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A GENERAL RESULT ON INFINITE DIVISIBILITY

BY LENNART BONDESSON
University of Lund

Using and refining a technique developed by O. Thorin, we prove:

THeOREM. Let f(x) = C-xP~'h(x), x > 0, be a probability density on
(0, o). Here B > 0 and h is continuous and satisfies h(0) = 1. Assume that h can
be analytically continued to the whole complex plane cut along the negative real
axis and assume that h satisfies some other regularity assumptions. If h is
completely monotone on (0, ) and if, for each fixed u > 0, the function
h(uo()h(u/ o(1)), where o() =t + 1 + (2 + 26)3, is completely monotone on
(0, o), then f(x) is the density of a generalized gamma convolution and hence
infinitely divisible.

The theorem is applied to show the infinite divisibility of a rather large
class of probability densities on (0, o). In particular we show that a power with
exponent of modulus > 1 of the ratio of two gamma distributed rv’s has an
infinitely divisible distribution.

1. Introduction and summary. The concept of infinite divisibility plays an
important role in probability theory; see, e.g, Feller (1971). All infinitely divisible
characteristic functions are obtained from the classical Lévy-Khintchine repre-
sentation formula. However, this formula is usually of little help when one wants to
verify that a given distribution is infinitely of little help when one wants to verify
that a given distribution function is infinitely divisible.

Thorin (1977a, b) introduced the so-called generalized gamma convolutions,
which trivially are infinitely divisible, and developed a technique that made it
possible for him to show that both the Pareto and the lognormal distributions are
generalized gamma convolutions. Further results were later obtained by Bondesson
(1978), Goovaerts et al. (1977a, b, 1978), and Thorin (1978a, b).

To prove that a distribution on [0, o) is a generalized gamma convolution one
has to show that ¢'(—s)/(—s), where ¢ is the moment generating function
(m.g.f.) of the distribution, is, apart from an additive constant, the Stieltjes
transform of a nonnegative measure on (0, 00). That the validity of such a
representation is a sufficient condition for infinite divisibility was independently of
Thorin’s work observed by Grosswald (1976), and used by him to show that the
inverse of a gamma variable is infinitely divisible. Later Ismail and Kelker (1977),
in particular, made use of Grosswald’s observation to obtain further results. Like
Goovaerts et al. and Grosswald they depended heavily on many (for a probabilist
not very fascinating) known facts about certain special.functions.

For a more detailed review of results obtained earlier by Thorin’s (Grosswald’s)
method, see Section 5.
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966 LENNART BONDESSON

In the present paper, the content of which has its roots in Thorin’s significant
pioneering contributions and also in the above-mentioned earlier paper by the
present author, the infinite divisibility of a large class of probability densities on
(0, o) is established. See Theorem 2 in Section 4 and also Section 6. This class has
the somewhat remarkable property that if X is a random variable (rv) with density
in the class, then the class contains also the density of X7 for any real ¢, |g| > 1.
The class includes the densities of gamma variables and ratios of two gamma
variables and hence also the densities of powers with exponent of modulus > 1 of
such variables. The result thus affirmatively answers questions asked independently
by Bondesson (1978) and Ismail and Kelker (1977). These questions were partly
answered by Thorin (1978b) who obtained the result on the infinite divisibility of
powers of gamma variables.

In the proof of the general theorem (Theorem 1 in Section 3), facts from the
theory of analytic functions will be used but no facts about special functions. When
applying the theorem we shall use a crucial observation of Thorin (1978b), namely
that, for |a| < 1, the function (v(£))* + (v(£))~%, where o(f) = ¢ + 1 + (£ + 21)7,
has a completely monotone derivative in # > 0. Thorin proved this result by the aid
of special functions.

2. Generalized gamma convolutions. For the readers’ convenience we shall
here quote a definition and two theorems due to Thorin (1977a, b) and make some
comments.

DEFINITION (Thorin 1977a). A generalized gamma convolution is a distribution
function F(x) over [0, o) such that, for Re s < 0,

@1 o(s) = [§ e dF(x) = exp{as + f3°10g{1—;ls—/t} dU(t)}

(where log stands for the branch which is real for negative s), where a > 0, and
where U(¢?) is right-continuous and nondecreasing and satisfies U(0) = 0,
Jollog #| dU(#) < o0, and [t~ ! dU(¥) < 0.

Note that the right-hand side of (2.1) is an analytic function in C \ [0, o0). It
should also be remarked that ¢ and U are uniquely determined by F. In fact,
a = sup{x; F(x) =0} by, e.g., Theorem 11.1.2 in Lukacs (1970). Further (2.1)
implies that

9'(s)/9(s) = a + [£(r — )" dU(),

from which it is seen that the uniqueness of U follows from the uniqueness theorem
for the Stieltjes transform; see, e.g., Widder (1946).

The generalized gamma convolutions are exactly those distributions on [0, )
that can appear as (proper) weak limits of finite convolutions of gamma distribu-
tions and are thus infinitely divisible. This is more or less intuitively clear but also a
consequence of the following “continuity theorem.” (“Closure theorem” might
have been a more appropriate name.)
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CoNTINUITY THEOREM (Thorin 1977b). If a sequence (F,);-, of generalized
gamma convolutions converges weakly to a df F as n— oo, then also F is a
generalized gamma convolution and (with an obvious notation) for all finite continuity
points t of U

U(1) = lim,_,, U,(?)
and
= lim,_,, lim,  (a, + [3t™" dU,(0)).

Note that the sequence q, = 0, U, () = n-e(t — n/a),n=1,2,- - -, where ¢ is
a df degenerate at 0, in the limit gives a generalized gamma convolution degenerate
at the point a.

ReMARK 2.1. Every nondegenerate generalized gamma convolution F is ab-
solutely continuous with continuous density for x > 0. For, if 0 < U(e) < 1 and
a = 0, then F is a scale mixture of the exponential distribution (see Thorin 1977b)
and if U(co) > 1, then the characteristic function g(it) is absolutely integrable. For
a more general result, see Remark 3.5 in Section 3.

REMARK 2.2. It is easy to see that a stable distribution on (0, ) is a gener-
alized gamma convolution. Thorin (1978a) extended the definition of generalized
gamma convolution to include also distributions on (— o0, ) and showed that
every stable distribution is an extended generalized gamma convolution.

The next theorem is a basic result for this paper. By C, we mean the complex
s-plane cut along the positive real axis. We look upon C, as closed and denote its
interior by C%. We also use the convention that a real positive number always
means a point on the upper side of the cut.

INVERSION THEOREM (Thorin 1977b). Assume that @(s) = [ e** dF(x), Re s
< 0, can be analytically continued to a zero-free function in C°. Assume also that ¢
and ¢’ become continuous up to the boundary of C, (except possibly ¢ at s = 0) and
that @ has zero-free boundary values. Assume further that U(t) = 7~V arg(e(?)) is a
nondecreasing function in t > 0 (i.e., that ¢(f) goes in the positive direction around
the origin as t increases from 0 to o0) and satisfies the conditions for the function U in
the definition above. (The condition U(0) = 0 is trivially satisfied since arg(¢p(0)) =
arg(1) = 0 by definition.) Finally, assume that @'(s)/@(s) —a > 0 uniformly as
|s| = 00, s € C,. Then F is a generalized gamma convolution defined by a and U.

The proof of the inversion theorem is very easy. Observe that U'(f) = = ~'(d/dr)
Im[log ()] = =~ Im[¢'(r)/ @(?)] for ¢t > 0; therefore it suffices to show that

#()/9() = a + 1[50 = )7 Im[¢/()/9(0)] d.

The result thus follows by an application of Cauchy’s integral formula to
9'(s)/ 9(s) — a with a contour consisting of two straight lines on the two sides of
the cut and of two circles centered at the origin, one with a very large radius and
one with a very small radius.
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Observe that U(r) = =~ ! arg(e(?)) satisfies [i[log ¢| dU(t) < oo if there exists
€ > O such that ¢’'(£) = 0(¢t~'**)as t -0, ¢ > 0.

3. The main theorem. We consider (probability) density functions on (0, o) of
the form

fa(x) = Cpx#7h(x), x>0,

where 8 > 0 and where Cj is a normalization constant. The following assumptions
are made about the function 4. By C_ is meant the whole complex z-plane cut
along the negative real axis. Also C_ is looked upon as closed.

(1) The function 4 can be analytically continued to a function A(z) in C°.

(2) The function A(z) is continuously differentiable up to the boundary of C_
and 2(0) = 1. As an exception, A’(z) is permitted to be discontinuous at
z=0in C_.

(3) For every admissible value of B there exists ¢ > 0 such that A(z) =
0(z|"A*?) as |z| > 00,z € C_.

Note that if assumption (3) is satisfied for 8 = B,, so it is for all 8 € (0, By).
Observe also that since h_(}'j is an analytic function coinciding with 4(z) on the real
positive axis, necessarily h(Z) =h(z), z € C_.

As a simple example of a function 4 satisfying the general assumptions above we
may take

h(x) =1+ cx*)"", x>0,

where 0 <a <1,y >0, and ¢ > 0. Clearly x?~'h(x) can be normalized to be a
density function for all 8 € (0, ay).
The following theorem is the main result in this paper.

THEOREM 1. Let h satisfy the assumptions (1)~(3) above; and let the following
conditions hold.
(A) The function h is completely monotone on (0, o).
(B) For every fixed u > 0, the function h(uv(t))h(u/v(¢)), where vo(t) =t + 1 +
@+ 2t)%, is nonconstant and completely monotone on (0, ).
Then fg(x) = Cﬂxﬁ “h(x), x > 0, is the density of a generalized gamma convolution
with a = 0 and U(o0) = B and hence infinitely divisible.

REMARK 3.1. Note that fz(x) is completely monotone for 8 < 1; hence it
follows immediately from the Goldie-Steutel theorem (see, e.g, Feller (1971), page
452 and Steutel (1973)) that infinite divisibility holds when 8 < 1. However, the
most interesting cases occur when 8 > 1. Cf. Section 5.

Proor. Following Thorin (1977b, 1978b), we introduce

n 1

fﬁ n(x) ( 1)'f0 (n/y) CXP{ nx/y}fﬂ(y) dy’ n= 1’ 2’. o
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If X is an rv with density fz(x), then f ,(x) is the density of Y- X, where Y is
gamma distributed with shape parameter n and scale parameter 1/n. The m.g.f. of
Jo, n(x) is then given by
00 _, SX. 0 X "
95.n(5) = J5ep (x) dx = [F(1 =) Fy(x) dx, s <o,
Clearly (5 fp ,(¥) & — [5fs(¥) dy weakly as n — oo. We shall show that, for n > B,
the function f; ,(x) is the density of a generalized gamma convolution and hence,
by the continuity theorem, so is fg(x).
Obviously ¢z ,(s), s < 0, can be analytically continued to C?. For, substituting

y = — sx, we get

(3.1 9,0(5) = Co(=9) 1(1 4+ 2) YE(y/ (=5) &,

and the function on the right-hand side is (by the assumptions and a well-known
theorem of Weierstrass) analytic in C2. Since analogously

(D @aals) = G Op(1+2) G/ (—5) &,

the function @ ,(s) is also (by the assumptions) continuously differentiable on the
boundary of C, outside the origin. Substituting then in (3.1), for s € C, \ {0},
x =y/|s|, we get

(3.3)
5.9 = Gy expl =B (=)} 51 + %) 57 G e~ (=),

where —7 < arg(—s) < 7. We have ¢ ,(s)—> 1 as s >0, s € C,. This follows
from the fact that ¢ ,(s) — 1 as s — 0 along any differentiable path in C, through
the origin (which is seen from (3.3) by calculus of residues) and from a general
theorem on continuity of functions of two (or several) variables. Cf. the proof of
Lemma 4.1 in Bondesson (1978).

From (3.3) we get in particular for s > 0

(3.4) g,n(5) = Cy exp{ifr) /3°(1 + %)_nxﬁ"h(-x) dx.

Here we have used the convention that, for s > 0, ¢ ,(s) denotes the value of g, ,
taken at the point s on the upper side of the cut along the positive real s-axis, and
that, for x > 0, A(— x) denotes the value of A at — x on the upper side of the cut
along the negative real axis.

From (3.1), (3.2), the dominated convergence theorem, and the assumption that
h(2) is continuous at the origin with 4(0) = 1, it follows that for n > 8

P, n(5)/ Pg, n(s) =
(3.5) - /3°(1 + %)_n_lyﬁh(—y/s)dy/ﬁf(l + %)—nyﬂ"h(——y/s) dy

1
)
< dis(i e 2) e (14 3) e

s
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as |s| - o0, s € C,. The asymptotic relation holds uniformly in C . Hence the last
condition in Thorin’s inversion theorem holds with a = 0 for ¢ ,,.
We also easily find that

(3‘6) (p/ﬁ,n(s) = C,B,nq)ﬁ+l,n+l(s,)’ s E C+’

where s’ = (1 + n~!)s and Cp, » 18 @ positive constant.
In view of Thorin’s inversion theorem, it is now certainly sufficient to prove that:
(a) for every n > 1, @5 ,(s) has no zeroes on the positive real axis;
(b) for every n > 1, arg(gg ,(s)) is a nondecreasing function in s > 0;
(c) for n > B, ¢g ,(s) has no zeroes in C,;
(d) for n > B, arg(ps, ,(+ )) < oo and there exists ¢ > O such that ¢', ,(s) =
O(s~'**)ass—>0,5s > 0.
If (a) holds, then we have, for s > 0,

2 arg(95,,(5)) = 1m[ 9’5, ,(5) 75,(5) 1/19p, (-
Thus, to prove (a) and (b) it suffices to show that
Im [‘P'p,n(s)m] >0, s>0,
or equivalently, by (3.6),
3.7) Im[tpp,,l,”,(s’);%—(s)] >0, s>0.
From (3.4) we then find that we just have to show that
Bg,(s) = 555 (1 + %)_"_'(1 +2) kB8~ Im[ A(— x) (=) |dx & <.

Making the substitution (in a slightly more complicated form also used by Thorin
(1977b, 1978b))

x=u-v, y=ufv

and using the notation «’ for su/n, we obtain

Ag () = 205151 + u'u)-""(l + %)_"um m[ h(— uo) B(—2/0) ] dudo

= 2f3°u2ﬁ(13°(1 + %’)((1 + u’v)(l + %))_n_llm[h(—uv)m]dv)du.

As clearly x(v) = (1 + wv)(1 + «'/v))”" " '"Im[A(— uv)h(— u/v)] satisfies x(1/v)
= — x(v) and hence [v~'x(v)dv = 0, the inner v-integral equals

'f3°((1 + u’v)(l + %))—n—llr;l[h(~uv)m]dv

1

= (u')—n-lfg’(u' + —57 + o0+ ;)—n—llm[h(—uv) h(—u/v) ]dv.
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We now set «' + 1/u4’ = 2(¢ + 1) and show that, for every fixed » > 0 and all
t> 0,

(1) = f3°(2(t F )40+ %) Im[ h(— uo) R(= /) | do < 0.

This is clearly sufficient for Ag ,(s) < O to hold. We observe that

(38) w(y = V2 4o

as the integral defining y,(f) is convergent also for » = 0. In fact, J,(#) can be
evaluated by applying calculus of residues to the function

h(uz)h(u/2)/ (2(t +1)— (z + %)) zec..

We integrate along a contour consisting of two straight lines on the two sides
of the cut along the negative axis and of two circles centered at the origin, one
with radius tending to infinity and the other with radius tending to zero. Observe
that 1/ is on the lower side of the cut when z is on the upper. This explains the
vanishing of the conjugate sign above. There are just two simple poles, namely
z=t+ 1=+ 2t)%. Note that their product is 1 and that h(uz)h(u/z) thus
takes the same value at the two poles. Setting v(¢) = ¢t + 1 + (12 + 2t)%, we then
get after some calculation
Yo(1) = — wh(uv())h(u/v(1)).

By condition (B), — () is nonconstant and completely monotone and hence the
derivatives of y,() alternate between strictly positive and strictly negative values,

i. e., by (3.8), ¢,,(¥) < 0 for all # > 0. Thus (a) and (b) are proved.
We now turn to (c). First we note that

(3.9) Im [ g5, ()] = 'm%__'e)"“fy-n(@, 5 <0,

as shown by Thorin (1978b). The formula can also be obtained by integrating the
defining expression for ¢p ,(s) by parts and using the inversion formula for the
Stieltjes transform. As h(x) and x#~!,0 < B < 1, are both completely monotone so
is fg(x) for B € (0, 1]. The formula (3.9) thus shows that, for all n > 1,

(3.10) Im[ g ,(s)] > ©, s>0, 0<B<L

Let now Ny , stand for the number of zeroes of ¢ ,(s) in C,. Clearly, we may
have N, , = 0. Since @ ,(s) takes on conjugate values for conjugate s-values and
since arg(pg ,(5)), s € C, is continuous at the origin, we have by a standard
formula from complex analysis

G Ny = limgera( 52 1 ¥/ B5,n(5) 5 + 3 ar8(95,(R))).

27’ ¢(R, R)
where C(R, R) is a positively directed (at the point R cut) circle with center at the
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origin and radius R. Hence and by (3.5), for n > 83,
1
(3.12) Ng,=-B+ p arg(<pﬁ,,,(+ ©)).

The formula (3.10) shows that 0 < arg(gg ,(+ o)) < 7 for 0 < B < 1; hence (3.12)
implies that Ng , < — B+ l and thus Ny , =0for0 <B <l andn > 8.
The relation (3.7) (proved true) can be written

0 < arg(@gs1, ns1(8) 9p4(5) ) <7, 5 >0,
and hence
(3.13) arg(@ps 1, 4 1(+0)) < 7 + arg(gg, ,(+ 0)).

For any B we may write 8 = B, + M, where 0 < B, < 1 and M is a nonnegative
integer. It is thus sufficient to prove that, for k =0,1,-- -, M and n > B, + &,
we have N, ., , = 0. We use induction on k to show this.

From the above we have Ny , =0 for n > B,. Assume that Ng ., , =0 for
n > By + k with k < M. Hence and by (3.12), for n > B, + k,

arg(‘Ppo+k,n(+ ©)) = 7(B, + k).
Together with (3.13) this relation yields
arg(q’po+k+l,n+1(+°°)) <7+ 7( By + k)°

Using again (3.12), we then get
Ngvksne1 S —(Bo+tk+ 1)+ 1+ (B + k)=0.

Hence Ng 4 441,041 = 0forn > By+ k and thus Ng .y, =0forn > Bo+ k+1,
i.e., the induction proof is complete. The condition (c) thus holds.

Turning to (d), we note that the validity of the first condition is immediate from
the above. We have arg(gp ,(+ )) = 7B. By (3.2) the second condition is easily
shown to be a consequence of assumption (3) (with the same ¢). The details are
omitted.

We have thus shown that f; ,(x) is the density of a generalized gamma convolu-
tion for n > B and hence so is fp(x). To finish the proof we must show that the
corresponding U satisfies U(o0) = B. Obviously a = 0. From the analogues of (3.1)
and (3.2) we conclude that the m.g.f. <p,§(s) of fg(x) is continuously differentiable up
to the boundary of C, outside the origin and moreover continuous at the origin.
Since @g(s) is the m.g.f. of a generalized gamma convolution (with a = 0), we have

© 1 0
Pa(s) = °Xp{fo log(jtT/j)dU(t)}, sECY,
and hence @g(s) has no zeroes in-C3. Moreover, there is no zero on the cut. For, if
@g(sp) = 0 for 54 > 0, then

/g log dU(t) = log|gg(s)| > — o0

1
1—s/t
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as C? D s — 5,. However, it is easy to see that the integral is bounded from below.
The assertion follows. From the analogue of (3.5) we then get

. 1 ,
llmR—»wmfc(R, E)V’p(s)/‘Pp(S)df =-4

and hence the analogue of (3.11) with N, = 0 yields arg(gg(+ o)) = 7. Finally,
by Thorin’s inversion theorem, we conclude that U(o0) = 8. []

REMARK 3.2. In the proof of (a) and (b) above we have used Thorin’s (1977b,
1978b) method in a simplified form. The proof of (c) originates from the technique
utilized in Bondesson (1978). Another proof of (¢) is sketched in Remark 3.4 below.

REMARK 3.3. It should be emphasized that although we prove that gg(s) has no
zeroes for s > 0, this is done only when we know that gg(s) is the m.gf. of a
generalized gamma convolution. The method of approximating gg(s) by g ,(s)
was originally introduced by Thorin (1977b) in his study of the lognormal distribu-
tion in order to avoid the complication that for this distribution U(oo) =
However, the method also makes it possible to avoid the problem of zeroes of the
m.g.f. for s > 0. That motivates our use of the method. If a simple proof that gg(s)
has no zeroes for s > 0 can be found, the above proof can be made easier if one
uses @g(s) instead of gg ,(s).

REMARK 34. It is not hard to show that, for n > 1 and B < 1, f3 ,(x) is
completely monotone and thus the Laplace transform of a nonnegative measure
dGj, (1) on (0, ). Consequently, for s € C3, @ ,(5) = [§°(2 — 5)7'dGp ,(#), and
hence

[‘Pp (s )] = fo ———dGyg a(2)-

l l
Thus Im[gg ,(s)] # 0 for Im s 5 0. Since moreover gz ,(s) is strictly positive for
s < 0, we have in an alternative way proved that N, , = 0 for B < 1. (In fact, we
have shown that also N, ; = 0; cf. the proof of Theorem 1.) Furthermore, we can
also establish that N , = 0 for n > B and all B. For, the above result together with
(@), (b), and (d) show that gg ,(s) is the m.gf. of a g.g.c. for B < 1. Hence
s, n(5)/ @, n(8) = [5°(t — s)7! dUp, ,(?). This representation shows that, for 8 <1
and n > 1, 5 ,(s) #0, s € CY. By the help of (3.6) and (a) we then conclude
that Ny , = 0 for 1 < < 2 and n > 2. The result wanted follows by iterations of
this reasoning.

REMARK 3.5. It can be shown that every generalized gamma convolution with
a=0and U(o) = B,, 0 < B, < o, has a density of the form f(x) = x#1~'h (x),
x > 0, where A,;(x) is completely monotone; see Bondesson (1979a). Condition (A)
of Theorem 1 is thus necessary.

REMARK 3.6. The result in Remark 3.5 provides us with a simple proof of the
fact that U(co) = B in Theorem 1. To see this, notice first that, by the continuity
theorem for generalized gamma convolutions, we have for all finite continuity
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points T of U
U(T) = lim, .., Uy, o(T) < lim,_,Up () = lim, .- arg(p;, ,(+ o)) = B.

Hence B, = U(o0) < B. Assume that 8, < 8. By Remark 3.5, Jo(x) = xBi=1h,(x)
and hence h,(x) = Cpx?~Ain(x). It follows that h,(x) — 0 as x/0. This is clearly a
contradiction since h,(x) is completely monotone.

4. Applications. As an application of Theorem 1 in Section 3 we obtain:

THEOREM 2. A/l density functions on (0, o) of the form
(4.1) f(x) = C-xP~IL (14 ZY_1gux®x )% x>0,
where all the parameters are strictly positive and the ay’s less than or equal to 1, are
generalized gamma convolutions; consequently all densities (distributions) which are
weak limits of densities of the form (4.1) are generalized gamma convolutions (and
thus infinitely divisible) as well. In the nonlimit case the total spectral mass U(eo) of
the generalized gamma convolution is 3.

ProOF. We may assume that the ay’s are strictly less than 1, for a density of
the general form can be obtained as a weak limit of densities of the restricted form.
To see that U(co) = B also when some a; equals 1 we may use Remark 3.6. It is
now easy to verify that the obvious function 4 satisfies the assumptions (1)-(3) in
Section 3. For z € C_, writing z = r-e”, —7 <0 <, we see that Im[l +
El,ff.,cjkz"‘fk]=E’,:'f_,c}kr“fksin(ajkﬂ)is strictly positive (negative) for § > 0 (8 < 0)
and hence it follows, e.g., that 4(z) has no singularities in C°. Now recall Theorem
1. Since the product 4 = Hj.‘{_ 1 h; of completely monotone functions 4, j =
1,- -, M, is completely monotone as well and as clearly

H}ilhj(uv)H}{-lhj(u/v) = H};’-lhj(uv)hj(u/v)a
it is furthermore no restriction to assume M = 1. In the sequel we therefore drop
the index j. To abbreviate the formulae below we also set 0 = a, and 1 = c,,
Obviously the function S} _,c,x* has a completely monotone derivative and since
the function y %, y > 0, is completely monotone, so is A(x) = (S¥_,c, x %)~ (see,
e.g., Feller (1971), page 441). It remains to show that A(uov(¢))h(u/v(f)), where
v()=t+ 1+ @+ 21)%, is completely monotone on (0, o) for every fixed u > 0.
It suffices to verify that ’

8(1) = (Skaoci(uo(1)™) - (ZX=ock(u/0())™)
has a completely monotone derivative. We easily get

g(t) = ¥ _octu* + o<k G H((0(0)™7Y + (v(£))¥™*).

By, e.g., formula (24) on page 197 in Erdélyi et al. (1954), we find that the
derivative of (v(#))* + (v(£))™% 0<a < 1, is, apart from a positive constant
factor, the Laplace transform of e ™K (y), y > 0, where K, is a modified Bessel

function which happens to be nonnegative for y > 0. This observation,, which is
due to Thorin (1978b), shows that g(#) has a completely monotone derivative. []
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COROLLARY 1. If an tv X has a density of the form (4.1), the weak limit
possibilities included, so has X? for every real q, |q| > 1, and hence its distribution is
a generalized gamma convolution and thus infinitely divisible.

ProoF. Clearly it is sufficient to study the case when the density of X is strictly
of the form (4.1). We have fyo(x) = |g|~'x!/?7 ', (x"/?). When the constant g is
positive, the result wanted immediately follows. For ¢ negative, the result follows
by dividing the factor x#~! in (4.1) by x2¥ and multiplying each of the other
factors by x Y, respectively. []

COROLLARY 2. All densities of the form
4.2) C-xPlexp{—ZF_iqx*}, x>0,

where ¢, > 0 and |ay| < 1, and their weak limits are generalized gamma convolutions
and thus infinitely divisible.

Proor. Clearly the density
(43) C-xP7(1 + S o x®) " (1 + S 0 x*) ™, x>0,
where 0 < aj; < 1 and —1 < ay, < 0, can be rewritten to the form (4.1). Letting

then y, and y, tend to infinity and letting ¢,,, k= 1,- - - N,, and ¢y, k =
1,- - -, N, tend to zero in an appropriate way, we get the result wanted. []

REMARK 4.1. Note that exp{ —3¥_ ¢, x%}, where |a,| < 1, is not necessarily
completely monotone and that its analytic continuation to C_ is not bounded if
|ai| >3 for some k. Note also that if an rv X has a density of the form (4.2), so has

X1, |q| > 1.

ReEMARK 4.2. For a density f(x) of the form (4.2) with some a;, < 0 we have
U(o0) = 0. This is a simple consequence of the result in Remark 3.5 and the fact
that, for every n > 0, x ™ "f(x) - 0 as x — 0. The same conclusion holds for the
lognormal distribution; cf. Section 5 and Thorin (1977b).

5. Relation to earlier results. In this section some special cases of Theorem 2
and Corollary 2 are exposed. These special cases have been considered earlier by
different authors using Thorin’s (Grosswald’s) method. In order to simplify the
identification of the various distributions encountered we give some common
names of these. The names are taken from Johnson and Kotz (1970).

Theorem 2 and Corollary 2 show that all the n.zinbers of the families

(5.1) C-xP71(1 + ex*)7?, : x>0, 0<acx<l,
(5.2 C - xP lexp{ —cx“}, x>0, 0<|al <1,
(5.3) C-x‘“'exp{— (erx + czx_l)}, x>0, —o00<B< o,

where the natural restrictions are put on the unspecified parameters, are densities
of generalized gamma convolutions and thus infinitely divisible. Setting in (5.2)
B=0"%p+a ') and ¢ = 67 % "2 where u and ¢ (¢ > 0) are constants, and
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letting a tend to zero, we obtain as a weak limit the density
(5.4) C-x"'exp{— (log x — p)’/ (26%)}, x>0.

Clearly (5.1) is the general form for the density of a power with exponent 1/a of
the ratio of two gamma variables. The so-called Burr distribution of Type XII
appears as a special case. Setting a = 1, we get the density of the ratio of two
gamma variables. In particular the F-distribution is included in (5.1) for a = 1.
Permitting also a change of location, we see that (5.1) for a = 1 gives the Pearson
Type VI distribution. The Pareto distribution is obtained by setting @ = 1 and
B=1

Obviously (5.2) corresponds to a power with exponent 1/a of a gamma variable.
Common names of this distribution for a > 0 are generalized gamma distribution
and Stacy distribution. The Weibull distribution appears as a special case. For
a < 0 the extreme value distribution of Type II is a special case and so is the stable
distribution with index %

The distribution (5.3) has been named generalized inverse Gaussian distribution
by Barndorff-Nielsen (1977). Clearly the usual inverse Gaussian distribution is a
special case. Finally (5.4) corresponds to a lognormal distribution.

The infinite divisibility of the Pareto distribution is (like the infinite divisibility of
the densities (5.1)—(5.2) for certain combinations of the parameters) a consequence
of the Goldie-Steutel theorem (cf. Remark 3.1) and was first pointed out by Steutel
(1969) (without mentioning the name of Pareto). Thorin (1977a) proved that the
Pareto distribution is a generalized gamma convolution (cf. Goovaerts et al.
(1977a)). Grosswald (1976) proved that the inverse of a gamma variable is infinitely
divisible and thus verified a conjecture made by Ismail and Kelker (1976). His
proof was simplified independently by Ismail (1977) (though a correction is
needed) and by Bondesson (1978) who also pointed out that the corresponding
distribution is a generalized gamma convolution. In Bondesson (1978) it was
further shown that the distributions of the square and the cube of a gamma
variable are generalized gamma convolutions. Also Ismail and Kelker (1977) found
that the square is infinitely divisible. Thorin (1978b) proved the general result for
powers of a gamma variable. This result was conjectured independently by Bondes-
son (1978) and Ismail and Kelker (1977). It was noted in Bondesson (1978) that
Thorin’s (1977b) result that the lognormal distribution is a generalized gamma
convolution is a limit case. The possible infinite divisibility of the lognormal
distribution was mentioned as an open problem in the survey by Steutel (1973).
The infinite divisibility of the ratio of two gamma wvariables was established
independently by Goovaerts et al. (1978) and Ismail and Kelker (1977). Like
Grosswald they all utilized many known facts about special functions. Also this
problem was mentioned by Steutel (1973). The infinite divisibility of a power with
exponent of modulus > 1 of the ratio of two gamma variables was conjectured by
Ismail and Kelker (1977) and also mentioned as an open problem in Bondesson
(1978).
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Barndorff-Nielsen and Halgreen (1977) used Grosswald’s (1976) result to prove
that the generalized inverse Gaussian distribution (5.3) is infinitely divisible. A
more probabilistic proof was given by Barndorff-Nielsen et al. (1978). In fact, they
showed that, for 8 < 0, (5.3) is the density of a first passage time in a certain
time-homogeneous diffusion process and thus infinitely divisible (cf. Kent (1978)).
Independently of the present author, Halgreen (1979) later found that the gener-
alized inverse Gaussian distribution is a generalized gamma convolution. Halgreen
proposed cross references but then he does not refer to my paper. No explanation
has been given to me.

It is of interest to note that Grosswald (1976) used the infinite divisibility of the
inverse of a gamma variable to show that the ¢-distribution is infinitely divisible for
all (even all nonintegral) degrees of freedom and thus solving a problem studied
before by several authors. It was earlier noted by Ismail and Kelker (1976) that the
t-distribution is obtained as a variance mixture of the normal distribution with
mean zero with the distribution of the inverse of a gamma variable as variance
mixing distribution. Such a variance mixture is infinitely divisible whenever the
mixing distribution is infinitely divisible as noticed by Kelker (1971). In essentially
the same way the infinite divisibility of the generalized inverse Gaussian distribu-
tion implies that Barndorff-Nielsen’s (1977) so-called generalized hyperbolic dis-
tribution is infinitely divisible. Thorin (1978a) proved that a variance mixture of the
normal distribution with a generalized gamma convolution as mixing distribution is
an extended generalized gamma convolution; cf. Remark 2.1.

Let us finally mention a result obtained by the help of Thorin’s method that is
not an immediate consequence of Theorem 2: the distribution of the product of
two independent gamma variables is a generalized gamma convolution. This was
proved by Goovaerts et al. (1977b). However, it can be shown that in fact this
result is a consequence of Theorem 2; see Section 6 and cf. the beginning of the
proof of Theorem 1.

6. Further results (added in revision). Here some results in Bondesson (1979b)
are briefly mentioned.

Let us denote the class of nondegenerate generalized gamma convolutions given
in Theorem 2 by B. Somewhat surprisingly, B coincides with the class of
distributions with densities of the form

fx)=C-xF ML (1+¢x)™", x>0,
and their nondegenerate weak limits. Further, % precisely consists of those
distributions on (0, co) which have densities of the form
(6.1) f(x) = C-x*"m(x)h(1/x), x>0,

where 8 € R and where h,(x), hy(x) are Laplace transforms of generalized gamma
convolutions. The corresponding measures dU,(f), dU,(#) can be chosen to be
concentrated on (1, c0) and [1, ), respectively, and are under this condition
uniquely determined by f(x).
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It is usually not very difficult to determine whether or not a given density admits
a representation of the form (6.1).

Notice that the class of functions (not densities) of the form (6.1) is closed with
respect to multiplication. On the other hand, the class % is not closed with respect
to convolution and hence % does not comprise all nondegenerate generalized
gamma convolutions with @ = 0. However, in a certain sense % is an optimal class
of generalized gamma convolutions; for details see Bondesson (1979b).

The distribution of X - ¥, where X and Y are independent rv’s and X is gamma
and Y has a distribution belonging to %, belongs to % ; this important property of
the class % is established in Bondesson (1979¢).

Acknowledgment. I want to thank Dr. Olof Thorin for letting me see an early
draft of his manuscript “Proof of a conjecture of L. Bondesson concerning infinite
divisibility of powers of a gamma variable” which stimulated and made it possible
for me to write the present paper. I also want to thank him for kindly pointing out
some errors in an earlier version of this paper.

REFERENCES

BARNDORFF-NIELSEN, O. (1977). Exponentially decreasing distributions for the logarithm of particle size.
Proc. Roy. Soc. Ser. A 353 401-419.

BARNDORFF-NIELSEN, O. and HALGREEN, C. (1977). Infinite divisibility of the hyperbolic and generalized
inverse Gaussian distribution. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 38 309-311.

BARNDORFF-NIELSEN, O., BLAESILD, P. and HALGREEN, C. (1978). First hitting time models for the
generalized inverse Gaussian distribution. Stochastic Processes Appl. 7 49-54.

BONDESSON, L. (1978). On infinite divisibility of powers of a Gamma variable. Scand. Actuarial J. 1978
48-61.

BONDESSON, L. (1979a). On generalized gamma and generalized negative binomial convolutions, Part I.
Scand. Actuarial J. 1979 125-146.

BONDESSON, L. (1979b). On generalized gamma and generalized negative binomial convolutions, Part II.
Scand. Actuarial J. 1979 147-166.

BoONDESSON, L. (1979c). On the infinite divisibility of products of powers of gamma variables. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 49 171-175.

ERDELYL, A. et al. (1954). Tables of Integral Transforms, 1. McGraw-Hill, New York.

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, 2, 2nd ed. Wiley, New
York.

GoOOVAERTS, M. J,, D’HOOGE, L. and DE PriL, N. (1977a). On a class of generalized gamma
convolutions, Part I. Scand. Actuarial J: 1977, 21-30.

GOOVAERTS, M. J., D’HOOGE, L. and DE PriL, N. (1977b). On the infinite divisibility of the product of
two I'-distributed stochastical variables. Appl. Math. Computation 3 127-135.

GOOVAERTS, M. J., D’HOOGE, L. and DE PriL, N. (1978). On the infinite divisibility of the ratio of two
gamma-distributed variables. Stochastic Processes Appl. T 291-297.

GrosswaLD, E. (1976). The Student t-distribution of any degree of freedom is infinitely divisible.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 103—-109.

HALGREEN, C. (1979). Self-decomposability of the generalized inverse Gaussian distribution and
hyperbolic distributions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 47 13—-117.

IsMAIL, M. E. H. (1977). Bessel functions and the infinite divisibility of the Student ¢-distribution. Ann.
Probability 5 582-585.

IsMaIL, M. E. H. and KELKER, D. (1976). The Bessel polynomials and the Student ¢-distribution. SIAM
J. Math. Anal. 7 82-91.



INFINITE DIVISIBILITY 979

IsMAIL, M. E. H. and KELKER, D. (1979). Special functions, Stieltjes transforms and infinite divisibility.
SIAM J. Math. Anal. 10 884-901.

JounsoN, N. L, and Kotz, S. (1970). Continuous Univariate Distributions, 1 and 2. Houghton-Mifflin,
Boston.

KELKER, D. (1971). Infinite divisibility and variance mixtures of the normal distribution. Ann. Math.
Statist. 42 802-808.

KENT, J. (1978). Some probabilistic properties of Bessel functions. Ann. Probability 6 760-770.

Lukacs, E. (1970). Characteristic Functions, 2nd ed. Griffin, London.

STEUTEL, F. W. (1969). Note on completely monotone densities. Ann. Math. Statist. 40 1130-1131.

STEUTEL, F. W. (1973). Some recent results in infinite divisibility. Stochastic Processes Appl. 1 125-143.

THORIN, O. (1977a). On the infinite divisibility of the Pareto distribution. Scand. Actuarial J. 1977
31-40.

THORIN, O. (1977b). On the infinite divisibility of the lognormal distribution. Scand. Actuarial J. 1977
121-148.

THORIN, O. (1978a). An extension of the notion of a generalized gamma convolution. Scand. Actuarial J.
1978 141-149.

THORIN, O. (1978b). Proof of a conjecture of L. Bondesson concerning infinite divisibility of powers of a
gamma variable. Scand. Actuarial J. 1978 151-164.

WIDDER, D. V. (1946). The Laplace Transform. Princeton Univ. Press.

DEPARTMENT OF MATHEMATICAL STATISTICS
Box 725

$-220 07 Lunp

SWEDEN



