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LIMIT DISTRIBUTIONS FOR THE ERROR
IN APPROXIMATIONS OF STOCHASTIC INTEGRALS

By HOLGER ROOTZEN
University of Lund and University of Copenhagen

We consider the approximation of an It integral [ &(s)dB(s) by a
sequence of integrals [ § ¢,(s)dB(s) of simpler integrands. It is proved that if,
for a sequence {y,} of adapted integrands, supoc,<i|f & y,ds| —,0 and
Sh42ds —,7(?), for some continuous stochastic process {7(#); ¢t €0, 1]}, then
S, dB —, W o 7 in C(0, 1), where W is a Brownian motion independent of .
Further, if one is only interested in the limit distribution of functionals like
S 4, dB or supy, | S 4¥,dB|, then in the second condition it is enough to
require that f §yZds —,(1). The convergence is stable in the sense of Rényi,
and from this follow results on the fluctuations of the sample paths of the
integrals. As an example we consider the case ¢(¢) = f(B(¢), #) and ¢,(¢) =
i1 f(B(i/n), i/m)I(i/n <t < (i + 1)/n). Denoting the approximation error
S (¢ — ¢,)dB by d,(¢), it follows from the above results that if f is smooth
enough then nid, —»,W o, with 7(z) = 2=! {§f,(B(s), s)%ds where
fi(x, ) = g%i—i)- Similar results are obtained for approximations of the Stra-
tonovich integral and for higher order approximations.

0. Introduction. The It6 integral [{p(s)dB(s) of an adapted integrand ¢ with
respect to a Brownian motion process B is defined as the limit of integrals of
approximating integrands ¢,, and if one wants to compute stochastic integrals
numerically, similar approximations can be used. In this paper we investigate one
aspect of the accuracy of approximations of stochastic integrals. Writing d,(¢) for
the approximation error [o¢dB — [46,dB we find conditions which make a,d,
converge in distribution for some suitably chosen sequence {a,} of normalizing
constants. Furthermore it turns out that the convergence is stable in the sense of
Reényi, and that this implies that the realizations a,d,, a,d,, ... fluctuate strongly.

The main result, which will be used to prove convergence, is contained in Section
1. It is that if, for a sequence {y, } of adapted integrands, supy, | /6, ds| —,0 and
.(0) = [S42ds —,7(2), t €0, 1], for some continuous random process {7(¢); t €
[0, 1]}, then [§4,dB —,W ° 1 in C(0, 1), where W is a Brownian motion indepen-
dent of 7. (W o 7 denotes the function whose value at ¢ is W((£)). In integrals dB
signifies that it is an It6 integral, and thus, e.g., [} f(B(s))dB(s) is often written
Jof(B)dB, which should not be confused with the Lebesgue integral [of(s)ds.
Further [§ f(B)ds is the same as [}, f(B(s))ds or [5f o B ds.)

Further, if the second assumption is weakened to [gy7ds —,m(= 7(1)) the one-
dimensional limit results still hold, e.g., [oy,dB —, [®(-/ s%)dF,(s) and
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SUPo< <1l /i¥ndB| >4 [G(- /s2)dF(s), where G is the distribution function of
SUpo<,<1|B(?)|- The idea of the proofs is as follows: It is known that [5" y,dB is
distributed as a Brownian motion, since 7,(?) is the “square variation” of [§y,dB. If
one can prove a little more, say that {fJ y,dB}%., is Rényi-mixing, then it
follows that (/g ' ¥, dB, 7,) —4( W, 7), and thus by standard arguments that [$k,dB
=,s /& °™y,dB —,W o 7. The proof that {/5 ¥,dB} is Rényi-mixing is accom-
plished by using Girsanov’s theorem and a result of Duncan (1970) on absolute
continuity with respect to a Brownian motion.

In Section 2 we treat approximation of integrals, with integrands of the special
form ¢(¢) = f(B(s), s). For simplicity it is assumed that ¢,(¢) = 723 ¢(i/n)I{i/n
<t < (@(i+1)/n} and thus [§f(B(s),s)dB(s) is approximated by [{¢p,dB =
VIS f(B@i/n), i/nXB((i + 1)/n) — B(i/n)) + f(B(nt}/n), [ni]/n)(B(t) —
B([nt]/n)). It is shown that if f is smooth enough then the approximation error
multiplied by ni converges: more specifically n%d,, —, W o 1, where W and 7 are
independent and where 7(£) = 27 % f,(B(s), 5)ds.

Stratonovich (1966) introduced a “symmetrized” stochastic integral. In Section 3
the accuracy of approximations of this integral is discussed using the convenient
setting of Yor (1976). This setting also includes the “Rieman-Stieltjes approxima-
tions” of Wong and Zakai (1965), which are obtained by making polygonal
approximations of the Brownian paths and then computing ordinary Rieman-
Stieltjes integrals using these approximations. In this case the approximations are
exactly equal to their limit for integrands f(B(s)), so the approximation error then
is zero. Further, the section contains results for higher order approximations of Itd
integrals. Using the methods developed in Sections 1 and 2 it is straightforward,
even if somewhat cumbersome, to find limiting distributions for the errors in these
approximation schemes. The structures of the limits are rather interesting. As an
example can be mentioned that when the Stratonovich integral of f(B(s)) is
approximated by sums of the form =,f(2~'(B((i + 1)/n) + B@i/n))(B((i + 1)/n)
— B(i/n)) then the proper normalization of the error is by n and the limiting
distribution is that of W(967 !/} f"(B(s))’ds) + 8 'fif"(B(s))dB(s) +
16~ 1% f""(B(s))ds, where W is a Brownian motion independent of B.

It is possible to adapt the results of this paper to integrals with respect to more
general continuous local martingales than the Brownian motion, but the next
generalization—to semimartingales—does not seem to be interesting since in that
case it may well be that it is the bounded variation term which determines the
speed of convergence. In a further paper similar problems for approximate solu-
tions to stochastic differential equations will be treated.

1. Limit distributions of the approximation error. Let {B(¢); ¢t €[0, 1]} be a
standard Brownian motion on a probability space (2, ¥, P) and let as usual
{F(9); t €[0, 1]} be an increasing family of o-algebras such that B(?) € %(¢),
t € [0, 1], and with the o-algebra generated by { B(s) — B(¢#); t <s < 1} indepen-
dent of %(¢) for ¢t € [0, 1].
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In subsequent sections the errors in approximations of stochastic integrals will
themselves be stochastic integrals [4a,(¢ — ¢,)dB and thus we will investigate the
limits of integrals [gy,dB, where the integrands {y,,(¢?); ¢ € [0, 1]}, are supposed
to be measurable and adapted to {%(#)} and to satisfy

foy2ds <  as., n=12,-

The natural time scale of [(y,dB is given by
1a(2) = [odads,
and we define an inverse to it as 7, '(s) = inf {s > 0; 7,(s) > #}.

In this section two functional limit theorems are proved. The main interest of the
first one (Theorem 1.1), which requires somewhat weaker conditions, is in the
one dimensional limit results which follow from it. Thus an immediate corollary of
it is that [y, dB —,f ®(-/ s%)dF,(s), where ® is the standard normal distribution
function and F, is the distribution function of the limit 7 of {r,(1)}. Somewhat less
obviously it also follows that supy,«|/o¥,dB| — G(-/s?)dF,(s) with G(x) =
P(supy,<1|B(?)| < x). Further it is possible to get simlpler limits by using random
normalizations, e.g., on the set {r > 0}, [},dB/7,(1)2—,®, and similarly for the
supremum over [0, 1].

In the results below the functional limits are for random variables in C(0, 1), and
vectors of random variables are taken to belong to the product space given the
product topology. It should be noted that 7, is nondecreasing and that it hence
converges in probability in C(0, 1) if and only if it converges in probability at each
time point separately. To describe the limiting distribution we use another standard
Brownian motion { W(¢); ¢ > 0} which is supposed to be independent of every-
thing else.

THEOREM 1.1. Suppose that

(L1) (1) = [oads —,7, n— o,

Jor some random variable T and that

(12) SUPo<s<1l/o¥nds| 2,0,  n— 0.

Then

(1.3) (fg O 4,dB, 7,(1)) > W(()r). 7, n— oo,

where the Brownian motion W is independent of 7.

ProOF. To assure that [ © y,dB is well defined for all ¢ > 0, we will during
the proof assume that B(¢), ,(¢), and %(f) are defined also for ¢ > 1, with
Y,(1) =0, for 1 <t < n, and y,,(¢) = 1, for t > n. This assumption involves neither
the hypothesis nor the conclusion of the theorem, and can be made without loss of
generality. It is known, see, e.g., McKean (1969, page 29) that f{,"—' Y,dB then is a
Brownian motion on [0, o0).
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The main part of the proof is to show that [§ 'x[/,,dB is Rényi-mixing, i.e., that for
each probability P which is absolutely continuous with respect to P, the sequence
converges in distribution to a Brownian motion W also when P is replaced by £
(see, e.g., [8], [9] or [4]). Here convergence in distribution is for random variables in
C(0, ) given the topology of uniform convergence on compacts (see Whitt
(1970)). An alternative way of formulating Rényi-mixing is to require that

(14) E{&(/§ ¥,dB)} - EQE(f(W)), n—wo,
for continuous bounded functions f: C(0, o) - R if £ > 0, E(§) < co. It is easy to
see that if a random variable £ can be approximated arbitrarily well in the mean by
variables ¢ satisfying (1.4) then (1.4) holds also if £ is replaced by &. Now it is
known, see, e.g., Doob (1953, page 606) that if E(J¢|) < oo then & can be
approximated in the mean by £ € % (T) for finite 7. Further, for £ > 0 a.s. it is no
restriction to suppose that the approximating § are strictly positive, and after
division by E(§) it may be assumed that E(§) = 1.
It thus only remains to be proved that (1.4) holds for ¢ € F(T) with ¢ > 0 a.s.

and E(§) = 1. For such £ the relation

dP

¢
defines a probability P which is equivalent to P. From the results of Duncan (1970)
it follows that there exists a measurable adapted process {7n(?); ¢ > 0} with n(¢) =
0 for ¢ > T and with [In%ds < oo a.s. such that ¢ = exp {/IndB — 3 [in’ds}. Thus,
by Girsanov’s theorem (Girsanov (1960))

B(r) = B(t) — fonds
is a Brownian motion under P and
S¥ndB = [4,dB + [, nds.
As above, fg»"¢,,d§ is a Brownian motion under P. Thus, since n(¢) = 0 for ¢t > T,

to prove (1.4) it suffices to show that supy, < 7|/o¥,nds| —,0, as n — oo, and since
Y,(1) = 0 for 1 <t < T if n is large enough this is the same as proving

(1.5) SUPo« < 1] /0¥nnds| -,0, n— co.

By (1.2) this clearly holds for n of the form n(z) = S¥T~ " I{i/k <t < (i +
1)/ k) and further for arbitrary n with [jn’ds < oo a.s. it is possible to find n® of
this form such that f3(n — n®)’ds —,0 as n — co. Thus, by Cauchy’s inequality
and (1.1)

1/2
SUPg.< <1l fo¥ands] < SuPog il [0 @ds| + { fiu2ds (n — n®)’ds )
5,0 + {rfin — n®)%as)">.

Letting k — co now proves (1.5) and hence that { g '1[/,,dB} is Rényi-mixing.
Since 7,(1) >, by the assumption (l.1) it follows from Theorem 4.5 of
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Billingsley (1968) that
(/5 ¥,dB, 1,(1)) (W, 1), n—> oo,

in C(0, o0) X R, where W is a Brownian motion independent of 7. Further, by
arguments similar to those on page 145 of the cited reference, this implies that

(J5 OOy, dB, 7,(1)) 5 W(()r), 1) n—>oo,
in C(0, 1) X R. ]
In a different context, normalizations similar to those above have been consid-
ered by Hall (1976). If the first part of the hypothesis of the theorem is

strengthened, it is possible to get a functional limit theorem not only for the
time-changed integral 5 “*(Vy, dB but also for the integral [%y, dB itself.

THEOREM 1.2. Suppose that
(1.6) 1,(1) = [ids —,7(1), t€[0, 1],

as n— oo, for some continuous process {1(t); t € [0, 1]} and that (1.2) is satisfied.
Then

(1.7) fg)¢ndB—>dW° T, n— oo,

where the Brownian motion W is independent of .

PrROOF. As proved above f{,"_'x]z,,dB is Rényi-mixing so ( f{,;'xp,,dB, T,) =AW, 1)
and hence [§y,dB =, [5"' ™, dB —,W o . []

RemArk 1.3. In fact we have proved a little more than the conclusions of
Theorems 1.1 and 1.2, namely that the convergence is stable in the sense of Rényi.
This can be said in another way, which will be useful in Section 3: if a sequence of
processes, say {X,(1); t € [0, 1]}, converges in probability to a process {X(#); ¢t €
[0, 1]}, then X, converges jointly with the quantities in (1.3) and (1.7). For further
information about stability in the sense of Rényi see, e.g., Rényi (1970) or Eagleson
(1975). 0

Another consequence of stability is that there is no stronger convergence, as can
be seen from the following theorem.

THEOREM 1.4. Suppose that the hypothesis of Theorem 1.1 is satisfied. Then on the
set {1 > 0} the range {[iy,dB, [,dB, - - - } of [o,dB is dense in R as.

PrOOF. We have to prove that {fo4,dB, [oy,dB, - - - } is dense in R a.s. with
respect to P(-) = P(- |t > 0). Proceeding as in the proof of Theorem 2.2 of
Rootzén (1976) we only have to show that

lim sup,_, . P(/i¥,dB E€(x — & x + €]|4) >0

if P(4) > 0 and &€ > 0, x € R. However, above it was proved that ( fo xl/,,dB T,)
— (W, 1) also under B(- |4) = P(-|A4 N {r > 0}) and hence, putting F(x) = P(r
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<x|4d N {r>0)),
ﬁ(f(l)xlzndB E(x —¢x + s]IA) —>f{<I>((x + e)/s%) - (I)((x - s)/sil)}dF_(s) > 0.
0

Results 31m11ar to those of Theorem 1.4 also hold for sup,,,|/o¥,dB|, for
Jov,dB/, (1)2 etc., and it can be seen that they still hold if » is restricted to some
(infinite) subset of {1, 2, - - }. Moreover, if the hypothesis of Theorem 1.2 is
satisfied, then analogous results hold for the entire process [§y,dB; ¢t € [0, 1]. For
instance, on the set {w; 7(¢) > 0 for ¢ > 0}, the C(0, 1)-closure of
(JS3,dB, [4,dB, - - - } then is a.s. the set of C(0, 1) functions which are zero at
zero.

We end this section with a lemma which will be useful when checking (1.2) and
(1.6) in later sections. In the lemma I(-), as is customary, denotes an indicator
function, i.e., I(A4) is one on A and zero on A°.

LeEMMA 1.5. Suppose that the stochastic process {a(t); t € [0, 1]} is a.s. Rieman
integrable over [0, 1, let () = n*/?Z"_la(i/n)(B(t) — B(i/m))I(i/n <t < (i +
1)/n) and write E, = E[{B(s)*ds. Then

(1.8) SuPo<r<1|f:)4’nd’ — E, foa ds| _)pO’ n — oo,
for k > 0.

PROOF. Put b,(f) = n*/2Z"2}(B(t) — B(l/n))"I(t/n <t < (i + 1)/n). Clearly
[&RD/"(B(s) — B(i/n))*ds has the same distribution as n~'"*/2f}B(s)*ds and
hence E{fi"b,ds — E,i/n}=0,i=1,---,n,and E{flb,ds — E;}*>0asn—
oo. Thus, by Kolmogorov’s inequality,

max1<i<n|f8/"bnds — E,i/n|>,0, n— oo.

Further, using that E[¢b2ds is bounded in n, Cauchy’s inequality gives that

— 1/2
Supi/n(r<(i+l)/n'f:/nbndgl < {" "5 bfd’} / —,0, n— oo,
and hence
(1.9) SUPo<,<1lfob,ds — Et| —,0, n— co.

Writing a,(7) = 27_ga(i/n)I(i/n < t < (i + 1)/n) we have y,(¢) = a,(¢)b,(), and
if a(?) is a stepfunction it follows at once that (1.8) holds. The general case is then
proved by approximating a by stepfunctions and then using Cauchy’s inequality
and that E[gb2ds is bounded in n (cf. the proof of (1.5) above). []

It may be noted that the lemma easily can be extended to deal with other
partitions of [0, 1] than 0, 1/n,2/n, - - - , 1 and that (1.2) can be checked for more
general y,’s by requiring that y, is adapted to {F(¢)}.
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2. A special case. The results from the previous section will now be illustrated
by considering approximations of the integral [} f(B(s), s)dB(s). To avoid unneces-
sary complications we study the most basic case; when f(B(¢), ¢) is approximated
by 720/ (B(@i/n), i/m)I(i/n < t < (i + 1)/n). Thus, writing Al for B((i + 1)/n)
— B(i/n) if i <[nt], and for B(¢) — B(i/n) if i = [nt], we are interested in the
deviation of [ f(B(s), s)dB(s) from = f(B(i/n), i/n)Al. It is possible to treat
other approximation schemes in a quite similar way. In the next section two such
schemes are studied.

THEOREM 2.1.  Suppose that f(x, ) — f(x,s) = o(|t — s|%) uniformly on com-
pacts, and that the partial I f(x, 8) = fi(x, t) is continuous. Then

@) {n3(ff(B(s), s)dB(s) — S\hf(B(i/n), i/n)AL); 1 €[0, 1]} =, W o,

where the Brownian motion W is independent of T and where 1(t) = % T8 Fi(B(s), 5)%s.
PrOOF. Put (1) = f(B(1), 1), ,() = £;23 f(BGi/m), i/mI(i/n <t < (i +

1)/n) and let y,(¢) = n22,-=0 W(B(i/n), i /n)(B(f) —lB(z/n))I(z/n <Kt <@+

1)/n). The first step of the proof is to approximate nz (¢ — ¢,)dB by [iy,dB.
Now, writing 1,(i) = [i/n, (i + 1)/n),

(22) nifye — ¢,)dB = n3Z1Z4 f1 o, ,].(f(B(S), s) — f(B(s), i/n))dB
+ [o¥,dB + ”22 o Ju  ()N0, qo(|B(s) — B(i/n)|)dB
= RMNt) + [¢,dB + R(1), say.

To prove that R, and R? converge uniformly to zero in probability we will use the
fact that if, . for a sequence {e,(?); # €[0, 1]} of integrands, foelds —,0 then
SUPo<,<1lf0€,dB| —,0. Since almost every sample path of {B(),t € [0 1]} is
bounded we have from the first condition of the theorem that

2126 [ f(B(s), s) = f(B(s), i/ n))ds
= 0(1)" 27;(; fl,,(i)(s - l/n)df ~')a.s.o’
as n — oo. Similarly,
n 2520 [100(|B(s) = B(i/n))’ds = o(1)n 2124 f, o (B(s) — B(i/n))’ds -
—>p0, n— oo,

since o(1) -, 0 and since [, o\ B(s) — B(i/ n))’ds has the same distribution as
n~2[oB(s)’ds and {nZ723f, ,(B(s) — B(i/n))ds} hence is tight. Thus we have

proved

(23) sup0<,<1|R,f(t)| _)po

asn—oo fori=1,2.
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Next, by Lemma 1.5 with a(?) replaced by f,(B(?), ?) and f,(B(¢), t)?, respectively,
which are continuous and hence Rieman integrable,

Sup0<t<1|f:)‘l’ndsl —-)pO’ n— o0,
and
Jods —)p%f:)fl(B(s)> s)’ds, t € [0, 1], n— oo,

since clearly E, = 0 and E, = 3. Thus (¢, } satisfies the hypothesis of Theorem 1.2
and hence

J$,dB > W oo 1, n— oo,
and by (2.2) and (2.3) this proves the theorem. []

3. Stratonovich integrals and higher order approximations. The methods devel-
oped above can also be used to study convergence to the Stratonovich (1964)
integral and convergence of the Rieman-Stieltjes approximations considered by
Wong and Zakai (1965). Furthermore, from the preceding section can be seen that
higher order approximation schemes will converge much quicker to the Itd integral,
and that with a suitable normalization it is possible to get nontrivial limit distribu-
tions also for such approximations. The necessary computations follow the same
lines as before, and hence they will only be sketched. Moreover, for simplicity only
integrands f(B(s)) with f four times continuously differentiable will be treated.

In Yor (1976) is used the following convenient formulation, which includes both
the Stratonovich integral and the Rieman-Stieltjes approximations. Let u be a
probability measure on ([0, 1], B ([0, 1])) with w, = [ix*du(x), k = 1,2,- - - and,
using the notation A’ from the previous page, put

L(t) = Sy F(B(i/n) + sAl)du(s)AL.
In the cited paper it is proved that
L(t) =, /o f(B(5))dB(s) + p[of (B(s))ds

as n — oo. Here the It6 integral corresponds to u = &, the Stratonovich integral to
p = 81, and the Rieman-Stieltjes approximation obtained by making a polygonal

approximation of B(s) between the points 0, 1/n,2/n, - - - n/n corresponds to u
being Lebesgue measure on [0, 1].

Let
(3.1 d,(1) = [of(B)dB + p,[of"(B)ds — 1,(?).

It turns out that the behaviour of d, is quite different according to whether y, #3

or u, = % In the former case the proper normalizing constants are n? while in the
latter case one should use n or higher powers of n. For the Stratonovich integral
and for the Rieman-Stieltjes approximations p, =3, but of course in the latter case
1(?) does not depend on n and hence the approximation error is zero. However, for
integrands f(B(s), s) there is a nonzero approximation error (typically of the order
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1/n) also in this case. For smooth integrands f(B(s)) the order of the approxima-
tion error in Yor’s scheme is determined by the first k& for which w, 5 1/(1 + k).
We first show that
(3.2 nid, —,Wor,
as n— oo, where d, is given by (3.1) and where the Brownian motion W is
independent of 7 and 7(?) =3(1 — 2u))*f} f'(B(s))’ds. If p, =1, this distribution is
degenerate, and later we will consider the limiting distribution of n d, in this case.
The calculations which follow are longish, so it is helpful to abbreviate the
notation. In most places we delete explicit dependence on n, and hence, if i < [nt],
we write A; for B((i + 1)/n) — B(i/n) and I, for the interval [i/n, (i + 1)/n). If
i = [nt] then A, = B(¢t) — B(i/n) and I, = [i/n, ). Further |I;| denotes the length
of the ith interval, A(s) = B(s) — B(i/n) and B, is short for B(i/n), f; for
f(B(i/n)), f! for f'(B(i/n)), etc. A sequence of stochastic processes, say {e,(?); t €
[0, 11} 1, is 0,(f(m)) if SuPgg, 1| X,(D)]/f () —,0 as n — oo
With this notation, expanding the last two terms of d,(¢) around B,(= B(i/n))
gives

d,(t) = S 1, /(B)dB + p, f\L] — FA, — p f/A2)
S Sy S (BOS)) = f)ds = [AFCB,+ 5B) = i = fish)di(s), )

The methods of Section 2 can be used to show that the latter sum is o,(n~ %). Thus,
by expanding around B; also in the first integral above, and by using the fact that
A? — |I| = 2{,A(s)dB(s) we obtain

33) d,(1) = (1 — 2p)SLhf, /A(s)dB(s) + o,(n"?).

From Lemma 1.5 and Theorem 1.2 it follows that
{n%(1 — 2p) SV, f/A(s)dB(s); t €0, 1]} — W o,

which together with (3.3) proves (3.2).
Next we assume p, =3 and show that in this case

(B4) nd,—,Wor+3(1—3p)[of (B(s)dB(s) +5(1 — 4u3)[o.f""(B(s))ds,
where the Brownian motion W is independent of B and where 7(f) =3(1 —
31,)*f% f”(B(s))%ds. This limiting distribution is degenerate if p, = and p; =3 (still
assuming g, =), which, as it should, holds for the Rieman-Stieltjes approximation,
i.e., for p being Lebesgue measure.

When g, =% the low order terms in the expansion of 'd,,(t) cancel, and the next
higher order terms have to be retained. There is an additional minor complication.
A straightforward second order expansion of ZU\f, f(B(s))ds gives the “re-
mainder” SV, f,[f(B(s)) — f — f/A()lds = S04, fALs)%/2 ds + o,(n™"),
but here E(A,(s)’) = s — i/n (> 0) and it follows that the sum is not o,(n ") as it
should be. However, this can be remedied by subtracting 3", f|I|*/4 =



250 HOLGER ROOTZEN

U4,/ (s — i/n)/2ds, since the remainder then becomes SR TAG) = (s

t=l

— i/n)l/2ds + o,(n~"), which is g,(n""). Together with a similar adjustment by
St 712 /2 in the expansion of 2[,”_’_]0f 1S (B; + 5A)du(s)A,, it ensues that

1-0
d,(t) = SV{ 1,57 (8(5)’/2)dB(s) + S f7 ALs)ds + po S| L2 /4
— 1w £} /2 = ws f|LP/2) + o, (n7Y).

Further A} = 3/, A,(s)’dB(s) + 3/,A(s)ds, and by inserting p, =1 and rearranging
terms we obtain

d,(1) = S0h{(3 — 31,/2)/ 1 £/ D) dB(s) + (3= 3pa/2)/ 1 f A(s)ds
+ (3= m/2DR UL + 0(n 7.
Partial integration gives that [;A(s)ds = A;/n — [;(s — i / n)dB(s), and hence
(3.5)  d () = ZVh{(5 — 3m2/2) 157 [AL)’ = (s — i/m) ]aB(s)
+ (= 3u/2f A/ + (5= wa/ 2N WP} + 0p(n ™)
Lemma 1.5 and Theorem 1.2 can now be applied to prove that
(36) {n=V(% = 3m,/2)/ £ [ALs)* = (s — i/n)]dB(s); t €[0, 1]} —,W o 7.

Since f (and hence f”) are assumed to be continuous,

(3.7 nZ(5 = 3ma/2)f A/ n—5(1 = 3p) [5 " (B(s))dB(s)
and
(3:8) nZh (5 — ws/2)F 1L > 5(1 = 4ps)fo S (B(s))ds

uniformly in ¢ € [0, 1], in probability. Now, by Remark 1.3, the expressions
(3.5)-(3.8) prove that (3.4) holds.

If one knows the derivative of f, then a straightforward attempt to improve the
approximation of [5f(B)dB by U, f(B(i/m)A, = EV8.f, f(B(i/n))dB is to re-
place the latter quantity by ZVf,[f(B(i/n) + f(B(i/n)A(s)ldB(s) =
S F(BG/n)A; + 3£ (BGi/m)AE — |1, [)} The approximation error then de-
creases from the order n'% to the order n~!, and in fact we have that
(3.9) {n(ssf(B)dB — Y[ F(B(i/m)A, +1f (B(i/m)(A2 — |L])]); t €[0, 1]}

— W ot +5fof"(B(s))dB(s),
where W is independent of B and where 7(¢) = — of ”(B(s))’ds. The proof of (3.9)
follows the same lines as above, after writing

fof(B)dB — ZVZbf,(f; + f/A(5))dB(s)

= S2bf, £/ A(5)*/2dB + o,(n ™)

= Sihd 1, (As)? = [11/4)dB + S{ENLI/278, + o,(n™).
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It is now of course quite immediate to find limiting distributions also for
approximations of higher order than two. An additional term, corresponding to
4=17% f7(B(s))dB(s) in (3.9) only arises in even order approximations. Further, to
consider integrands of the form f(B(¢), f) and more elaborate numerical schemes
does not seem to introduce any new complications.
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