but none can yield the best constant.

Our method here is to prove first a somewhat analogous inequality for the Itd
integral and then to obtain (3) by Skorohod embedding.

2. An inequality for the It6 integral. Let B = {B,,0 < ¢ < o0} be a standard
Brownian motion in R starting at 0. Consider the local martingale X, with
continuous sample functions, defined by the It integral

@) X, =X, + [o9pdB, t>0.
Here X, €ER and the nonanticipating functional ¢ : [0, 0) X @ - R satisfies
P(fip* ds < o0, t > 0) = 1. (For background on the Itd integral, see [11].) Let Y be
defined similarly by
5) Y,=Y,+ [(ydB, >0
Using the notation S,(X) = (X2 + [4p?ds)? together with notation analogous to
that introduced in Section 1, we have the following inequality between X and Y.
Lemma 1. If S(Y) < S(X) for all t > 0, then
(6) AP(Y* > A) <2||X||;, A>0.
The assumption holds, for example, if | Y,| < |X,| and |¢| < |g|.
Proor. Let || X ||, = sup,5 [|X,||l, and S(X) = S(X). Then
(M 1X1l2 = IS,
Furthermore, if u is a stopping time of B and X* denotes X stopped at u (X, o is

the ¢th term), then
(8) (X*), = Xo + [opl dB

where I(s, -) is the indicator of the event { u > s}. (Both (7) and (8) follow easily
from the methods and results of Section 2.3 of [11].) So (7) also holds for X*,
S(X*) = S,(X), and, by the assumption of the lemma,

) IY¥l, < 11Xl

We shall now prove (6) using (9). Since | X,| < || X||,, inequality (6) holds trivially
for A < |Xy|. Therefore, assume that A > |X,| and consider the stopping time p
defined by

p(w) = inf{z: |X,(w)| > A}.

Note that {X* < A} = { p = o0} and, by the sample-function continuity of X, the
stopped process X* is uniformly bounded by A. So, by the weak — L? inequality for
the martingale maximal function and (9),

NP(Y* > A X* <) < AP((YH)* > ))
< YHE < IXH)3
< I XHIIXH N < AlXY]
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Therefore,
AP(Y* > Q) < AP(Y* > A X* < A) + AP(X* > ))
< IXlh + 11X,
which implies (6).

3. Proof of Theorem 1. Let n be a positive integer and gF = sup, | g/. It is
enough to show that

(10) AP(gr > 1) < 2| fulhr-

First consider the following special case. Let H, : R* —[—1, 1] be continuous
and

o, = H(fo" " > fiz1)s 1<k<n,

where f, = 0. Then (10) holds. Since (f;, - - - , f,) is the almost everywhere limit of
the sequence of martingales (f;, - - - , f,,) defined by f, = E[j A (—j V f,)|@,] and
| fnlli = 1l £ull1s it is enough to prove the special case under the additional assump-
tion that f, € L% Then, by the Skorohod embedding thoerem (a convenient
reference is [6]), there are integrable stopping times 7, < - - - < 7, of a Brownian
motion B, which may be assumed to be defined also on (2, &, P), such that
(B,,* -+, B,) has the same distribution as (f, — Ef}, - - - , f, — Ef}). This implies
that (f;, - - -, f,) has the same distribution as (X,,---,X,) and (g}, - -, g,)
has the same distribution as (Y, , - - -, ¥, ) where X and Y are defined by (4) and
(5) with X, = Ef,, Y, = Eg,, ¢(s, -) the indicator function I(r, > s), and

Y(s, ) = Hl( X,y - - - X, )(mmy <5 < 1)
where 7, = — 1 and X_, = 0. The assumption of Lemma 1 is satisfied: |Y,| =
|0,E dy| < |Edy| = |X,| and [|¢| < ¢. Furthermore, ||X||, = ||X, ||, since the inte-

grability of 7, implies that X is L>-bounded, hence uniformly integrable. Accord-
ingly,
AP(gr > A) = AP(supc,| Y, | > A)
< AP(Y* > M) <2|X|,
=2|X, Il = 2l £l

which completes the proof of the special case.

To finish the proof of (10), we now construct a new martingale F and a
transform G to which the special case applies. We may assume that (rg, r, - * ) is
an independent sequence on (R, @, P) satisfying P(r, = — 1) = P(r, = 1) =3,
k > 0, and such that (ry, ry, - - - ) is independent of &, = v . ,&,. Define the

difference sequence D of F by

— + —_— - —
Dy = ery_yv; s Dy = ery_ v, Dy =ryd,

where v, = v, V0,1, = — (v, A0), and ¢ > 0. Then F is a martingale (relative to
the sequence of o-fields generated by F) and F,, =2}, D, = ryf,+ R, where
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|R,| < en.Let G be the transform of F under V defined by
Vaga = V1 =0, Vi = vy

Then G, = SV, D, = ro8,. Since V;, may be written in the form
Vi = H(Ie D3k—2| - |8_1D3k—1|)’

where H(x) = 1 A(—1V x), and this is a continuous function of F, - - -, Fy
into [—1, 1], the above special case gives
AP(gr > A) = AP(G3, > ])
< 2| Bl
<2 L + 2en.

Now let ¢ — 0 to obtain (10).

4. Sharpness of the above inequalities. Consider the following simple example
pointed out to us by Leonard Dor. Let P be Lebesgue measure on [0, 1). Let d; = 1
on[0,1),d,=10n[0, }),d, = —1lon|[},1),d;=2o0n]0, D, dy = —2onl[3, 3),
and d; =0 on [4, 1); these are the first three Haar functions appropriately
normalized. Then ||d, + d, + d;||, = 1 and |d, — d, + d;| = 2 so that

This shows that the inequalities (1), with ¢ = 2, and (3) are sharp.

An analogous example shows that (6) is sharp. Let 7, = inf{z : |B,| =1}, 7, =
inf{¢ >, :[B, — B,| =1}, and 73 = inf{z > 7, : |B, — B, | = 2}. Define X and Y
by (4) and (5) where X, = Y, = 0 and

(s, )=I(r, >s)+ I(1,<s <1) + I(B,, # 0)I(1, <s <),
Y(s, -) = I(ry >s) = I(r) <5 <)) + I(B,_ # 0)I(1, <5 < 3).
Then P(Y* =2) = 1and | X||; = 1 so that
2P(Y* > 2) =2||X|,
showing that (6) is sharp.
5. Remarks. (a) The above methods also yield a smaller constant than any

heretofore known in the weak — L' inequality for the martingale square function.
1
If f is a martingale with difference sequence 4 and S(f) = (S*_, d?)z, then

(11) AP(S(f) >N <2|fl,, A>0.
To prove (11), we let X and 7, - - -, 7, be as in Section 3. To define Y, we let
YO = O,

Tue1 = inf{¢ >17,:|B,— B | =1},

2 273
=[(X0+B-r At) +2 ( 'rkAt_ T — le) ]2’
and y(s, -) = I(t, <s < 7,,,) V. . If p is the stopping time defined in Section 2 (or
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any other stopping time of B), then
2
(Bf.m/\u - Bf../\n) fo < Vnz‘

(If u <1, the left-hand side is 0; if p >1,, then ¥, = ¥, ) Therefore, by an
elementary calculation,

2
| Y*3 = E(B,  np— B, n,) V2

<EVZ = X3
Also, note that Y* = ¥, , which has the same distribution as S,(f) = (Z%-, 47 2,
and, as in Section 3, || X||; = || f,|l;- So using the fact that (6) follows from (9), we
obtain AP(S,(f) > MN) < 2| f,]l;, which gives (11).

Apart from the constant, (11) was proved in [1] and the above proof is similar to
the original proof in its main concept. Other approaches may be found in [10], [14],
[15], [8], and [2].

Suppose that f is a Rademacher martingale: |d,| =a, € R, k > 1. Then S,(f) =
(Sn_,a?)? so that AP(S,(f) >A) < S,(f) and, by a result of Szarek [16],
S,(f) < 2%” £,|l;. Therefore, (11) holds here with 2 replaced by 2 and, it is easy to
see, no smaller number suffices. Our guess is that 21 is also the best constant for
the class of all martingales.

(b) An analysis of the proof of Lemma 1 shows that (6) holds if Y* is replaced
by X* v Y*. Therefore, (3) holds if g* is replaced by f* v g* and (11) holds if S(f)
is replaced by S(f) v f*.

(¢) For some related examples of the interaction between discrete-time and
continuous-time martingale inequalities, see [13], [3], [9], and [5].
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