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DE FINETTI’S THEOREM FOR MARKOV CHAINS

By P. Diaconis! AND D. FREEDMAN?

Bell Laboratories, Murray Hill, New Jersey and University of California at
Berkeley

Let Z = (Zy, Z,, - - - ) be a sequence of random variables taking values in
a countable state space I. We use a generalization of exchangeability called
partial exchangeability. Z is partially exchangeable if for two sequences o, 7 €
I"*! which have the same starting state and the same transition counts,
P(Zy=00,2,=0, ", 2Z,=0)=P2y=1,2Zy, =71y, ,2Z,=1,).
The main result is that for recurrent processes, Z is a mixture of Markov chains
if and only if Z is partially exchangeable.

1. Introduction. Let Z = (Z,, Z,, Z,, - - - ) be a sequence of random variables
taking values zero or one. In the classical Bayesian approach to statistics, if Z; are
independent and identically distributed with unknown success probability p, it is
customary to choose a prior distribution p on the Borel sets of the unit interval and
describe the joint distribution of the process as follows: for any sequence of zeros
and ones ey, ¢, - - - , e, letting

S = 208>

(1) P(Zy=e, ", Z,=e,)=[op°(1 = p)""" " u(dp).
In developing his subjective theory of probability, de Finetti introduced the
notion of exchangeability: P is exchangeable if

(2) P(Zo=eo,"‘,Zn=en)=P(Zﬂ(o)=eo,'",Zﬂ(n)=en),

where 7 is any permutation of {0, 1, 2, - - - , n}.

A basic result due to de Finetti is that a probability measure P on infinite
sequences Z satisfies (2) for every n > 0 if and only if P satisfies (1) for some p.
This result is developed further in Hewitt and Savage (1955); for a recent survey,
see Kingman (1978).

Suppose now that Z is a Markov chain with unknown stationary transition

matrix

Poo  Poi
T= .
(Plo Pu)
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116 P. DIACONIS AND D. FREEDMAN

For simplicity, assume in this introduction that Z, = 0. The classical Bayesian
description of this process (see for example, Martin (1967)) involves a prior
distribution » on the Borel sets of the 2 X 2 stochastic transition matrices

(Poo Pm)
P Pu)

Writing a; for the number of transitions from state i to state j in the sequence
O, €1, €3 ", €, this ylelds

(3) P{ZO=O’Zl=e19...9Zn=en}
= [P Pot 21 Piy v(APoos APy AP ro» dP1y)-

The main result of this paper gives an appropriate notion of symmetry, a
generalization of exchangeability called partial exchangeability, so that (3) holds
for some » if and only if P is partially exchangeable, provided P is recurrent. For
transient P, this characterization fails as shown by example (19) below. Briefly, P is
partially exchangeable if P assigns probability to all strings 0, e;, 5, *** * , e, With
the same transition count matrix

de Qo
( ap an )

This result is hinted at by de Finetti (1959), (1974, pages 217-220). A proof when
Z is stationary is in Freedman (1962). For a discussion of the result see Diaconis
and Freedman (1978a, c).

de Finetti (1959, 1974) sketches a general theorem for finite partially exchange-
able processes Z,, Z,, - - - , Z,. He appears to assert that the finite results imply
results for infinite sequences by passage to the limit. While this argument works for
exchangeable sequences (Diaconis (1977), Diaconis and Freedman (1978b)), it
breaks down for transient Markov chains, as shown in Example (19) here.

In Section 2 of this paper we show that for a recurrent process taking values in a
countable state space (3) holds if and only if the process is partially exchangeable.
The extreme points of partially exchangeable processes with finite state space are
found in Section 3. Section 4 contains remarks and complements to the main
results.

2. Recurrent chains. Let X = (X, X, - - ) be a stochastic process on the
probability triple (2, ¥, P), taking values in the countable set I, whose elements
will be referred to as “states”. de Finetti’s theorem gives a necessary and sufficient
condition for the distribution of X to be a mixture of the distributions of sequences
of independent and identically distributed random variables. The condition is that
X be exchangeable. To rephrase the definition, let o be a finite string of states. Let
A, be the event that X starts by running through o. Thus,

Ay ={Xo=1i andX, =, andX,=k}.
Clearly, X is exchangeable iff P(4,) = P(A,) whenever 7 is a permutation of o.
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Under what circumstances is the distribution of X a mixture of distributions of
Markov chains? Our object is to answer this question. Throughout this paper, as
usual, a Markov chain has stationary transitions by definition, but need not start
from a stationary distribution. In this section we assume that X is recurrent:

4 P{X, = X, for infinitely many n} = 1.

The necessary and sufficient condition that X be a mixture of Markov chains is
in terms of a certain kind of symmetry. To state it, let 0 and 7 be finite strings of
states (a “string” is a finite sequence). Then o ~ 7 iff 0 and 7 start from the same
state and exhibit the same number of transitions from i to j for every pair of states i
and j. For instance, 123 »< 132, but 12132 ~ 13212. The condition, then, is that
o ~ 7 implies P(4,) = P(A,). Such probabilities are called partially exchangeable.

The next lemma records some simple properties of the equivalence ~ .

(5) LEMMA. Suppose 6 ~ 1. Then o and T have the same length and end at the same
state. Furthermore, 0 and T pass through i the same number of times, for any state i.

A characterization of ~ in terms of invariance under a group of transformations
is given in Proposition (27). Lemma (5) is close to Lemma 6.1.1 of Martin (1967).
See also Freedman (1962b).

To say that X is a mixture of Markov chains means the following. Consider the
set of stochastic matrices ¢ on I X [ in the topology of coordinate convergence.
The set I X ? is Polish. There is to be a probability u on the Borel subsets of this
space such that

(6) P{X, =i,for0 <m <n} = [gll" 1 p(i,, i )1(ip dp).
In these terms, the first theorem can be stated as follows.

(7) THEOREM. Suppose X is recurrent in the sense (4). Then X is a mixture of
Markov chains in the sense (6) if and only if

®) o ~ 7 implies P(A4,) = P(4,).
Moreover, the mixing measure p is uniquely determined.

The necessity of (8) is almost obvious, and the sufficiency will be proved here.
Without real loss of generality, suppose X, is degenerate, say at the state 1:

) P(X,=1)=1

Consider I with the discrete topology and let 7* be the space of infinite
I-sequences, endowed with the product topology; so I* is Polish. To avoid
measure-theoretic difficulties, and without loss of generality, suppose that X, is the
coordinate process on / *:

X,(0) = w,.
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By definition, a 1-block is a finite string of states which begins with 1 and
contains no further 1’s. The space B of 1-blocks is countable and is given the
discrete topology. Let Y, Y, - - - be the successive 1-blocks in X. Thus, if X starts
off 1213122114 - - - then Yy = 12, Y, = 13, Y, = 122, and Y; = 1. The recurrence
condition (4) implies that the Y’s are almost surely well defined. It is clear they are
measurable. Condition (8) implies

(10) The 1-blocks of X are exchangeable.

Indeed, permuting 1-blocks cannot affect transitions.

Let F ™ be the o-field spanned by Y,, ¥,,,, - - - and let ¥ = 0, F @), the
tail o-field of the 1-blocks.

De Finetti’s theorem for Polish space random variables says that given ¥ () the
1-blocks are independent and identically distributed. More precisely, there is a
regular conditional probability P_(A4) on the Borel subsets of 7* given F (=),

(11) LeMMA. For P-almost all w, with respect to P, the 1-blocks Yy, Yy, - - are
independent and identically distributed.

A proof of Lemma (11) is given in the Appendix. See also Olshen (1974).

The next thing to establish is that given ¥ (), the process X still has the
symmetry property (8).

(12) LeMMA. For P-almost all w, the relation o ~ 7 implies P, (A,) = P (A,).
Proor. For the usual reasons, it is enough to show that almost surely,

(13) P{A|Yy -+ o Yoy} = P{A|Y,, - -+, Yy}

for large n and all m. This would follow fror;l

(14) P{A, and 7Y,

n+v

=B, for 0<v<m)

=P{4, and Y, =B, for 0<v<m},

n+v

valid for all m and all 1-blocks B,, provided n is at least as large as the number of
I’s in o (or 7). To prove (14), let S, be the set of strings ¢ such that the n + vth
I-block in oy is B, for 0 < v <m. As (5) shows, S, = S,, and oy ~ 1), so
P(4,,) = P(4,,). Summing out ¢ gives (14). []

The next result is a partial converse to Doeblin’s theorem (Theorem 31, page 15
of Freedman (1971)).

(15) PROPOSITION. Suppose X satisfies the recurrence condition (4) and the symme-
try condition (8). Suppose too that the 1-blocks of X are independent and identically
distributed. Then X is a Markov chain.

PrOOF. Let 0 and o’ be finite strings of states which start at 1 and end at i;
however, do not assume that ¢ ~ o’. The Markov property, which must be proved,
is

P(Aoleo) = P(Ao’leo’)'
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To avoid division by 0, the form
(16) P(AO)P(Ao’j) = P(Ao’)P(Aoj)

is preferred.
For any strings of states a and 8

(17) P(A lalﬁ) = P(Alal)P(AlB)’
because the 1-blocks are independent and identically distributed.

Let ¢ run through all the finite strings of states which do not pass through 1.
Then recurrence (4) implies

(18) P(4,) = ,P(4,,).
Because ¢ and o’ start and end at 1 and §,
oyo’j ~ o'yYgj.
By symmetry (8),
P(Am,j) = P(Ao,w.).
By (17),
P (Aa,pl)P (Aa'j) =P (Aa.pa'j) =P (Ao'wj) =P (Aa'.pl)P (Aoj)‘

Sum out ¢ and use (18) to get (16). ]

The sufficiency part of Theorem (7) is now easily proved, starting from the
identity

P{A} = [P, {A}P(dw),
where P, was defined for Lemma (11). In view of (11) and (12), it is enough to
integrate only over those w’s for which, relative to P,, the process X has the
recurrence property (4), the symmetry property (8), and independent, identically
distributed 1-blocks. For such w, however, X is a Markov chain relative to P, by
(15). Letting ﬁw(i, j) denote the corresponding transition probabilities, verify that
w— f’w(i, j) is measurable and
P{X, =i, for0<m<n}= [P (iys ipys1)P(dw).

This is (6) when X, = 1 is given. The general case follows by conditioning on X,

The uniqueness of u asserted in (6) follows from the strong law of large numbers
for Markov chains, as described in Remark (25) of Section 4. Another proof of
uniqueness is given by Freedman (1962a). This completes the proof of (7).

The argument proves something a bit sharper than (7): namely, under conditions
(4) and (8), given the tail o-field of the 1-blocks, the X process is conditionally
Markov.

3. The general case; finite state space. Without the recurrence condition (4) it
is not true that partially exchangeable processes are mixtures of Markov chains. In
this section we characterize partially exchangeable processes when the state space /
is finite, without assuming recurrence.
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When 1 is finite, the space of all probability measures on the Borel sets of 7> is
a compact metrizable space in the weak * topology. The space 91 of all probability
measures which are partially exchangeable (that is, satisfy the symmetry condition
(8)) is a closed convex subset of the probability measures. We will find the extreme
points & of 9N and show that any element of 9 is a unique mixture of elements
of &. For motivation, we first describe the situation when I = {0, 1}. All assertions
will be proved in Theorem (21).

(19) ExaMPLES. Suppose I = {0, 1}. The extreme points of the partially ex-
changeable processes break into four groups:

(a) The recurrent Markov chains starting at 0,

(b) The recurrent Markov chains starting at 1,

(c) The processes my which run deterministically through a sequence of k zeros,

make a single transition at time k + 1 to state one, and end with all ones.

(d) The processes m; which start with k£ ones, make a single transition to zero at

time k£ + 1, and end with all zeros. )

Consider #9. This is the law of a process X = (Xq, X,, - - - ) with the single
sample path 0011111 - - - (two zeros followed by all ones). This law is partially
exchangeable but not a mixture of Markov chains.

Indeed, X is partially exchangeable because there are no other sequences except
00111111 - - - which have the same transition counts. To see that X cannot be a
mixture of Markov chains, consider a process Y which is a mixture of Markov
chains. Suppose Y starts at zero. Let 6,(Y) be the probability that Y starts with &k
zeros and has ones in all other positions. From (6),

0.(Y) = [g,P6 (1 = Poo) (0, dpgy)

where %, is the set of stochastic matrices with p;; = 1. In particular 4, decreases
with k. For the process X, 8,(X) = 0, 6,(X) = 1, §;(X) = 0. This shows that X
cannot be represented as a mixture of Markov chains.

Since 73 is an extreme point of DN, not all extreme points are Markov chains.
Since Markov chains starting at zero and having zero as a transient state can be
represented as mixtures of the 77, not all Markov chains are extreme points of 9.
Note that nonrecurrent Markov chains are limits of recurrent Markov chains, for
example, by taking limits of transition matrices

Po Pn

(Plo Pu

So the set & of extreme points is not closed. It can be argued that & is the

intersection of a closed set and an open set. Further discussion of this example can
be found in Section 4.

We now return to the general, finite alphabet situation and introduce notation
for the extreme points. Consider first the special case when I = {1, 2, 3, 4, 5}. An
extreme point of the set of partially exchangeable measures will begin by running
through a finite string of transient states chosen from a subset 7' C I. Suppose

)aspm—> 1.
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T = {1, 2}, so the process begins with a string like 121221. The number of
transitions (and so the length) of the initial string is fixed, but all permutations of
the string of 1’s and 2’s which have the same number of transitions are equally
likely. The process then goes to one of the recurrent states, say 3, and thereafter
continues as a recurrent Markov chain on states 3, 4, and 5.

In the case of a general finite state space an extreme point m, € & can be
indexed by the parameter

(20) 0 =(T,i, M, j, p),

where T is a subset of I representing the class of transient states under m,, i € T is
the initial state of the process, M is a matrix of transition counts for the transient
states determined by m,,j & T is the first recurrent state, and p is a matrix of
transition probabilities for the recurrent states (those in I — T') of the process. We
require the states in / — 7 to form a recurrent class; thus p” has all entries positive
for some integer n (Feller (1968) Section XV.4). The process determined by m,
starts in state 7, then runs through a finite string of transient states consistent with
the matrix of counts M. The process then moves to state j, and then continues as a
Markov chain on the states in / — 7 with transition matrix p. We will also allow T
to be the empty set and M to be zero. In this case we write § = (J, p) and the
process m, is a recurrent Markov chain starting at state ;.

It must be argued that =, and mixtures of the m, are partially exchangeable. This
is a consequence of the following combinatorial fact. The proof is straightforward
and omitted.

(21) LeMMA. Let o be a string of states in T and p a string of states in I — T. If
op ~  then ¢ = &'p’ with o’ ~ o and p' ~ p.
We can now state the main result of this section.

(22) THEOREM. For 8 defined by (20), the measures my are the extreme points of the
class O of partially exchangeable probabilities on a finite state space 1. For any
P € 9N there is a unique measure u on the extreme points & of 9N such that for any
Borel set A C 1%,

(23) P(4) = fs”o(A)#(d0)~

PrOOF. Let P € 9L be fixed. We first prove (23) and then argue uniqueness.
The proof of (23) works by successively conditioning on the set of transient states
T, the initial state i, the transition matrix M of the transient state, and the first
recurrent state j. At each stage of conditioning we must argue that the conditional
distribution is still partially exchangeable. We now condition on the transient
states.

Let T C I. Let B be the event that the states in T occur finitely often in X, while
the states in T occur infinitely often. If P(B) > 0, we claim P(-|B) is partially
exchangeable. To simplify the writing, suppose 7= {1,2,- - - , ¢} and T° = {¢ +1,

- -+, N}. Leto ~ 7. Define B(o) to be the set of points in 7* which start with ¢
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and in which states in 7 occur finitely often and states in 7° occur infinitely often.
Similarly define B(7). We must show that P(B(o)) = P(B(7)). This requires some
notation. Let B(o; ny, ny, - - - , 1,3 1y, ¢ -, ny) be the set of points *° which
start with the string o, have exactly n, symbols k for 1 < k£ < ¢ and more than n,
symbols k for ¢ + 1 < k < N. Similarly define B(r; ny, -« - ,n;n.,.,° -, ny).
Since 6 ~ 7 we have op ~ 7p for any string p. Thus P(4,,) = P(4,,). Take the sum
as p runs through strings with exactly n, symbols k for 1 < k < ¢ and more than n,
symbols k for ¢ + 1 < k < N. We see that

P[B("; O TR (TR P TR ’”N)] = P[B(T§ VR (T FY P ”N)]-
Next, write B(o; ny, - * - , n,) for the points in 7> which start with o, then have
exactly n, symbols for 1 < k& < ¢, and the symbols k with # + 1 < k < N occurring
infinitely often. The sets B(o; ny, - - - ,n;n,, - -+, ny) decrease to the set
B(o; ny,- - - ,n)asn,., - - -, hy increase to infinity. Thus

P[B(o;ny, - -+ ,n)] = P[B(r;ny,- -+, n)].
Finally, summing over all possible indices n,, n,, - - - , n,, we have*P[B(a)] =

P[B(7)] as was to be shown.

It is clear that we may also assume P(X, = i) = 1 and by the above argument
that with P probability 1 all states in T occur finitely often and all states in 7°°
occur infinitely often. We now argue that P cannot have a transition from a state
k € T° to a state k' € T. To see this, consider the k block process {Y,}. This
process is exchangeable. Let Z, be one or zero as the nth k block has a k to k'
transition or not. The Z,’s are exchangeable. If there is positive probability of a k
to k' transition, then P(Z, = 1) > 0; and de Finetti’s theorem (or the Poincaré
recurrence theorem) shows that P(Z,'= 1 infinitely often) > 0. This would imply
that with positive probability &’ occurred infinitely often, contrary to assumption.
We have thus shown that any sample path of the probability P conditioned on the
event B must start with a (possibly empty) string of states in 7 and continue with
states in 7°°.

The next stage of the argument is to show that conditioning P on the transition
matrix of the transient states and the first recurrent state does not destroy partial
exchangeability. Let M be a transition count matrix for transient states. We are
assuming the processes starts with i € T. Let j be a state in 7°. There are only a
finite number of strings say o,, 0,, - * - , 0, which start with i/, and have M as
transition matrix. These strings all have the same length, the same final state, and
contain only transient states. Clearly all these strings are equivalent and so P(Aa,,, D)
does not depend on m. Conditioning on the matrix M and first recurrent state j is
the same as conditioning on the event C = U}, _,4, ;. To show that conditioning
on C does not destroy partial exchangeability, let 6 ~ 7. We must show

(24) P(4,n C)= P(4,n C).
We may assume without loss of generality that ¢ (and hence 7) has no transition
from T° to T: otherwise both sides of (24) vanish.
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There are two cases:

CASE 1. Length o > length o,j. If either A, or A, meets C, then (21) shows

that ¢ = g, and 7 = ¢, with p ~ p’, so (24) follows from (8). Otherwise, both

sides of (24) are zero.

jo'

CASE 2. Length 6 < length o,j. Let g, be the typical o,, which begin with o.
Write o), = op,,. Let o,,, - - -, 0/ be the typical o,  which begin with 7. Write
o, = 7p,. The sets {p,,} and {p,,} are in one-to-one correspondence because any
o gives an admissible completion for ¢ and any p;, gives an admissible completion
for 7. The left side of equation (24) equals 2, P(4,, ). The right side of equation
(24) equals 2, P(4,,,). These sums are equal term by term, so (24) is true.

Combining arguments, we have shown that we may successively condition on the
transient states, initial state, first recurrent state and matrix of transition counts for
the transient states without destroying partial exchangeability. The conditional
process, starting from the first recurrent state, is recurrent and partially exchange-
able. It follows from Theorem 7 that the conditional processes is a mixture of
Markov chains. This completes the proof of the representation (23). We now argue
that the representation is unique.

Indeed, with @ as defined in (20), let

B={0:01=T’02=i’03=M,03=j}

and define an event A4 for the coordinate process X; on I® by 4 = {X has T as
transient states and 7° as recurrent states, X, = i, X is consistent with M and has
first recurrent state j}. Then my(4) = 15(6) where 15(-) is the indicator of the set
B. Hence the representation (23) implies

P(A4) = [my(A)u(db) = u(B).

So the p-distribution of the first four coordinates of # is uniquely determined by P.
Now given T, i, M, j the process starting at j is a recurrent partially exchangeable
process and Theorem 7 implies that the process is a uniquely determined mixture of
Markov chains. Thus the u-distribution of the matrix of transition probabilities (the
last coordinate of @) given T, i, M and j is uniquely determined, and so p is
uniquely determined. Uniqueness in (23) implies that the 7, are extreme points of
9N as in Proposition 1.4 of Phelps (1966). []

4. Complements to the main results.

Limit theorems and zero-one laws. Just as for exchangeability, there is a collec-
tion of easily proved limit theorems for partially exchangeable processes. We will
only discuss the recurrent case. The argument for Theorem (7) shows that the
process conditioned on the initial state i and the tail o-field of the i-blocks is
Markov. Thus, known results for Markov chains can be used to yield results for
recurrent partially exchangeable processes. Here is one consequence of this argu-
ment.
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(25) REMARK. Let 7™ be the doubly infinite matrix with i, j entry the number of
transitions from state i to state j divided by the number of transitions from state i
up to time n. Then T™ converges almost surely to a stochastic matrix 7 in the
topology of coordinate-wise convergence. Write ¥ for the set of stochastic
matrices. We construct a probability law p on 7 X @ as follows: the projection of
p on I coincides with the starting distribution of X; the conditional distribution on
% given the starting state coincides with the probability law of T given the starting
state of X. The measure y is the mixing measure in Theorem (7).

To state the zero-one laws, we define several o-fields for the processes X. Let ¢
be the invariant field for the shift operating on 7. Let I be the tail field. Let & be
the exchangeable field. Further, let F ™ be the o-field generated by X, and
the matrices T®, T"*D, . . . defined in (25). It is easily seen that F ™ is also the
o-field generated by Xp, 7™ and X, , X, .5, - - - . Let F = N F. The o-field F
is called the partially exchangeable o-field. 1t is straightforward to argue that

(26) $cTcobcH

A corollary to Theorem (7) is that any pair of the o-fields in (26) agree up to null
sets under a recurrent partially exchangeable probability P. For instance, if 4 € &
there is 4’ € § with P(4AA4’) = 0. A second consequence of Theorem (7) is the
following zero-one law: any recurrent Markov chain assigns probability zero or one
to events in &. These results are related to results for exchangeable processes given
by Olshen (1971). Zero-one laws for Markov chains are discussed by Blackwell and
Freedman (1964).

Infinite state space—general case. Without the recurrence condition (4), the
description of the extreme points of the partially exchangeable processes with
infinite state space is not as neat as Theorems (7) and (22). It can be shown that
there are three types of extreme points:

(1) Recurrent Markov chains,

(2) Processes which start with a fixed length string of transient states and

continue as recurrent Markov chains,

(3) Totally transient processes, where each state occurs only finitely often.
Type 2 extreme points are basically the same as the measures 7, introduced in (20).
For type 3 extreme points consider the doubly infinite random matrix M with ij
entry equal to the total number of i to j transitions in X. Since every state occurs
finitely often, M is almost surely finite. The extreme points of type 3 can be
characterized as follows. Let M, (i, j) be the number of transitions from i to j in X,
up to time n. So M MM. Then X is extreme if and only if ¥ =
N,0(M,, X, .1, X2+ * + ) is trivial. We conjecture, but cannot prove, that ¥ is
spanned by M.

Group invariance. The equivalence relation ~ is connected to invariance under
the group of block-switch transformations. Informally, for 6 € I”, a typical block-
switch transformation 7' focuses on two disjoint blocks in o. If the blocks begin
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with the same symbols, and end with the same symbols, then (o) is ¢ with the two
blocks interchanged. Formally, for s € I", let 0 < a<b <c<d<n and § =
(a, b, ¢, d). If 6, # o, or 6, # 0, then Ty(o) = 0. If 6, = 6, and g, = 0, then

0 =000y " "0Oq1| Og" " 0Op| Opyy" " Oy | O 04 Ogyy°° "0,
block 1 block 2
and
Ty(0) = 000, - - - °a—1l 00c+1° " " Og I Op+1° " " Oc—1| Og* Oy | 0G4y " Oy
block 2 block 1
The T, are plainly 1 — 1 maps from I" onto I". If o € I", then 7 =
Ty, © Ty, © - -+ © Ty (o) implies 0 ~ 7 since T, does not change the initial state
nor transitions. The next result gives a converse.
(27) PropoSITION. If 0 ~ 1 € I", then there exist Ty, - -, T, on I" such that
o= T0| O e+« ¢ O To,‘(f)'

ProoF. Since o ~ 7, we have o, = 7, and ¢, = 7,. Without loss of generality
suppose 6, 7 7,. Then 7 must have a 7,0, transition at some later place. Let S, be
the initial string of symbols in 7 before the 7,0,; and let S, be the final string of
symbols in 7 after the 7,0, transition, where S, starts with o,. Thus, the two strings
appear as:

Sy
T =ml 0y Tn
AY3
6 =0/0""",0, 6, =1T,0,=T7,

We will argue that some symbol in S, occurs in S,. By way of contradiction,
suppose S; and S, have no common symbols. Then we show that S, only contains
the symbol 7,. Indeed, o, does not appear in S,, since o, appears in S,. Then the
0,0, transition in 7 must appear in S, so that o, does not appear in S,. Note that
neither 6, nor o; can equal o, because 7, equals o0,. Similarly, o,, - - - , 0, do not
appear in S| and none of these symbols equals o¢,. Thus, if S, and S, have no
common symbols, then o contains at most one symbol o, and T must appear as:

Tlarl.../rl 02...1-n

with no symbol 7, appearing in S,. But 7 cannot be 7,0, - - - because 7, # 0,. Now
7 has a 7,7, transition, so ¢ must too. In particular o contains at least two symbols
o,. This is a contradiction. Thus we have shown that some symbol (say 8) in S,
occurs in S,.
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Now the block-switch T which switches the first 7, to 8 block with the block that
starts 7,0, to B insures that 7(r) matches o in its first two places. Continue
inductively to complete the proof. []

Proposition (27) has been formulated in terms of finite strings, but it is clear that
block-switch transformations that operate on I” also operate on I*.

(28) COROLLARY. A measure P on I* is partially exchangeable if and only if P is
invariant under all block-switch transformations.

This corollary means that some results from ergodic theory apply to the present
problem. In particular, either (Farrell (1962)) or (Chapter 10 of Phelps (1966))
implies that the partially exchangeable measures are mixtures of ergodic measures
(“ergodic” means the measures are zero or one on the partially exchangeable field
¥ defined in (26)). As usual, a more detailed description of the extreme points
requires detailed arguments such as those presented in Sections 2 and 3 here.

There are two other approaches to the proof of Theorem (7) we want to mention.
The first is to carry out de Finetti’s original suggestion of proving a version of (7)
for finite partially exchangeable sequences and then passing to the limit. We can do
this for I = {0, 1}, but the argument does not generalize to other finite . Some
details are in Diaconis and Freedman (1978a). The second approach is to use the
machinery associated with Gibbs states. We give this argument in some detail in
Diaconis and Freedman (1978c). The special case of stationary processes with
I = {0, 1} is treated by Georgii (1975).

Mixtures of Markov chains. Without the recurrence condition (4) the class of
partially exchangeable processes is larger than the class of mixtures of Markov
chains. A natural problem is to find a condition to add to partial exchangeability
which characterizes mixtures of Markov chains. When I = {0, 1}, a condition that
works can be described as follows: let u, be the probability that the process starts
with i or more zeros and ends with all ones. Let »; be the probability that the
process starts with i or more ones and ends with all zeros.

(29) A probability P on the Borel sets of {0, 1} is a mixture of Markov chains if
and only if

(30) P is partially exchangeable, and the sequences { i}, {»;}
are completely monotone.

PrOOF. It is clear that mixtures of Markov chains satisfy (30). Conversely,
suppose P satisfies (30). An easy argument shows that conditioning P on the
algebra generated by the two events:

A = {The path of X ends in all zeros}
B = {The path of X ends in all ones}
leaves P partially exchangeable. Thus,
(31) P(-) = P(:|4)P(4) + P(:|B)P(B)
+ P(-|(4 U B)°)P((4 U B)°).



DE FINETTI’S THEOREM FOR MARKOV CHAINS 127

The first two conditional probabilities on the right side of (31) are mixtures of
Markov chains by the Hausdorff moment theorem, using the second condition of
(30). The third conditional probability in (31) is a recurrent partially exchangeable
probability, which is a mixture of Markov chains by Theorem (7). Thus, P is a
mixture of Markov chains.

We have not been able to formulate a neat analog of (29) for state spaces I
containing three elements. As noted by Freedman ((1962a), page 116) even when [
has three elements, the mixing measure need not be uniquely defined. Consider the
following example.

(32) ExamMpPLE. Consider mixtures of Markov chains with three states 0, 1, 2,
starting from 0, with only the following transitions permitted:

O0—-1lor2, 1500r2, and2—>2.
(The other transitions are required to have probability 0.) There are thus two kinds
of sample paths: paths containing a 02 transition and paths containing a 12
transition. The probabilities of the two kinds of paths are given by:

Js(Po1P10)™ (1 = poy)p(dpy,s dpyo) m=0,12---,

Js(Po1P10) Por(1 — P10)1(dPoy» dp1o) n=012:---,
where S is the open unit square. Suppose now that u is concentrated on the curve
Po1P1o =3- Then only two moments remain to separate such p’s from one another:
Js(1 = po)i(dpyy) and [gpo,(1 — p1o)p(@poy> dp,o)- There are clearly many p’s with
these moments so p is not uniquely defined.

Stationary partially exchangeable processes. Freedman (1962b) showed that any
stationary partially exchangeable process is a mixture of stationary Markov chains
—chains which start with their stationary distribution. We will now derive this
from Theorem (7).

We need some notation: if a is a subprobability distribution on I and p is a
transition matrix, write {a, p)> for the law of the process which picks a starting
state / from « and then evolves according to p. For a stationary partially exchange-
able probability P let §, = P(X, = k). Suppose 6, > 0. By the Poincaré recurrence
theorem, given {X, = k}, the process {X,} is recurrent in the sense of (4) and is
therefore a mixture of Markov chains by Theorem 7:

(33) P(A| Xy = k) = [<8 ,>(A)m(dp)

where §, is a point mass at k. Clearly, y,-almost all matrices p have k as a recurrent
state. Put {X, = k i.0.} for 4 in (33). From (33),

(34) P = Zkokf<8k,p>”'k(dp)'

We will show that p, assigns mass 1 to matrices p for which state k is positive
recurrent and that 8, in (34) can be replaced by a stationary distribution for p.
Define m(p)(j) = C, lim,_,  p"(k, j), where “C, im” stands for the first Cesaro
limit. As is well known (see, for example, chapter 1 of Freedman (1971)) this limit
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always exists. Three cases must be considered in what follows:
Case 1. If k is transient for p, then the description of 7,(p) is complicated.
Case 2. If k is null recurrent for p, then 7 (p) = 0.

Case 3. 1If k is positive recurrent, then a,(p) is the unique stationary distribu-
tion for the recurrence class containing k.
To simplify notation, let 4 be the set
(Xo=ip Xy =iy s X, = i)

m

Then by (33),

P(A)=P(Xn=i0’Xn+l=il’°°' X, =im)

> ““n+m

= 20 Sp"(k, ig)p(ip, iy) - - * Plim—15 i) 1 (dp).

Take C, limits of both sides to get

(35) P(A4) = 20, J<{m(p), p>(A)m(dp).

If 6, > 0 we claim that with p,-probability 1, the state k¥ cannot be null recurrent
for p. Otherwise, y {p: m.(p) =0} > 0 and P has total mass less than 1. As a
result, if 4, > 0, then g, assigns mass 1 to the matrices p for which k is positive
recurrent, and m,(p) is a stationary distribution. This completes the argument.

APPENDIX

De Finetti’s theorem in Polish spaces. The form of de Finetti’s theorem used in
Theorem (7) is quite widely known; but as we cannot supply a reference for
precisely what we need, a proof will be given instead. To state the result in a bit
more generality, let Y,, Y, - - - be a stochastic process on the probability triple
(Q, ¥, P)—where (R, ¥) is assumed Polish. Suppose the Y; take values in a Polish
space S, equipped with the Borel o-field B. Now exchangeability means that
(Y,0p Yaqy * * ) is distributed as (Y, Yy, - - - ) for any finite permutation = of
the nonnegative integers. As before, let ¥ ™ be the o-field spanned by
(Y,, Y.+ -+ ) and let F ) =N, F @, the tail o-field.

(36) THEOREM. Let Y, Y, -+ - be an exchangeable stochastic process on
, F, P), with (R, ¥) Polish and the Y, taking values in a compact metric space S.
Let P,(A) be a regular conditional probability on F given the tail o-field F  of the
Y,. For P-almost all w, relative to P,, the Y, are independent and identically
distributed.

Some lemmas will be helpful.
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(37) LemMA. Let A € B. Then %2',‘,;})1 4(Y(w)) = P (Y, € A) for P-almost all
w, the exceptional null set depending on A.

PROOF. Let S, = Z701,(Y,), let G be the o-field spanned by S, and
Y,, Y,p1,- + - . Clearly, & ("‘”) cY% (") let ¥ = F® For 0<v<n-—1,
by exchangeablhty,

P{Y,€ A4 and S, >y and Y,€ed, - -,Y,,.€4,.,.}
=P{Y, €4 and S§,>v and Y,€A, .Y, €A}
Thus,
P{Y,€ 4|5 ™) = P(Y, € 4|5 ™)

{ m(ﬂ =5,

Now —I—S - P{Y, € A|5™} by the backwards martingale theorem. But

lim — S is § **-measurable, and F > c ), ]

(38) LeMMa. Let A, € B forr =0,- -, R. Let
1
= 1, (7,
L) = =y o R D) e ilr=ola (1@)),
where iy, - - -, ip are all distinct and range from 0 to n. Then T, (w)— P (Y, € A4,
for 0 <r <R) for P-almost all w, the exceptional null set depending on
Ag -+, Ag.

PROOF. As in (37), which is the case R = 0. []

(39) CoroLLARY. Let A, € B for 0 <r < R. Then
(40) P (Y, €A, for0<r<R}=TEF, P {Y,=4}
Jor P-almost all w, the exceptional null set depending on Ay, - - - , Ag.

Proor. Clearly,

nn=D): (= R4 D H,-o[l "l (Y)]+0( )

n
Now use (37) and (38). []

ProoF oF THEOREM (36). Let %, be a countable generating algebra of %. By
countable additivity, there is a P-null set N, such that & & N makes (40) hold
simultaneously for all R and all 4, € ®,. Then, by the monotone class argument,
for w & N, relation (40) holds simultaneously for all R and all 4, € B. []
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