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ALMOST SURE LIMIT POINTS OF MAXIMA OF STATIONARY
GAUSSIAN SEQUENCES

By H. VisuNU HEBBAR
University of Mysore

Let {X,, n > 1} be a discrete-parameter stationary Gaussian process with
E(X;)) =0, E(X,»z) =1 for all i and E(X;X;,,) = r(n). Let M, =
maximum(X;, X, - - - X,,). Under the condition that either (logn)!*¥r(n) =
O(1) as n — oo, for some y > 0 or 2%2,7%(j) < oo, the set of all almost sure
limit points of the vector sequence

{Ml,n_bn M2,n_bn A A{P,"_b"}

’ ’
an an a’l

is obtained, where (M ,), j=1,2---p are independent copies of (M,);
a, = (loglog n)(2 log n)~z and b, = (2 log n)z

1. Introduction. Let {X,, n > 1} be a discrete-parameter stationary Gaussian
process with E(X,) = 0, E(XZ) =1 for all i and E(X;X;,) = r(n). Let M, =
maximum (X, X, - - - X,); a, = (loglog n)(2 log n)“i and b, = (2 log n)2 It can
be observed that (cf Pickands (1969), Deo ((1973), Corollary, page 407), Mittal
(1974)) the set of all limit points of (M, — b,)/a,, under almost sure convergence,
coincides with the closed interval S, = [— 3, 1] provided either (log n)r(n) = O(1)
as n— o0 or 2,r%(j) < 0.

The object of this paper is to extend the above result to vector sequence. We
prove the following.

THEOREM. The almost sure limit points of

M,,—b M, —b M, —b
’gp)=[ o= b Mo, = b p,a },n}l,p}l,

a, a,

coincide with the set
S, = {(xl, Xop X)) X; > ——;,i =1,2,---p; 3_x; < 1 —p/2},
provided either there exists y > 0 such that (log n)'*'r(n) = O(1) as n — oo or

® r}(j) < oo, where (M, ,),j =1,2- - - p are independent copies of (M,).

It appears that the condition: (log n)r(n) = O(1) as n — oo is not sufficient for
the theorem to hold. Almost sure limit sets of random vectors with independent
components have received attention in the recent literature (cf. LePage (1973),
Pakshirajan and Vasudeva (1977) and Strassen (1964)). We present the proof of the
above theorem for p = 2 only to avoid cumbersome notation. Consequently, in
view of the result for the one-dimensional case (p = 1), it is clear that we need
cansider only the points (x,, x,) such that |x,| <3,i=1,2.
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Let {Y,} be an independent copy of {X,} and let M, , = maximum
(X, X5+ ¢ - X,) and M, , = maximum(Y,, Y,, - - - Y,). Write U, = (M, , —
b,)/a, and V, = (M, , — b,)/a, For any positive number u, [u] denotes the
greatest integer < u. The abbreviation i.0. stands for infinitely often.

2. Proof of the theorem. We need the following three lemmas for the proof of
our theorem which, as stated in the previous section, will be established for p = 2.

LeEMMA 2.1.  For all x;, x, > — 3 and for every ¢ > 0,

® P{U, >x +¢V, >xi0} =0,

(i) P{U, >x, V, >x;,+¢e10.} =0,
where n, = [exp(k(+x1+%07),

ProoF. Since U, and V, are independent

P{U, >x;+ &V, >x}=P{U, >x +e}P{V, >x,)
<nP(X,>(x; +¢€)a, +b,)
Xnk * P(Y] > xZa"k + b"k)

~ const. k~(+e/(+xi+x2)) a5 k5 o0,
using the known result 1 — (I)(x)~(2';r)‘%x‘1 exp(—x2/2) as x — oo for the
standard normal distribution function ®. Thus 2, P(U, > x; + ¢, V, > x;) < oo.
An application of the Borel-Cantelli lemma completes the proof of (i). Proof of (ii)
is similar.

LEMMA 2.2. For x;, x, > — 3 and x, + x, < 0,

P(U, >x,V, >x,i0)=1,
- provided either there exists y > 0 such that (log n'*r(n) = O(1) as n— o or
=2.,r%0) < .

Proor. Define the integer sequence m, = [n.(log k)~ 51.] Let F, =
{maxn,‘—m,‘+l<v<nk Xv > an}; Gk = {maxnk—m,‘+l<v<nk Yv > dnk} and Ek = Fk n
G, where ¢, = x,a, + b, and d, = x,a, + b,. When r(n) = 0 the correspond-
ing variables and events are indicated by an asterisk. Thus we have X}, E}, G¥, etc.
Note that E, C (U, > x,, ¥, > x,). Hence the lemma will be established if we
show

2.1) P(E, io0.) = 1.

This, in turn, will follow when we show as n — oo, that
(22) E(J,) > o

(2.3) J,/E(J,) —,1

where J, = 2% _ 1, for sufficiently large N, I, being the indicator function of E,.
In order to establish (2.2) consider
(24) P(E,) - P(E}) = P(F)P(G,) — P(FF)P(GY)
= P(F){P(G,) — P(G})} + P(GY){P(F,) — P(F})}.
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Therefore

(2.5) |P(E,) — P(E})| < P(F,)|P(G,) — P(G})|
+ P(G})|P(F,) — P(F¥)| = 4, say.

Observe

(1) from the tail behaviour of ®(x) that

(@) P(F,) < mP(X, > c,) ~ const. (log k)~ 3(log nk)‘(""*%) as k — .

(b) P(F) = 1 — {®(c, ))™ = 1 — exp(m, log{1 — (1 — ¥(c,))}) =1 —
exp{ —m (1 — @(c,))(1 + o(1))} ~ const. (log k)~ %(log nk)"""% as k — o,
whenever x; > — 3. Similarly, P(G}) ~ const. (log k)‘%(log nk)"‘z‘%
as k — o0, whenever Xy > — %

(2) By Lemma 3.1 of Berman. (1964),

|P(F,) — P(F¥)| = |P(F) — P(F¢°)|

< @2m) 7= ()l (my — (1 - () exp(—c2/ (1 + |r(j)]))
and similarly |P(G,) — P(G})| is

- —_ 5 o o —‘l o
< @m) 7= ) (m ~ N = P2() 72 exp(= a2/ (1 + [F())-
Then it can be easily seen that lim, ,, 3} _ A4, < oo, under the condition that
either (log n)r(n) = O(1) as n — o or Ef';lr2(j) < oo (cf. proof of Theorem 3.1 of
Berman (1964)). Further, 37 _ P(F})P(G¥) = const. 2 _y(klogk)™! > 0 as n
— 0. The proof of (2.2) is thus complete.
By Chebycheff’s inequality
26) P{|(J,|E(J,) — 1| > e} < V(J,)/ ((E(,)))
= V(1) + 222N<k<1<n Cov(1,, I))
£(E(J,))
Clearly 27_, V(L) < =" _yE(I) = o(E(J,))* as n— . Hence (2.3) will be
established when we show
2.7 Sup, |22 y <k cicn CoOV(Iy, )| < 0.
This can be done as below. For k& </,
(2.8) Cov(1,, 1)) = E(I 1)) — E(I,)E(I)
= P(F, N F)P(G, n G)) — P(F,)P(F)P(G)P(G)
= P(F, n F){P(G, n G) — P(G)P(G)}
+P(G)P(G){P(F, n F)) — P(F)P(F)}
= {P(F, N F) — P(F)P(F)}
X ({P(G, N G) — P(G)P(G)} + P(G)P(G))
+ P(F)P(F){P(G, n G) — P(G)P(G)}.
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Therefore
(29) [Cov(L, I)| < (|P(F, N F) — P(F)P(F))(|P(G, N G) — P(G)P(G))))
+ P(G) P(G){|P(F, N F,) — P(F,)P(F)|}
+ P(F)P(F){|P(G, N G) — P(G)P(G)|}.
By Lemma 1.5 of Qualls and Watanabe (1971) we get
(210)  |P(F, 0 F) — P(F)P(F)| = |P(F, n F{) — P(F{)P(Fy)|
< 2 B0 rlfop(cn, s € Ar) dA,
where ¢(u, v; p) is the standard bivariate normal density with correlation
coefficient p and r = r(n, — m; + p — n, + m, — »). Now consider the following
cases.

Cask (i). Assume that for some y > 0, (log n)'**r(n) = O(1) as n — 0.

Then, clearly (log n)'**8(n) = O(1) as n— oo where 8(n) = sup;,,|r(j)|. The
stationarity of X,’s and the condition on {r(n)} ensure that (1) < 1. Observe that
0 <nm/n,, <e !, whenever x; + x, < Oand hencen, — m, + p — n, + m — »

1
>nm—m—n >n (1—(ogl)"2— e~ "). Therefore |r(n, —m, + p — n + m
— »)| < 8(const. n)) < const. (log n)~'~7 for all k and / such that/ >k >N, N
being a sufficiently large positive integer and when x; + x, < 0. Since

@11) 6(cy 003 )
<Q@2mn7'(a - 62(1))_% exp(— (c,fk = 2|rfe,c,, + c,fl)/Z)
< const. exp(— (¢ + (1 — 2|r|)c2)/2)

because the c,y’s are monotonic increasing in j, (2.10) can be majorised by

(2.12) const. my - m,{8(const. n))} n; '(log n) ™

x (n/(log n)™")~
< const. (log k)_%(log 1)_%(log ) "1(log n) " HY+®)

since n2%©°st ) = exp{2(8(const. n))) log n;} is bounded. Similarly |P(G, N G)) —
P(G,)P(G))| can be majorised by an expression which is obtained from (2.12) by
replacing x,’s by x,’s. Hence the first term on the right-hand side of (2.9) is

< const. (log k) ~'(log 7)™ '(log n,) ™1 *(log n)) "G *+2r =1+ x)

< const. (log k) ~'(log n,) "+ *1¥*)(log 1)~ (log n)) " H YD),
The second term in (2.9) is .

<mP(Y, >d,) - mP(Y, >d,){|P(F, N F) — P(F)P(F)|}

(1—28(const. ny))

< const. (log k)~ '(log n,)~(***(log 1)~ (log m) ~(xr s+ 73),
for I > k > N, with N sufficiently large;

< const. (log k)_l(log nk)-(l+x|+xz+7/2)(log l)_l(log n])—(l+x|+x2+y/2).
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The third term in (2.9) is bounded by the same expression as the second.
From these bounds (2.7) follows immediately.
Cask (ii). Assume that 3%2.,7%(j) < c0. From (2.8) observe that

|Cov(L, )| < |P(G N G) — P(G)P(G)| + |P(F, N F) — P(F,)P(F)|
< 2’;’-12':';1M(f6{¢(dn,3 a,; Ar) + ¢(an’ Cnp> )"')} d}‘)

by Lemma 1.5 of Qualls and Watanabe (1971), where ‘7’ is the same as defined at
(2.10).
The above expression can be majorised by

(213) =7 37 |r|(expf{ - (@2 + (- 2|r|)d,:)/2}
+exp{— (2 + (1 —2lr)c2)/2}),  (cf. (21D)).

Under the assumption on r(n), it follows that |r| = |r(n, — my + u — n, + my —
v)] <eforalll >k > N, where ¢ is a sufficiently small positive number and when
x; + x, < 0. Then (2.13) can be majorised by

(2.14) {(exp{— (42 + (1 = 2¢)d2)/2}) + (exp{ = (c% + (1 = 2e)c2)/2})}

S ST — myp 4 = oy + my — v)].
By the Cauchy—Schwarz inequality,
D ETlr(y = my 4 p =+ my = )|

< mz% : (ZT-l(ZTiﬂr(”l —m+p -+ m - ")')2)5

1

< (S S (1 =+ = g = 9Y)’
1
< m,% cmy - (S2,77(N)?

since
2
2?—12':"-1{"(”1 —m+p—n+ m—v)}
} 2
=3 {r(m —m + p—n + m — 1)}
2
+ 2',7'=1{"("1 —m+u—n +m— 2)}
2
+ ... +27:’-1{"(n1 - m + L= nk)}
< my - 252,7°().-
Thus (2.14) is bounded by
const. m - min'nir 4 ~2((log n)) ~*¥(log m) ¢ 72

+ (log ) " *(log nl)_(l_ze)x')~
Then (2.7) follows immediately.
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Thus, via (2.6), the proof of the lemma is now complete.
LEMMA 23. For all x,, x, > — 3 with x; + x, > 0 and for every € > 0,
P(U,>x,+¢&V,>x,+¢eio)=0.

Proor. Let B(k) = [exp(k)]. Notice that, for x fixed, xa, + b, is ultimately
monotonic increasing in 7. Therefore, it is seen that { M, , > (x, + €)a, + b,, M, ,
> (x, + &)a, + b, for infinitely many n} is C { M gy > (X1 + €)agu) + bguy
M, g1y > (X2 + €)agy, + bgg, for infinitely many k}. Since, as in the proof of
Lemma 2.1,

P{M, paesry > (X, + ©)ag0) + bporyy My pacsry > (X2 + €)agay + bpy}

< const. ( %-}:)—1) )2(10g 1:105) B

= const. k= (I+x+x+20) a5 k500,

the proof of the lemma is completed by observing that Sk~ (+x++29 < oo
when x; + x, > 0.
With these lemmas we can furnish the proof of our theorem.

PROOF OF THE THEOREM. From the result for one-dimensional case it is clear
that the limit set of (£) must be within the square {(x,, x): |x| <3,i=1,2}. It
follows from Lemma 2.3 that the limit set is contained in S,. We conclude from
Lemmas 2.1 and 2.2 that every point of S, except (— 3, —3) is a limit point. That
the point (— 2, —3) is also a limit point follows from continuity consideration. This
. completes the proof of the theorem.

REMARK. Suppose (X;,), j =1, 2,---p are p independent sequences of
stationary Gaussian variables with means zero, variances one and the covariance
functions r(n), j = 1,2, - - - p. Define M; , = max, ¢,<, X, .- Let us say that the
sequence {r,(n)} satisfies the condition o if =%_,r}(k) < oo and the condition & if
(log n)“’fr}.(n) = O(1) as n— oo, for some y; >0,/ =1,2,- - p. Then it is not
difficult to show that the set of all almost sure limit points of {£#} is S, provided
for each j,j = 1,2, - - - p either a; holds or &/ holds.

Acknowledgment. 1 thank Professor R. P. Pakshirajan for his guidance and
encouragement.
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